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INTRODUCTION

The classical potential theory is, in a sense, a study of the Laplace
equation Au=0. It has been clarified that second order elliptic, and
some parabolic, partial differential equations share many potential
theoretic properties with the Laplace equation. An axiomatic potential

theory tries to develop a unified method of treating these equations.

In an axiomatic potential theory, we start with defining a harmonic
space (X, H) or (X, U), where X is locally compact Hausdorff space

and M (resp. W) is a sheaf of linear spaces of continuous functions
(resp. convex cones of lower semicontinuous functions) which are called
"harmonic'" (resp. "hyperharmonic"). There are several different kinds
of harmonic spaces so far introduced. Among them, the following three

are the most well-established:

(a) Brelot's harmonic space (X, W) (see [6], [7]), [16], etc.);
(b) Harmonic spaces (X, X) given in Bauer [1] and in Boboc-Constantines-
cu-Cornea [2];

(c) Harmonic space (X, W) proposed in Constantinescu-Cornea [11].

On any of these harmonic spaces, we can naturally develop a theory of
superharmonic functions and potentials, including the Perron-Wiener's
method for Dirichlet problems, balayage theory and even integral re-

presentation of potentials; and thus a fairly large part of the

classical potential theory is covered also by axiomatic theory.

There are, however, some important parts in the classical potential
theory which involve the notion of Dirichlet integrals. Due to the
fact that only topological notions and some order relations are
involved in an axiomatic potential theory, it is impossible to define
differentiation of functions without further structures on X. However,
it appears that with some reasonable additional structure for K or

WU , we can consider a notion corresponding to the gradient of

functions on a harmonic space.

As an illustration, let us consider the case where X is an euclidean
domain and the harmonic sheaf W is given by the solutions of the

second order differential equation
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where a,
i

j* bi’ ¢ are functions on X with certain regularity and (aij)

is positive definite everywhere on X. Now, we have the following

equality:
of 0dg _
2z aij 5;: 5;; = L(fg) - fLg - gLf + fgLl.
This shows that the function I a of g&_ (which, by an abuse of
ij 3xi X. >

terminology, we call mutual gradient of f and g) can be expressed in

terms of L. Therefore, in an axiomatic theory, once a notion correspon-
ding to the operator L is introduced, then mutual gradients of functions

can be defined by the above equation.

The purpose of the present lectures is to define the notion of (mutual)
gradients of functions on harmonic spaces following the above idea,

to show that this notion enjoys some basic properties possessed by the

of o . . K .
form I aij 3;; ség and to develop some theories involving the notion

of Dirichlet integrals in the axiomatic setting.

As a matter of fact, we define the gradients of functions as measures,

which we call gradient measures. The definition and the verification

of basic properties of gradient measures can be carried out on general
harmonic spaces in the sense of Constantinescu-Cornea [ll]. Thus, in
Part I, we give a theory on general harmonic spaces. Sections §1 and
§2 are preparatory and almost all materials in these sections are
taken from Part I of [11]. In §3, we give the definition of gradient
measures and prove basic properties. This section is nearly identical
with [26].

In order to obtain richer results, it becomes necessary for us to
restrict ourselves to self-adjoint harmonic spaces. Self-adjointness
of a harmonic space is defined by the existence of consistent system
of symmetric Green functions (see §4 for details); its prototype is
the space given by solutions of the equation of the form Au=cu

(c: a function). Thus, in Part II and Part III, we develop our theory
on self-adjoint harmonic spaces. The main theme of Part II is Green's

formula. In §4, we study Green potentials and in §5 we establish
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Green's formula for a harmonic function and a potential both with
finite energy. Most of the materials in Part II are taken from [2u]
(and also [22], [23]), but in these lectures arrangements and proofs
are often different from those in [24]) and the final form of Green's
formula is improved. Part III is devoted to the study of various
spaces of Dirichlet-finite or energy-finite functions. Spaces of
harmonic functions are mainly discussed in §6. In §7, we consider a
functional completion to define those functions which correspond to
continuous BLD-functions in the classical theory (cf. (1275517
Finally in §8, we shall show that some part of the theory of Royden
boundary (cf. [29), [10]) can be also developed in the axiomatic
theory and a Neumann problem can be discussed (cf. [19], [20] for the

classical case).

Presentations of these lectures are almost self-contained. The biggest
exception is that we use without proof the existence of Green functions
and the integral representation theorem for potentials on Brelot's
harmonic spaces. For these one may refer to [16] and [11]. Some
examples are given without detailed explanations. In the Appendix,

networks are studied as examples of harmonic spaces.

Terminology and notation

Given a topological space X and a subset A of X, we denote by A the
closure of A, X the interior of A and OA the boundary of A. For two
sets A,B, A\B means the difference set. The family of all open subsets
of X is denoted by Ok. A connected open set is called a domain.

By a function, we shall always mean an extended real valued function.
A continuous function will mean a finite-valued one. The set of all
continuous functions on X is denoted by €(X), and the set of all

fe€ (3(X) having compact supports in X is denoted by CO(X). The support
of £ is denoted by Supp f. Given a set ACX and a class(] of functions
on A, we say that\; separates points of A if for any x,y€A, x%#y,

there are f,g€ F satisfying f(x)g(y) # £(y)g(x) (with convention
0.0 = .9 = 0). For two classes Jﬁ, 3% of finite valued functions,
71— 32 = [fl»f2 | flef ,£,€ }2] . For a class JF of functions,

Fr={ge F | £ 2 0}.
For a locally compact space X, a measure on X will mean a (signed)

real Radon measure on X. The set of all measures on X is denoted

by M(X). For u€ M(X), ut and 1~ denotes the positive part and the



X

negative part of u, and |u| = u* + u7. For n€ M(X) and f€ cix),
fu is the measure defined by (fu)(e) = u(fg) for ¢k CO(X).
Restriction of a function or a measure to a set A is denoted by

|aA.

By a sheaf of functions on X (resp. a sheaf of measures on X), we

mean a mapping ¢ defined on (.

% satisfying the following three

conditions:
(a) for any UE C&, ®(U) is a set of functions (resp. measures) on U;
(b) if U,VE OX, UCV and ¢€®(V), then o|VE 8(U);
(c) 4f (UL) is a subfamily of (,, ¢ is a function (resp. measure)
L€l
on \/L&I U, and if ¢[UL € o(U ) for all (€I, then ¢e¢(\/L€IUb)'
The mapping )Y]: U™ JI(U) is a sheaf, which is called the sheaf

of measures on X.

For a locally compact space X with a countable base, a sequence

{Un} of relatively compact open sets Un such that ﬁn c Un for each

+1
n and \/Un = X is called an exhaustion of X.
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PART I THEORY ON GENERAL HARMONIC SPACES

§1. Harmonic spaces

In this section, we first give the definition of harmonic spaces in
the sense of Constantinescu-Cornea [11]. Then, we shall show that
Brelot's harmonic spaces and Bauer-Boboc-Constantinescu-Cornea's

harmonic spaces are special cases.

Throughout, the base space X is assumed to be a locally compact

(Hausdorff) space with countable base.

1-1. Definition of harmonic spaces (cf. [11])

A sheaf [ of functions on X is called a hyperharmonic sheaf if for

any UE OX’ U(U) is a convex cone of lower semicontinuous -, te]) -
valued functions on U.

Given a hyperharmonic sheaf U, we define

Hy(u) = Uu) n - Yu)

for each UE€ 0)'( Hll.(U) is a linear space of continuous functions on U,
and Hu, is a sheaf of functions on X, which is called the harmonic
sheaf associated with J[.

An open set U€ O;( is called an MP-set for J{ if the following minimum

principle is valid:

If f€ ?,((U), f 2 0 on U\K for some compact set K in X and

lim lan"E, X€U f(x) > 0 for every E€OU, then £ = 0 on U.
Let U be an MP-set. For a function ¢ on OU, we define

u is lower bounded on U,

ﬁ_g = ¢ ue U(u) u 2 0 on U\K for some compact set K in X,
o B 5
lim 1nfx_.€, x€U u(x) 9(E) for every EEOU
U
and Y- = -Y o+ Put
=U ;U §) U
= £ d H™ =
= in u(p an Hy sup .?’.(q:



(if izg = ¢, then Eg = teoy if yz = g, then ﬂg = -@). Then, from

the definitions, the following properties are easily seen:

- U g9,
1 == -9 ®
H = oH if a is a constant and o 2 O,
aQ @
s 5 =U =U U U
< on OU impl H = H and H~ S H
[0 ¢ mplies " & n H, Hy
HU =< FU + ﬁU, provided that +w-o Or -wte
ot¢ @ $

does not occur.

A function ¢ on OU is called resolutive (for U, with respect to UH

if ﬁg = ﬂg and it belongs to }{u(U). In this case we denote
=U _ .U U : g
Hm = E¢ by Hw. A non-empty open set UE€ C& is called a resolutive set

(with respect to Y)if it is an MP-set and every ¢€ C%(BU) is resolutive.

If U is a resolutive set, then for each x€U the map ¢ r Hg(x) is a pos-

itive linear functional on C%(bU). Hence, there exists a non-negative

measure “2 on OU such that

U _ U
Hm(x) = f wdux for all g€ C%(bU).

This measure “2 is called the harmonic measure of U at x (with

respect to [ ). For a function ¢ on 8U, we define uUw by

() (x) = [* rodug.
In particular, uuw = Hg if ¢€ C%(BU).

A pair (X, U) of a locally compact space X (with countable base) and

a hyperharmonic sheaf U on X is called a harmonic space if the

following four axioms are satisfied:

(P)(Axiom of positivity): For each x€X, there is U€ C&
and h€ ){uﬁu) such that x€U and h(x) # O.

(R)(Axiom of resolutivity): The resolutive sets with respect

to ){ form a base of the topology of X.



(C)(Axiom of completeness): For any open set U, a lower semicontinuous
J-eo,+m]-valued function u on U belongs to M} (U) if, for any

relatively compact resolutive set V such that V € U, uvu S u on V.

(BC) (Bauer convergence property): For any UE C. 5 I [un] is a
monotone increasing sequence of functions in WM(U) and if it
is locally uniformly bounded on U, then the limit function

u = lim__ - u_ belongs to Hw(U).

Remark 1.1. In Axiom (P), the condition h(x) # O may be replaced by
h(x) > 0. Furthermore, by choosing U small enough, we

may require h > 0 on U, or even on U.

Remark 1.2. By (C) and the fact that J/ is a sheaf, we have the
following: For U€ O'X and a lower semicontinuous J-e,+e]-
valued function u on U, if every x€U has an open
neighborhood Vx such that, whenever V is a relatively

compact resolutive set with V © Vx, uvu S u on V, then

ue U(v).

Given a harmonic space (X, )), functions in '}{u_(U) are called
harmonic on U and functions in U(U) are called hyperharmonic on U.
If -u is hyperharmonic on U, then u is called hypoharmonic on U.

Let Y& OX (Y # #) and let f€ C(yY) be strictly positive on Y. For
each UE O’Y put

ZlY,f(U)= {u/f | ue YCW}.

Then, '),(Y ¢ is a hyperharmonic sheaf on Y and (Y, uY g) is a
t [ ]
harmonic space. In case Y=X, uY £ will be denoted by Z(f;
E]
in case f = 1, 'LlY £ will be denoted by uY and (Y, uY) is called
£l

the restriction of (X, U ) to Y.

1-2. Brelot's harmonic spaces (cf. [6], [7), [11;Cchap.3])

A pair (X, H ) of a locally compact space X and a sheaf H of functions

on X is called a Brelot's harmonic space if it satisfies the following

three axioms:
Axiom 1. For any UE€ OX’ H(U) is a linear subspace of &),

Axiom 2. Regular domains (with respect to M ) form a base of the

topology of X.



Here, a domain V in X is called regular with respect toMX if it is rela-
tively compact, OV # ¢ and for each ¢€ €(dV) there is a unique u€ € (V)
such that u|dV = ¢ and u|ve#(V), and such that 920 implies u = 0.

Axiom 3. If U is a domain in X, {un} is a monotone increasing sequence
of functions in }H (U) and {un(xo)} is bounded for some
x €U, then u = lim _ ~u belongs to M (U).
If V is a regular domain and ¢€ (E(dV), the function u€ E (V)
satisfying ule = ¢ and u[VE H(V) is denoted by Hg. Then the mapping
0N o Hg(x) is positive linear on (€ (dV), so that the harmonic measure
\

Hy of V at x€V is defined as in the case of resolutive sets, and we

define uv similarly.
Let U€ O& and let u be a lower semicontinuous J]-e,+w]-valued function
on U. u is called locally hyperharmonic on U (with respect to M ) if

every x€U has an open neighborhood V_ such that, whenever V is a

X
regular domain with V & Vo uvu < u on V. Let l(n(U) be the class
of all locally hyperharmonic functions on U (with respect to M ).

Then it is easy to see that uk is a hyperharmonic sheaf on X and

Hy, = A

Lemma 1.1. Let (X, H) be a Brelot's harmonic space, UE Cn( is a
domain and u€ H(U). If u > 0 on U and u(go) = 0 for some

XOEU, then u = 0.

Proof. Let u_ = nu (n=1,2,...). Then u € Hu), [un} is monotone
increasing and {un(xo)} is bounded. Hence, limnqm une H(U) by

Axiom 3, which implies u(x) = 0 for all x€U.

Lemma 1.2. Let (X, H) be a Brelot's harmonic space, V be a regular
domain and W be an open set such that d3VAW # @. Then
uX (8VAW) > 0 for all x€V.
Proof. Choose ¢€ ($(dV) such that 0 = ¢ < 1 on OV, Supp ¢ € 9dVNW and
9 #+ 0. By the above lemma, Hg(x) > 0 for all x€V. Hence,

v A\
Mo (ovpwW) = H‘p(x) > 0.



Lemma 1.3. Let (X, H) be a Brelot's harmonic space, U be a domain in

Proof.

X and u€ u’a(U). If u = +e on a non-empty open set W< U,

then u = +eo on U.

Let U' = {x€U | u = +o on a neighborhoof of x}. Then U' is
non-empty and open. Suppose U' # U. Let Ul be a connected
component of U'. Since U is connected, 0U'NU # @. Let

xlEBUan. Choose an open set V1 such that xlEVl and uvu S u

for all regular domain V with V & v, Choose ylevanl and
choose a regular domain V such that x,€V and vV c Vl\[y}. Since
Uy is connected, anUl $+ #. Since u = +eo ON aVnUl, the previous
lemma implies u(x) 2 uvu(x) = t+eo for all x€V. Therefore, xlEU',

which is a contradiction. Thus U' = U, and the lemma is proved.

Proposition 1.1. Let (X, H) be a Brelot's harmonic space, U be a

Proof.

domain in X, u€ an(U) and u =2 0 on U. If u(xo) =0

for some x°€U, then u = 0.
The set U = {x€U | u(x) > 0} is open. Suppose vt ¢t g
Let u_ = limn*mnu. Clearly, u_ € 2(R(U). Since u_ = +o on U,,
the previous lemma implies uUm = +e, i.e., u(x) > 0 for all
x€U.

Proposition 1.2. (Minimum principle) Let (X, M ) be a Brelot's

Proof:

harmonic space, U€ 0& and suppose there is
u € Ugudn C(U) such that infy; u > 0. Then U is
an MP-set with respect to U, .

Let u€ lln(U) and suppose u = 0 on U\K for some compact set K
. S » - .

in X and 1lim 1nfx_.b:’er u(x) 0 for every E€OU. Put

a = infU(u/uo). Suppose o < 0. Then, by the lower semicontinuity

of u/uo and the boundary condition for u, we see that there is
xoéU such that a = u(xo)/uo(xo). The function v = u-ou belongs
to 2AR(U), v 2 0 on U and v(xo) = 0. Hence, by Proposition 1.1,
u = oy, on the component U' of U which contains X . Since a < O,

this fact contradicts our boundary condition for u.



Theorem 1.1. If (X, H) is a Brelot's harmonic space, then (X, Uy )
is a harmonic space (in the sense of [11]). Furthermore,
any locally hyperharmonic functions are hyperharmonic,
i.e., if u€ IJK(U), then uvu < u on V for any regular
domain V such that V € U.

Proof, Let V be a regular domain and let u, = HZ. Then uoe H(v) and
u, > 0 on V by Lemma 1.1. Hence, by Axiom 2, Axiom (P) is
satisfied. Furthermore, by Proposition 2, we see that any
regular domain is an MP-set. Then it is easy to see that
HqJ = ﬁw = EZ for ¢€ ((OV) for a regular domain V. Thus, a
regular domain is resolutive with respect to l/x , and hence
Axiom 2 implies Axiom (R). Axiom (C) is an immediate consequence
of the definition of uk and Axiom (BC) is a weaker form of
Axiom 3. The last assertion of the theorem follows from the

fact that every regular domain is an MP-set with respect to

Uy

1-3. Bauer-Boboc-Constantinescu-Cornea's harmonic space (cf. [1], [2],
T
[11,chap.3])

Let X be a locally compact space and H a sheaf of functions on X
satisfying Axioms 1 and 2 of Brelot. As in the case of Brelot's
harmonic space, let HH be the sheaf of locally hyperharmonic functions
with respect to H. Let ¥*(U) be the set of all hyperharmonic functions

on U, i.e.,

uvu < u for all regular domain V with V&

lower semicontinuous J]-e,+w]-valued, 3
U

H*(U) = { u

The pair (X, ) is called a Bauer-Boboc-Constantinescu-Cornea's

(or, simply, Bauer's; cf. [11; Chap.3]) harmonic space if, in addition
to Axioms 1 and 2 of Brelot, it satisfies Axioms (P), (BC) and the
following (S):

(S) For any x€X, there is an open neighborhood V of x for which

H*(V) separates points of V.

It can be shown that Brelot's harmonic space is a Bauer's harmonic
space; we postpone its proof to §2 (Remark 2.2). Here, we shall show

that Bauer's harmonic space is a harmonic space (in the sense of [11]).



Lemma 1.4. (Bauer) Let Y be a compact set and}be a family of lower
semicontinuous J-e,+w]-valued functions on Y. Suppose F
separates points of Y and there is g€ F which is continuous
and strictly positive on Y. If f&} and f(x) < 0 for some
x€Y, then there exists xoﬁY such that f(xo) < 0 and the
unit point mass e, at xg is the only non-negative measure

v on Y satisfying ©

u dpy = u(x ) for all u€ f.
. o

Proof. Put o = —ian (f/g). Then a > 0 and f+ag > 0 on Y. Since f/g

is lower semicontinuous on the compact set Y,

K = {y€Y | £(y) + ag(y) = 0}

is non-empty. Obviously, K is a compact set and £ < 0 on K.

For each y€Y put
My = {ve mHy) | [ u dp < u(y) for all ueF}

and

_ A # ¢, compact,
oz-{AcY o}

if y €A and uE€E ‘my then u(Y\A) =

If y€EK and u€ my’ then 0 = [ (f + ag)du < (f + ag)(y) = 0, so
that £ + ag = 0 up-a.e., i.e., p(Y\K)=0. Hence KE M. If we con-
sider the converse inclusion relation in (I, then it is inductive;
in fact if .CCOZ is linearly ordered, then Ao = n{ belongs to
Q1. Therefore, by Zorn's lemma, there is a minimal set X in
which is contained in K. We shall show that A consists of a
single point. Let u€ # and u = +e on X. Then (u + BE)(x') < O

for some B > O and x'€A. Let Y = -ian[(u + Bf)/g). Then y > 0,

u + Bf + gy = 0 on A and A' = {y€R | u(y) + Bf(y) + yg(y) = o}

is non-empty. By the same argument as for K, we see that A'€ O .
Since % is minimal, A' = ’K, which means that u = -Bf - yg =
= (aB - Y)g on %. Thus, every uG} is proportional to g on A.
Since 3 separates points of Y, it follows that A consists of a
single point: A& = {xo]. If pe€ mx then u(Y\[xo}) = 0, so that
u = ce, for some ¢ 2 0. Since 2 J uadu = u(xo) for all u€ ¥
and f(xg) < 0, g(xo) > 0, we see that ¢ = 1. Therefore,

wEToe, . dien, ={ex}.
o

X
o o



