

RECURSIVE DESCENT
- COMPILING

A.J. T. DAVIE, B.Sc.

RECURSIVE DESCENT
COMPILING

A.J. T. DAVIE, B.Sc.

and R. MORRISON, B.Sc., M.Sc., Ph.D.
Department of Computational Science
University of St. Andrews

Scotland

ﬁ

ELLIS HORWOOD LIMITED
Publishers - Chichester
Halsted Press: a division of

JOHN WILEY & SONS
New York - Brisbane - Chichester - Toronto

First published in 1981 by

ELLIS HORWOOD LIMITED
Market Cross House, Cooper Street, Chichester, West Sussex, PO19 1EB, England

The publisher’s colophon is reproduced from James Gillison’s drawing of the
ancient Market Cross, Chichester.

Distributors:

Australia, New Zealand, South-east Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,

JOHN WILEY & SONS INC.,

G.P.O. Box 859, Brisbane, Queensland 40001, Australia

Canada:
JOHN WILEY & SONS CANADA LIMITED
22 Worcester Road, Rexdale, Ontario, Canada.

Europe, Africa:
JOHN WILEY ‘& SONS LIMITED
Baffins Lane, Chichester, West Sussex, England.

North and South America and the rest of the world:
Halsted Press: a division of
JOHN WILEY & SONS

..605 Third Avenue, New York, N.Y. 10016, U.S.A.

©A.J. T. Davie and R. Morrison/Ellis Horwood Ltd.

British Library Cataloguing in Publication Data
Davie, A.J. T.
Recursive descent compiling —
(The Ellis Horwood series in computers and their applications)
1. Compiling (Electronic computers)
2. Electronic digital computers
I. Title II. Morrison, R.
001.64'25 QA76.6

Library of Congress Card No. 81-6778 AACR2

ISBN 0-85312-386-1 (Ellis Horwood Limited)
ISBN 0-470-27270-8 (Halsted Press)

Typeset in Press Roman by Ellis Horwood Limited
Printed in England by R. J. Acford, Chichester

COPYRIGHT NOTICE -

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the permission of Ellis Horwood Limited, Market Cross
House, Cooper Street, Chichester, West Sussex, England.

Table of Contents

Author’sPreface i 9
1 Introduction

1.1 Whatare Compilers? S .11
1.2 The Phases and Passes of a Compiler.12
1.3 Recursive Descent Compiling. L. 15
14 History of Recursive Descentand LI(1) 17
1.5 Informal IntroductiontoS-algol 18
2 Mathematical Preliminaries

2.0 INtTodUCHON. cowess vumeiss aavre i gnwmneEs s o EEs s o Ee 23
22 ReIHONS: cvovms o s 2505 5: anosiis somaied s assans s o pnms 24
2.3 Digraphs : cowns i smm55 s BRETE 5 bEVOA A E B E B b b 25
2.4 Properties and Algebraof Relations 27
2.5 Closureof Relations.t nnnnnennnn.. 28
2.6 Boolean Matrix Representationccuueur..... 29
2.7 Calculationof Closures. b R B e 30
28 Summary............ciineiie A 33
3 Grammatical Preliminaries ,

3.1 Grammarsand Languages aapdis seuEE ¢ 1 34
3.2 Chomsky’s Stratification., 36
33 ContextFreeGrammars.c...... 38
3.4 Sentence Generation and Recognition. 40
35 Demivations.cvit ittt i e . 41
3.6 Ambiguityand Syntax Trees. 42
37 AGeneral TopDownMethod 45
38 BottomUpMethods 49
319 SUMMALY s wwis s s saoE.s 5 G664 56588455 wbbadss aenesiis 50

6

Table of Contents

4 Testing and Manipulating Grammars

4.1
4.2
43
44
4.5
4.6
4.7

The Need for Deterministic Methods. 52
LL(1)Grammarso ovve et e ee et e et ie e eie e 52
FIRSTand FOLLOW Relationso vi e ie e e 55
Factorisation and Substitution. 59
Left Recursion and its Elimination 61
Cheatifg « s ¢ s s ssions i s pnuomes smpmEs s aapsmsss Gasms s s 63
SUMMAIY. . . ot o e e e et e e e e e e e e e e 65

5 Compiler Construction

5.1
52
53
54
59

The Role of S-algol i 67
The One Pass Nature of Recursive Descent Compilers. 67
Stepwise Refinement 69
The Structure of a Recursive Descent Compiler. 71
The Layeis of the COMPUET: v oo s s smmpm s simaswssss smmusss 71
5.5.1 Syntax Analysis e 71
5.52 Lexical Analysist 7

5.5.3 Context Free Error Diagnosis and Recovery 2
554 TypeChecking i 72
5.5.5 Environment and Scope Checking. 73
5.5.6 Context Sensitive Error Reporting 7

5.5.7 Abstract Machine Definition 73
5.5.8 Code Generation.vouuunneinunennn... 74
SUMMALY 5.6 6 5 5 GG Es 4 6 MG+ 65 HRUE 35 DR HE 85 QwuE & o 3 75

6 Syntax’ Analysis

6.1
6.2
6.3
6.4
6.5
6.6

The First Layer.o ottt it e ecnn e 76
The Lexical Analysis Abstractions 76
BNFand Codingovviiminniiiiiiinnennn. 78
The SyntaXi Analyser « s x.s s soses s s simvns s s swamasss osweess 80
Expressions and Block Expressions. 83
SUMMAIY . o v v vt et it e e et et et et et e 87

7 Lexical Analysis

71
7.2
7.3
7.4
7.5
7.6

The Function of a Lexical Analyser 88
SCANNING = 5.0 5 5 s wmse s s B@mE s+ 5 BEWSE 65 eRMERe F s Gy g o 88
S-algol Scanning 90
Screening.o e 95
Lexical EITOrS: : s civwis s s insic s s stsoms s s pammumess pawa s s o 97

Table of Contents 7
7.7 MustbeandHave. e 99
T8 SUIMIMAIY . . & o e vttt et e et e e et e e e e e 99
8 Syntax Error Diagnosis and Recovery
8.1 WhatcanwedoaboutErrors? 101
8.2 The Pascal Error Recovery Scheme 103
8.3 The S-algol Error Recovery Scheme 104
B84 Errotf REPOrting wuwewei s s wsen s 5 s wmoms s s smnnms « & 95ems s 107
8BS Summary. i i i .. 107
9 Type Matching
9.1 Context Sensitive Analysistiiiiinennnn.. 109
9.2 TypeMatchingRules 109
9.3 The Representation’of the Data Types. 111
9.4 Checking the Equality of two Types 113
9.5 TypeErrorsottt e 114
9.6 The Type CheckingLayer. 116
O SUMMALY: s ¢ s wpwims s & NEEms s QUSSR 55 PHEMEE ¢ s HOETEE 3 124
10 Name and Scope Checking .
10.1 The NeedforaSymbol Table v iuennn. 125
10.2 Symbol Table Organisation, 125
10.3 Modelling Scopeot 128
104 Declarations.ottt e e e 129
10.5 Accessingthe Binary Tree. viinennen.. 130
10.6 Refinement of the Syntax Analyser 132
10,7 SUMMATY 5« s 5 smoan s 56 Beme s §5 AREEEs s+ SRGERE S 3 Hnues 135
11 Abstract Machine Design
11.1 Compiler Qutput.ottt e 136
11.2 "The S-algol Abstract Machine 138
113 TheStack : : i covmuess e smuomssissvonnnsisnamonses smus 138
114 The S-algol Stackt 139
11.5 The Heap. oo i it e e e e 141
11.6 Heap Organisation«c s« : s svsasssnuscesss sswwness s uaws 142
11.7 The Abstract Machine Code.-. 143
118 The Stack Instructions 144
119 The Heap Instructionsouuiiemneenanenn.n 145
11.10 Flow of Control Instructions 146
1111 SumMmMary. . ..o et it i et e e e e e e e 147

8 Table of Contents

12 Code Gerneration

12.1 Similated Evaluation of the S-algol Machine. 149
12.2 Declarations and the Use of the Symbol Table 153
12.3 The Final Refinement of the Syntax Analyser. 155

13 Bootstrapping and Portability

13.1 The Need toPort Languages 164
132 T-Diagrams SR s MG RGEE SR RGOS 8 B 165
133 CrossCompilation.t 167
13.4 Bootstrappingby Pushing 167
13.5 Bootstrappingby Pulling. 171
136 SUMMAIY: sissvnsssnaisscsovonias asssensssaasasssss 173
Appendm :

S-algol SyntaxX. s : i sowmens s svmanc s nnnEne s vavEEE s was 174
AB TypeMatchingRules 177
AC Procedurenumber.cuoiitreiienenneennnenans 178
AD The Abstract MachineCode. 180
AE S-code Generated by the S-algol Compiler. 187

Author’s Preface

The computing community is well served with texts, good, bad and indifferent,
on the subjects of compiling and compilers. One of the most popular methods of
implementing a compiler is that of recursive descent and many compilers,
including ones for the languages Algol 60, Pascal, Algol 68R and BCPL, have
been written using this technique. It is therefore surprising that comparatively
little has been written about it. This text sets out to bridge this unexpected gap.

The subject matter of the text has formed the basis of lecture courses at
St.Andrews University for both undergraduates and graduates. Naturally the
courses have developed, and will continue to do so, over the years. At present
the material appears in, but does not form the whole body of, lectures on Graph
Theory, Grammars and Automata and Compiling Techniques.
" The text sets out to give an introductory look at compiling in general
through the medium of one pariicuiar technique. It does not therefore claim to
be a complete reference guide to all aspects of compiling. Several topics, for
instance that of optimization, are only touched on briefly. The intention has
been to set ocut the main problems encountered in any compiler, however
simple, and show how to tackle each of these in the relatively straightforward
way which recursive descent imposes.

tudents who embark on any course on compilers will be expected to know

something about programming languages. This text assumes that the readers have
such knowledge, that they will be fairly proficient at programming computers
and that they will know about the fundamentals of program and data structures
and how to manipulate them. It does.not assume knowledge of any particular
programming language. However familiarity with a block or procedure structured
language such as one of the Algols or Pascai would be an advantage. As far as
elementary mathematics is concerned, only basic set theory and logic are assumed
as prerequisites.

The book is divided roughly into three parts. The first, which consists of
Chapter 1 by itself, is a general introduction. The second, comprising Chapters
2, 3 and 4, is mainly theoretical in nature. Chapter 2 introduces some essential

10 Author’s Preface

mathematical notions chiefly that of closure. These are used in Chapters 3 and 4
which are about linguistic specification and testing whether languages are suitable
for the recursive descent treatment. Some hints are also given about how to
massage a linguistic specification into the correct form.

The third and major part of the book is about the practical realisation of a
recursive descent compiler. This is done by specifying a syntax-recognising
skeleton and adding flesh and muscle to it layer by layer. Chapter 5 gives an
overview of this process and outlines the different layers. Chapter 6 describes the
skeleton in detail and Chapter 7 the lexical analysis phase. Layers dealing with
errors and types are added in Chapters 8 and 9 and ideas of scope and naming
are discussed in Chapter 10. Chapters 11 and 12 deal with code generation, the
former with what code is generated and the latter with how to generate it. The
final chapter stands on its own. It is, strictly speaking, not specific to our particular
kind of compiler; but we felt that the subjects of bootstrapping and portability
were too important to be left out of any book about compilers.

We are indebted to many for helping with this book both directly and
indirectly: To many of our Honours students for reading and proofreading
early and later versions of various chapters and, by so doing, revising for their
examinations: To our colleagues, especially Pete Bailey and Iain Adamson, for
many useful comments, suggestions and criticisms: To our former colleague,
Dave Tumer, for his expertise and influence on our views about compilers: To
our wives who have put up with it all and provided nourishment and encourage-
ment. We must also show our gratitude to our children who, in spite of the fact
that they have actively hindered this book’s production, have amused and
entertained us by way of diversion.

Tony Davie and Ron Morrison
St.Andrews
May 1981

CHAPTER 1

Introduction

1.1 WHAT ARE COMPILERS?

A compiler is a computer program which translates another program called the
source program into yet a third called the object program. The source programs
are written in the source language and each solves a particular problem for a user;
the object program produced for it solves the same problem but is expressed in the
object language. In general, the source language should be one in which users
find it easy and natural to solve their problems, and the object language, whilst
probably quite opaque in meaning to users, will be a natural one for some
machine to execute. Thus we can view a compiler as a tool which transforms
programs from the users’ domain of problem solving into the machine’s domain
of problem execution, without varying the semantics, (i.e. meanings) of the
programs.

It will be well known to all programmers that programs normally pass
through several stages of development. Let us summarise them here. Firstly
they are created, initially in the users’ minds and then in some computer in
source language, probably using an editor. They are then compiled into object
language. This stage i3 known as compile time when the program is scanned,
perhaps several times, to discover its static or lexicographic properties. Compile
time errors may be reported, in which case the editor will be reinvoked to
change the erroneous program to the intended one; or, if the user has been
more skilful, an object program may be produced. This may be stored away in
the computer’s file system for subsequent combination with other compiled
programs (such as library routines) during load time. When it has been loaded
the combined package will be executed during what is known as run time.
Alternatively the object program, if self contained (i.e. only containing reference
to standard facilities — not other user defined routines) may miss out the load
stage if the compiler is set up to place the object program straight into store
ready for execution. Such a combination, where compile time and run time are
run into one another is called a compile and go compiler.

Run time may take the form of the computer directly executing the object

12 Intreduction [Ch.1

program if it is suitable; alternatively, it may consist of the computer interpreting
the object code. It is sometimes convenient that the object language be different
from the ‘native’ language of any particular computer. Many source languages’
philosophies suggest very forcibly the architecture of a ‘natural’ inachine for many
to run on and the object language will be the machine code for this hypothetical
machine. It is rare for the architecture underlying a source language to match
that of a real computer because, sadly, hardware designers and language designers
very seldom get together at the start. An impressive exception is the Burroughs
5000 and 6000 [1] series compuier range where the architecture was designed
to support Burroughs’ own version of Aigol 60 [2]. If the architectures of the
real and hypothetical machine don’t match we have two aiternatives: we can
either, as mentioned already, interpret the object programby the proocess whereby
the real machine simulates the hypothetical one or we can pass the object code
through another translation stage to turn the ‘natural’ machine code into code
for the real computer. It can be mentioned in passing that there are interpreters
which directly interpret source code for some languages without any compile
time at all (e.g. APL {3]) but these will not concern us here.

During run time, whether interpretative or otherwise, the dynamic execution
of the program takes place. At this stage we may either get rua tirne errors or
alternatively correct results may be obtained. In the former case the edit-compile-
load-run cycle will have to be reinvoked; even in the latter case, it may be
reinvoked if the ‘correct’ results are the answer to a problem which is different
from the one the user intended, or if he wants to modify the program in the
light of the results.

To summaiise, the fwo main stages are compile time and run time, during
which static and dynamic scanning of the programs take place respectively.
Many of the interesting problems of language design and ccmpilers become
apparent when we try to separate the static aspects of the language under
consideration from the dynamic ones. Can the compiler tell statically whether
or not a variable name has been declarsd for a given usage (i.e. whether it isin
scope)? This is the case for most Algol-like languages but not for LISP-like
languages [4]. Can it tell what type a variable has? Can it tell what value an
identifier has? Can it even tell if it is guaranteed to have some value?

1.2 THE PHASES AND PASSES OF A COMPILER

It is an opinicn almost universally held throughout the computing community
that we siould think about the problems we want to solve in a modular way,
that is, we should try to hreak downu complicated tasks into easier subtusks
which in turn get broken inte yet siinpler problems until we arrive at cnées which
are ‘trivial’ to solve.

How can we break up the process of compiling intc subtasks? We shall
confine ourselves in this chapter to the top level of such a refinement. The

Sec. 1.2] The Phases and Passes of a Compiler 13

topdevel subtasks we give here are common to most compilers and are known as
phases. Later we shall see how each of the main phases breaks up into lower
level subtasks.

The compiler must analyse the source program and synthesize the object
program. In fact nearly all compilers perform the analysis in two distinct phases
called lexical and syntactic analysis.

Lexical Analysis
The lexical phase consists of an analysis of the microsyntax of the source program.
By analogy with spoken or written languages, this involves the collecting together
of phonemes or letters to form words without any reference to the relationship
of the words to one another, or to their meaning. In computer languages it
means the processing of a string of characters, transforming them into a string of
basic symbuols. These include keywords (or reserved words} such as ‘if’, ‘begin’
and ‘write’, single symbol punctuation marks such as "(","]"” and ",", operator
symbols such as "+” and "*", multiple symbols of the two above kinds such as
"<="_".LE. and ".", assembly of literals such as "1", "3.7" and "true”,
and finally the collecting together of the characters in identifiers such as "x" and
"mean.temperature”. Writing the lexical analysis phase is not always trivial.
Consider the Fortran statements:

DOIT = 1,1

DOII 1.1

(SIS

Ii

and

IFAQ) — IK))1, 2, 3
[FUI(T) — I(K)) = 123

Are ‘IF’ and ‘DO’ keywords? In the first example ‘DO’ is a keyword. In the
second ‘DOIT’ is a variable name because Fortran insists that blanks are non-
significant. In the third ‘IF’ is a keyword, and in the last it is the name of an
array being subscripted. It doesn’t make the problem any easier that the subscript
can be arbitrarily long and compticated.

Syntax Anaiysis

The second analysis phase is syntax analysis. Again by analogy with ‘human’
languages, this corresponds to such actions as finding the verb, subject and
predicate in sentences and parsing them. In computing terms, some of the
actions the syntax analyser takes are: check that in Algol like languages the
begins and ends match up; meke sure in Fortran that a DO statement referencing
a label actually finds a stateraent with that label later on; and that DO loops
do not oveilap. The input to this phase is the string of basic symbols produced
by the lexical analysis. What is the output? We shall see later that it is a parse tree
which is an internal form of the program in a structure which allows subsequent

14 Introduction [Ch.1

phases to see the relationship of the parts of the program to each other and to
the whole program.

Code Generation

The third important phase, that of code generation is synthetic rather than
analytic. It takes the parse tree and traverses it. Based on thestructural relationships
it finds there it produces object code in at least a preliminary form.

We could stop at these three phases because they are all common to virtually
every compiler but we will mention here some other optional ones. Some
compilers [5] have a prepass phase which does some macro expansion, allowing
the user the facility of making contractions of commonly used phrases in his
program. We have already mentioned that a further translation phase may be
written after code generation in order to convert ‘hypothetical’ to ‘real’ machine
code. This too is sometimes accomplished by macro expansion. The third and
last optional phase we shall menticn is that of eptimization. In environments
where large programs go into heavy production use it will be advantageous to
make the object programs produced as efficient in time (or possibly space) as
possible. One way of solving this problem is to measure the program at run time
in order to find out which parts of the program take the longest time and to
hand code these sections in assembly language. A good optimizer should do this
automatically. Note however a fundamental conflict; how can a compiler which
only sees the static aspects of the source programmeasure the dynamic performance
of the object program?

Optimization phases can occur at any stage of compilation: at the beginning
where it is called global optiinization and often means automatic rewriting of
source code (e.g. taking unnecessary commands out of loops); in between two
other phases (e.g. to optimize the tree produced by the syntax analyser); or right
at the end to improve the code produced by the code generator.

The organisation of the phases built into a compiler can be one of a number
of kinds. In particular, one decision the compiler writer has to take is how to
organise the phases into passes. A multipass compiler makes complete scans over
the various forms the program goes through, both internal and external. Each
pass reads the output from the previous one (or the source program if it is
the first pass) and produces complete output for the next pass. No pass will
be invoked until the previous one is complete. For example if we were to
organise the iexical analysis phase as a pass, the compiler would first completely
scan the source and produce a file of basic symbols. Note that space, whether in
main store or in backing store, must be found for this intermediate form of the
program. The next pass which will include at least the syntax analyser will then
read this file and produce its own output file.

However, in some compilers all the phases can be gathered together into one
pass, and instead of storing complete files of intermediate data, the phases call
each other as subroutines to ask for or provide information one piece at a time.

Sec. 1.3] Recursive Descent Compiling 15

Thus the syntax analyser may call the lexical analyser and ask it for the next
basic symbol. It may also call the code generator to emit the next piece of code.

The organisation of phases into passes may depend on the language being
compiled. Seme languages actually require several passes. For instance, if an
object in a program can be used before it is declared (e.g. a jump to a label may
occur before the label’s definition, or a procedure call may come before the
procedure declaration) then code cannot possibly be generated for the use of
the object without having complete knowledge of its properties. In such cases
a complete pass will have to be made to gather such knowledge and another to
generate code based on that knowledge.

In some languages one cannot even perform syntax analysis properly before
a complete lexical pass has been made. For instance in a language where we could
define new operators and priorities for them, one would not know whether to
treat an expressionsuch as "a <<b+-+¢" as "(a <<b)++c" oras "a << (b ++c)",
had the user been so foolish as to leave the declarations of the priorities of "< <"
and "+ +" until later in the program.

We should note that the situation is sometimes confused by bringing the
operating system into the picture. A multi-pass compiler may be organised as a
number of cooperating processes which run at least conceptually in parallel.
They would have to be carefully synchronised but a good system would do this
automatically be making them communicate through pipes (UND(1L nomenclature,
see [7]) which replace those intermediate storage files which are the main
disadvantage of multipass compilers. However the gain will probably be more
than offset by the system overhead necessary for scheduling the processes in
and out of action.

1.3 RECURSIVE DESCENT COMPILING

In this book we are going to concentrate very heavily on one particular technique
and on its application to a particular language, S-algol. We shall give a brief
introduction and summary of its usage in the next section. Here we talk about
the method which forms the subject of this book — recursive descent.

This method centres around the syntax analysis phase of the compiler
which is divided up into a number of recognition routines, each of which has the
task of checking whether a particular kind of phrase is present in the input.
Each recognition procedure can call upon the services of other ones to recognise
the appearance of subphrases and so on. For example we will see that an S-algol
program consists of a sequence followed by a questionmark. The centralrecognition
routine will therefore call the sequence recognising routine and check for the
appearance of the questionmark on the input stream. The sequence recogniser
will, in turn, call routines to check for declarations or clauses, because a sequence
is basically a list of such entities. Most of these routines will be mutually recursive,
reflecting the fact that within one sequence we can find others embedded at a

TUNIX is a trademark of Bell Laboratories

16 Introduction [Ch.1

lower lzvel. In the same way, expressions can contain subexpressions, declarations
include inner declarations and so on. Each of these has its own recogniser which
is invoked frcm above when appropriate.

Some recognisers wiil have choices to make. In the above example of the
senuence recogniser, it will have to choose between calling the recogniser for a
declaration or for a clause. When such choices are to be made, decisions are
always taken by looking at the input stream for the next basic symbol. We
shall see that declarations in S-algol always start with one of the reserved words
‘let’, ‘procedure’, ‘structure’, ‘forward’ or ‘external’, and that no clauses start
with any of these symbols. Hence the sequence recogniser can choose the
declaration recogniser if it finds one of these, or the clause recogniser if it does not.

The task of a compiler is not however merely to recognise correct programs;
it must also produce object code. Therefore, each recogniser will be modified
or refined in order to emit code. One can notice here that the syntax tree
referred to as the output of the syntax analysis phase in section 1.2 is never
explicitly grown. This i3 because the syntax analysis phase and the code generation
phase are not separated into distinct passes, but rather integrated into omne
another in order to understand ciearly what each recogrizer-emitter does. The
tree is implicit in the dynamic calling structure of the recognition routines and
is traversed by the code generation phase as it is built, and branches no longer
of use are destroyed as the routines are exited.

The addition of code generation to the recognition routines represents a
refinement of them. Gther refinements will be introduced and these are based
on error recovery and type checking. If a recogniser finds some program constructs
that it doesn't expect, what should it do? Should it merely print the message:
‘You have mads a serious mistake.” as one early compiler was reputed to do?
Or should it offer ‘IEH3771’ or some such terse comment to the user? Are there
alternatives to these and can the compiler recover from errors?

Each recogniser must check that expressions, clauses, declaiations and
so on have sensible type structures. One must not, for instance, add a string
to an integer if that is not allowsd in the language. The type handling part
of a recogniser must also be able to pass type information back to its parent
recogniser.

One of the main features of the recursive descentmethod whenused practically
is that it must be able to du its recognition, type checking and code emission
without ‘backup’; that is, if a recognition routine A decides to call another, B,
it can be sure from the first that, barring errors on the user’s part, it has made
the correct choice nased on the input it has before it. This linits the kind of
Janguage which can be compiled by the method, but not too severely. We will
devote the early chapters to seeing just what kind of restrictions are placed on
languages by tnis requirement, and how to get round them. Such restrictions
are called the LL{!} conditions. We will explain this term in section 4.2.

Our particular compiler will also have the property that it is one-pass in

