FUNDAMENTALS OF

INCLUDING PASCAL

Fundamentals of
Microcomputer
Programming,
Including Pascal

DANIEL R. McGLYNN

o EAR¢ o
1807 1982
&OBUSH\‘AO

A Wiley-Interscience Publication
JOHN WILEY & SONS

New York Chichester Brisbane Toronto Singapore

Copyright © 1982 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted in Section 107 or 108 of the

1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

McGlynn, Daniel R.
Fundamentals of microcomputer programming, including Pascal.

**A Wiley-Interscience publication.”™
Bibliography: p.
Includes indexes.

1. Microcomputers—Programming. 2. Pascal (Computer
program language) I. Title.
QA76.6.M4 1982 001.642 82-8645
ISBN 0-471-08769-6 AACR2

ISBN 0-471-08769-6 (pbk)
Printed in the United States of America

109 8 7 6 5 4 3 2 1

Fundamentals of
Microcomputer
Programming,
Including Pascal

Preface

This book is an introduction to some of the fundamental concepts in com-
puter programming languages, in particular, the language Pascal, for micro-
computers. In the last decade, advances in semiconductor technology have
reduced the size and cost of computers to the point where desktop units are
now readily accessible to consumers, small businesses, and educational insti-
tutions. Although the available computer hardware offers a wide variety of
capabilities for all applications, the software—or computer programs—for
such microcomputers remains a major hurdle for many users.

One relatively new language that offers considerable potential for a wide
variety of microcomputer users is Pascal. It is widely used in colleges and
universities for teaching programming languages, and increasing numbers of
mini- and microcomputers now offer Pascal software.

However, Pascal is a relatively sophisticated programming language and
is usually learned by those who already know another programming lan-
guage like BASIC or FORTRAN. There are many who argue that Pascal should
be taught as the first programming language so that the user’s thought
processes are not affected by the ““bad habits” found in languages like Basic
and FORTRAN. This book offers one approach to Pascal as a first program-
ming language.

The teaching of computer programming and programming languages has
traditionally been from an applications-oriented perspective: computer pro-
gramming for business majors, computer programming for engineers, and so
on. This book approaches the teaching of computer programming from a
computer science perspective, that is, computer programming as it is related
to computer hardware and computer linguistics.

This book is written for the person who wants a thorough understanding
of modern concepts in computer programming and programming languages
and wants to apply that understanding in using Pascal or other structured
programming languages. Since it assumes no previous background in pro-
gramming, this book is suitable for introductory courses in programming or
computer science at the college level, or for professional development
courses.

vi Preface

It is not, however, intended as another book in the spirit of ““how to
program in Pascal.” The book is intended to give the reader a greater appre-
ciation of programming and computer software and, within that context, to
present the fundamentals of the Pascal programming language. It could be
said that the intent of the book is analogous to a course in art appreciation
rather than in painting.

A revolution is taking place in education, based partly upon the availabil-
ity of inexpensive personal computers for home and classroom use, and partly
upon the development and widespread acceptance of prepackaged software
and simple, easy-to-learn programming languages like Basic. It is pertinent to
ask what impact these developments can have on computer education. Other
academic fields have had their revolutions—consider the “new math” as a
case in point. It took only a few years of instruction in abstract concepts of
sets and mappings before the books entitled “Why Johnny Can’t Add”
began appearing in bookstores (which was, incidentally, long before the $10
electronic calculator was on the market).

It is therefore pertinent to at least pose the question about the impact of
prepackaged software on the next generation of programmers. Is the specter
of “Why Johnny Can’t Program™ a real one? In raising such a question, we
are not concerned with the students who have really mastered a high-level
language like Pascal and understand programming, any more than the critics
of the new math were concerned with students who actually learned arith-
metic, either with the assistance of, or in spite of, the new math. Instead, we
are concerned that the users of microcomputers should have a greater appre-
ciation and understanding of computer programming.

Chapter 1 gives the reader an overview of computer hardware and soft-
ware from the perspective of modern mini- and microcomputers. Chapter 2
presents a summary of the field of computer linguistics, in order to give an
appreciation of how computer programming languages are related to natural
languages, and how the field of computer science characterizes such lan-
guages. Chapter 3 presents the different types of computer programming
languages on a conceptual level—from low level to high level languages,
from sequential to concurrent processing. An introduction to the important
concept of data flow languages is also presented. Chapters 4 and 5 tackle the
subject of programming, from problem definition to a consideration of pro-
gramming costs. Chapters 6 through 8 present the Pascal language in a fairly
thorough manner, while Chapter 9 contains a number of simple programs in
Pascal for different applications.

As the title of this book suggests, the microcomputer implementations of
Pascal are probably of most interest, particularly for the first-time program-
mer. Chapter 10 describes the features and differences between a number of
the most popular microcomputer implementations of the language. Chapter

Preface vii

11 describes in detail the widespread and popular UCSD Pascal used in a
number of microcomputer implementations.

Finally, since Pascal is only one step in the evolution of programming
languages, Chapter 12 briefly describes two languages—Modula-2 and Ada—
which are evolutionary descendants of Pascal.

The author is grateful for the assistance of the Pascal Users’ Group for use
of the ISO Draft Standard on Pascal, and David V. Moffat for the use of his
extensive bibliography.

DANIEL R. McGLYNN

Anaheim, California
September 1982

Fundamentals of
Microcomputer
Programming,
Including Pascal

Contents

Communicating with the Microcomputer

Computer Architecture Types, 2
Hardware/Software Interface, 5
Types of Computer Programs, 8
Information Theory, 9
References, 10

Computer Linguistics

Language and Linguistics, 12
Formal Language Theory, 15
Automata Theory, 18
Artificial Intelligence, 19
Computational Complexity, 20
References, 20

Computer Languages

Low Level/High Level Languages, 22
Language Characteristics, 27

12

22

Microprogramming and Nanoprogramming, 35
Concurrent and Higher Order Languages, 39
Data Flow Architecture and Languages, 40
References, 44

Microcomputer Programming

Problem Definition, 46
Architectural Design, 49
Algorithm Development, 52
Coding, 53

Debugging, 53

10.

Contents

Testing and Validation, 55
Documentation and Maintenance, 62
References, 65

Program Design

Structured Programming, 66
Programming Costs, 74
References, 77

Pascal: Overview

Organization, 80
Data Structures, 88
Control Structures, 93
Syntax, 101

Pascal: Basic Specification

Basic Elements, 104

Basic Program Structure, 107
Scope, 112

Data Types, 114

Data Types in Pascal, 117
Constants and Variables, 121
Control Structures in Pascal, 124

Pascal: The ISO Draft Standard

Pascal: Sample Programs

Demonstration Program, 210
Arithmetic Operations, 212
Functional Calculations, 212
The Use of Arrays, 213
Industrial Applications, 221

Pascal Implementations: Mini- and Microcomputers

Hewlett-Packard Pascal 1000, 225
Texas Instruments Pascal, 237
OMSI Pascal, 239

66

79

104

144

210

223

11.

12.

Contents

Pascal: UCSD Pascal Microcomputer Implementations

UCSD Pascal, 241
UCSD p-System, 251
Western Digital WD/9000 Microengine, 252

Modula-2 and Ada

Modula-2, 260
Ada, 261
References, 265

Appendix A Pascal Syntax Diagrams

Appendix B Reserved Words

Appendix C Pascal Software Vendors

Appendix D ““Steelman”
Appendix E Pascal Syntax (ISO Draft Standard)

Appendix F User’s Groups; Pascal Standards Organizations

Bibliography

Gloss

Index

ary

241

260

266
274
276
278
300
306
307
326
331

Communicating with
the Microcomputer

... [T]he next postindustrial revolution would be the silicon revolution of
information processing and computers that would . . . change the face of
the earth.
Jean-Jacques Servan-Schrieber,
Le Défi Mondial (1980)

When the microprocessor or ‘“‘computer-on-a-chip’ was introduced in the
early 1970s, one of the major challenges tfacing the prospective users was how
to communicate with it. Semiconductor technology had advanced much
more rapidly than computer programming and computer languages, and the
full capability of the early microprocessors was not realized. Today micro-
computers are accessible to consumers, small businesses, and educational
institutions, and the software—though much more highly developed than in
the mid-1970s—still remains a major hurdle for most users.

Microcomputer programming and programming languages are basically
concerned with communicating with a microcomputer. The present-day mi-
crocomputer users are, however, different from the original users of micro-
processors in the early 1970s, and even different from the computer hobby-
ists who assembled computer kits in the mid-1970s and *‘programmed’’ such
computers by entering instructions bit by bit on front panel sense switches.
The present-day microcomputer user approaches the computer from an ap-
plications perspective—thinking in concepts of storing customer names in
one file, and zip codes in another file.

2 Communicating with the Microcomputer

Although it is instructive to consider the position taken by some that
computers are intended to solve real-world problems expressed by users in
such an applications-oriented perspective, the fact is that programming lan-
guages are adapted to computer hardware that exists, rather than computer
hardware being designed to execute specific programming languages. Until
such time that special-purpose, dedicated computer hardware is designed to
execute specific languages or solve specific applications, in order to under-
stand the task of communicating with a microcomputer, one must begin with
the structures and elements of the microcomputer which participate in such
communication.

With such a viewpoint explicitly stated, we consider the following basic
issues:

computer architecture
hardware/software interface
types of computer programs
information theory

COMPUTER ARCHITECTURE TYPES

There are a number of different ways to classify computer architectures,
depending whether one is looking at the computer from a hardware, soft-
ware, or operational perspective. Since this book is concerned with computer
programming and software, it is appropriate to consider a classification
based upon software, or more particularly, the proximity of the user pro-
gramming language and the language actually executed by the machine. The
classification is:

von Neumann architecture
syntax-oriented architecture
indirect execution architecture
direct execution architecture

In studying computer programming and software, it is important that the
reader keep in mind the basic relationship between the software and the type
of computer architecture. The capabilities and limitations of a particular
computer language, or of a particular program, are closely related to the
type of computer architecture on which the language or program is imple-
mented. Some computer languages operate much more efficiently with a

Computer Architecture Types 3

given computer architecture than with others; similarly, certain programs
are executed much more efficiently on certain types of computer architectures.

Since von Neumann architecture is the most commonly implemented ar-
chitecture, and the typical computer programmer will rarely encounter a non-
von Neumann computer, the importance of the relationship of computer
language and computer architecture is not particularly relevant from an
immediate. practical viewpoint. However, it must be realized that as semi-
conductor and microprocessor technology advances, it will become more
and more feasible to implement non-von Neumann architectures, and at
such time the relationship between language and architecture will take on a
new relevancy.

Microcomputer Architectures

A microcomputer is a computer that incorporates a microprocessor as the
central processing unit. Since almost all commercial microprocessors are
designed with a von Neumann architecture, the broad categories of com-
puter architectures discussed previously are not as relevant as a discussion of
the system architectures implemented using microprocessors. System archi-
tecture refers not to the specific operations of the memories, registers, or
control units that distinguish the broad categories of computer architectures,
but to the interrelation of system components such as the central processor,
peripheral processors, interfaces. operating systems, and similar components.

Microcomputers can be generally categorized according to their system
architectures into five distinct categories:

microcontrollers
microcomputers
micromidis
micromaxis

micromainframes

The microcontroller is a relatively simple microprocessor-based computer
typically directed to routine industrial control applications. The micropro-
cessor employed is usually a ““low end’ microprocessor such as the Intel
8048 or 8022, the Zilog Z8&. or the Mostek 3870, or similar 8-bit micro-
processors.

The microcomputer is a term for a general-purpose microprocessor-based
computer system. When used in the context of system architecture classifica-
tion, the term microcomputer refers to a midrange 8- or 16-bit microproces-

4 Communicating with the Microcomputer

sor-based system, such as an Intel 8080 or 8085, or even the 16-bit Intel 8086
or Zilog Z8000, in simple system configurations.

The micromidi is a 16-bit microprocessor-based computer system with the
characteristics of a ““‘midicomputer,” a term that refers to a computer having
capabilities greater than a minicomputer but less than a maxicomputer or
mainframe. An example of a midicomputer could be the IBM System/32.
The type of microprocessor used to implement a micromidi would be a
16-bit microprocessor such as the Intel 8086 or Zilog Z8000 in an extended
configuration. Micromidi systems are only now just becoming feasible to
implement with the commercial availability of such microprocessors and
peripheral processors.

The micromaxi and micromainframe are two microprocessor system archi-
tectures that are expected to be made possible with the next generation of
16-bit and 32-bit microprocessors. Such systems refer to computers having
the architecture of the present-day commercially available maxicomputers or
mainframe computers. The next generation of microprocessors which will
make these systems possible is expected to include a pseudo-32 bit processor
(i.e., 32-bit internal architecture with 16-bit external buses), as well as, even-
tually, actual 32-bit processors.

Associated with these levels of system architectures are corresponding
levels of software. One proposed system architecture for future microcom-
puter systems contemplates the use of modularized programs which can be
used as building blocks for more complex systems. Some of the most impor-
tant modular programs to be developed are various operating system ker-
nels. By selecting and combining appropriate operating system kernels, the
user will be able to define different software levels and capabilities.

User-Level Architecture

The discussion of computer and microcomputer architectures in the preced-
ing sections is, practically speaking, of little relevance to the computer user.
Although a knowledge of machine architecture is useful for fully understand-
ing the operation of the computer, as well as its capabilities and limitations,
the basic machine architecture generally cannot be easily changed by the
user. In many instances the particular type of machine architecture is not
even important to the user’s application.

However, certain aspects of machine architecture are visible and even
important to the user. We call such aspects of the machine architecture
which are apparent to the user or programmer the ‘‘user-level architecture.”
All other features of the machine—whether hardware or software—which
the user is not aware of are called “transparent’ features.

Hardware/Software Interface 5

The concept of different levels of computer architecture will be developed
in greater detail in the next two sections on the hardware/software interface,
and in a discussion of technological hierarchies. It is merely important to
note at this point that although two different computers may appear the
same, operationally, from the perspective of the user, the machines may have
completely different architectures.

User-level architecture is a relative term depending upon the particular
user, rather than the particular hardware configuration. One user sitting at
the console of the computer may communicate with certain features of the
computer in a completely different manner than another user sitting at a
remote location and communicating with the computer via a terminal. Al-
though both users have their instructions executed by the same hardware,
the nature of their interaction or ‘‘interfacing’ with the computer is differ-
ent. In effect, the two different users are interacting with two different user-
level architectures.

The user-level architecture is principally defined by software. Although
computer architecture basically describes the computer hardware, computer
software is a very important component of a system’s architecture. The
architecture that is apparent to the user is a combination of hardware and
software features that dynamically interact. The nature of this hardware/
software interface and interaction, and the relationship of the user to this
interface are described in the next section.

HARDWARE/SOFTWARE INTERFACE

The preceding discussion of computer architecture focused on the hardware
aspects of computer design. Another important aspect of the computer de-
sign is the role of computer software at all levels of the architectures, and the
interface between such software and the computer hardware.

In order to place the hardware/software interface in perspective, we con-
sider the following issues in the present section:

basic definitions
language levels
Basic Definitions
Before turning to the discussion of the hardware/software interface, it is

important to establish definitions for some of the terminology. Some key
terms are:

6 Communicating with the Microcomputer

programming language
grammar

language level
metalanguage

string

instruction

data

Simply defined, a programming language is the means used for communicat-
ing instructions to the computer. Computer languages will be described in
much greater detail and much more precisely in the following two chapters;
however, for our purposes here, such an inferential definition is adequate.

We already mentioned various programming languages such as FORTRAN,
coBol, Pascal, and ALGoL. It must be emphasized that these are programming
languages employed by a programmer of a general purpose computer to
communicate with it.

A grammar is a set of rules that describe or define the programming
language. Grammars will also be described in greater detail in the next
chapter.

The language level is an informal designation of the degree of complexity
of the operations described by a single communication in a language. These
levels are listed in Table 1.1.

A metalanguage is a language used to describe a programming language.

A string is an ordered sequence of characters in a programming language,
and may represent a statement, a computation sequence, or a data element
to be processed.

An instruction is an element of a programming language which defines a
specific operation or sequence of operations to be performed.

Data is any information other than instructions or control operations
handled by the processor.

Language Levels

Just as there are different levels of architecture from user architecture to
machine architecture, there are different levels of languages associated with
the computer. Another way to describe a language level is as the relative
degree of complexity of the operation described by a single communication
at that level.

Table 1.1 lists five language levels from the simplest and most closely
related to the machine hardware, to the most complex and most closely
related to the user.

