lllllllll-

OPERATING SYSTEMS
A Design-Oriented Approach

Charles Crowley



OPERATING SYSTEMS
A Design-Oriented Approach

Charles Crowley

University of New Mexico

IRWIN

Chicago e Bogota « Boston e Buenos Aires e Caracas
Lendon e Madrid e Mexico City e Sydney e Toronto



&% IRWIN Concerned about Our Environment
‘ ; In recognition of the fact that our company is a large end-user of fragile yet
replenishable resources, we at IRWIN can assure you that every effort is made to
meet or exceed Environmental Protection Agency (EPA) recommendations and require-
ments for a "greener” workplace.

To preserve these natural assets, a number of environmental policies, both companywide
and deparment-specific, have been implemented. From the use of 50% recycled paper in
our textbooks to the printing of promotional materials with recycled stock and soy inks to our
office paper recycling program, we are committed to reducing waste and replacing environ-
mentally unsafe products with safer alternatives,

© Richard D. Irwin. a Times Mirror Higher Education Group, Inc., company, 1997

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying. recording, or otherwise, without the prior
written permission of the publisher.

Irwin Book Team

Publisher: Tom Casson

Senior sponsoring editor: Elizabeth A. Jones

Senior developmental editor: Kelley Butcher

Project supervisor: Lynne Basler

Senior Production supervisor: Laurie Sander

Director, Prepress Purchasing: Kimberly Meriwether David
Compositor: /nteractive Composition Corporation

Typeface: {10/12 Times Roman

Printer: Times Mirror Higher Education Group, Inc., Print Group

® Times Mirror
M Higher Education Group

Library of Congress Cataloging-in-Publication Data

Crowley, Charles (Charles Patrick)
Operating systems : a design-oriented approach / Charles Crowley.
p. cm.

Includes bibliographical references and index.
ISBN 0-256-15151-2
1. Operating systems (Computers) 1. Title.

QA76.76.063C77 1997

005.4°3—dc20

Printed in the United States of America
234567890WCB3210987

9643708



PREFACE

In this book I have tried to approach the traditional, junior or senior level operating systems
course in a new way. There are several areas where I have done things differently:

o Describe the external operating system interface: 1 start with a description of the sys-
tem call interface to an operating system.

s Use of code: 1 have tried to steer a middle course between a concepts approach and a
case study approach.

> Development of concepts: | have tried to show how the operating system concepts de-
veloped into their present form.

»  Design orientation: I have tried to show how ideas from the design of operating sys-
tems relate to the design of other types of programs.

EXTERNAL OQOPERATING SYSTEM INTERFACE

Many students come to an operating system class without a clear understanding of what an
operating system really does. These students should understand how operating system ser-
vices are used before learning how these services are implemented. To deal with this, the
book begins with a simplified, UNIX-like set of system calls. The book includes a discus-
sion of these calls, example programs using these calls, and a simple shell program to inte-
grate the examples.

CONCEPTS OR CASE STUDIES

There have always been two approaches to the operating systems class. The first approach
is the concept or theory approach which concentrates on the basic conceptual issues in the
design of operating systems. These courses discuss each of the basic problems in operating
systems design and the range of common solutions to those problems. The books are
mostly text and diagrams with very little code. The second approach is the case srudy
method which concentrates on an example operating system that is simple but complete.
The books contain a lot of code and spend a lot of pages explaining the code in detail.

There are advantages and disadvantages to both approaches. Some people feel the
ideal situation is to take both classes but this is rarely possible in an already crowded com-
puter science curriculum so one is required to make a choice.

USE OF CODE
1 have tried to find a middle course between the two approaches. This book is basically a

concepts oriented book with more code than is usual. I have found that seeing actual code
allows the students to understand the concepts more deeply, feel more comfortable about
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the material, and ask questions they wouldn’t have thought to ask in a purely con-
cepts oriented course. The code does not comprise a complete operating system how-
ever and it as simple as possible in order to reduce the amount of pages devoted to
explaining it.

DEVELOPMENT OF CONCEPTS

I have tried to show how these ideas developed. Many of the concepts in operating
systems have developed over many years and the current solutions were developed
slowly, in several stages. Each new solution had a problem that the next solution tried
to fix. I think it helps the student to understand this development and see that these
ideas were not brilliant flashes of insight that came out of nowhere but ideas that
were improved by many people over many years. The development was a series of
good ideas where each improvement made sense in the context in which it was de-
veloped. Seeing this development helps to understand why the solutions have their
present form. In addition, it is useful to know the design constraints that caused so-
lutions to develop into their present form because technological advances often
change these constraints and old solutions that used to be inferior suddenly become
practical again. Finally these developments give students examples of the design
process through a series of potential but flawed solutions to a problem to a final so-
lution that is acceptable.

DESIGN ORIENTATION

Finally there is a concentration on design. In some ways designing an operating sys-
tem is a pretty specialized activity having to do mainly with resource management.
But many basic design ideas run through all designs and they show up in operating
systems as much as anywhere else. Throughout the book I note places where we are
presented with typical design problems. I abstract the operating systems related
probiems and solutions from the book into the general design problems and solutions
and present them in a way that they can be applied to design problems in other areas
of computer science.

Clearly it is not possible to cover all design topics and issues. [ am striving for
two things. First, I want to give the student an awareness of design issues, where they
come up, which techniques to apply, how they can be generalized, etc. I do not pre-
sent an organized survey of design techniques but a series of useful ones that come
up in the context of operating systems. I hope to make the student aware of design
and to enable the student to start doing their own generalizing about design. Second,
I present a collection of useful design techniques that the students can use in their de-
sign toolkit.

Very few computer professionals will participate in the design of an operating
system during the course of their careers. While it is important that students of
computer science have a good foundation in the basic concepts in specialized areas
such as operating systems, it is not necessary that every computer science student
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understand all the details. However, there is a thread running through all areas of
software engineering: the concept of design. There are many issued which are tack-
led during the design of an operating system which can be generalized and applied
to other areas of computer science. In this book, I attempt to focus on these design
issues and their implications for other areas.

I have oriented this book to provide a solid preparation for the larger design
projects the student will encounter in later software engineering courses and as
preparation for their career as a software professional designing, implementing
and maintaining a wide variety of systems. This orientation also enables the oper-
ating systems course follows modern developments in the field of computer sci-
ence. The interrelations between the separate areas of computer science are
becoming more important. For example, in the area of high speed paraliel ma-
chines, it is clear that it is necessary to think of the hardware, the operating sys-
tem, and the programming language as a single system to get maximum
performance. Optimization in any part of the system will have consequences for
the other parts of the system.

The design techniques are noted in side bars as they come up and longer expla-
nations of each design topic are placed in separate chapters from the operating sys-
tem material. The instructor can structure a course with varying degrees of
concentration on design aspects. The goal is that the design sections are independent
of the main flow of the text and independent from each other. This will allow the in-
structor to pick and choose those design sections he or she finds to be useful.

USING THIS BOOK IN A COURSE

There is more material in this book than can be comfortably covered in 4 one-semester
course. A number of the sections of the book have been marked with an asterisk. This
indicates that they can be skipped with no loss of continuity in the presentation. In ad-
dition, all of the design chapters and design sidebars can be skipped with no loss of
continuity. If you skip all the design chapters you can probably just cover the book in a
semester. [ expect that most instructors will choose to skip some of the design sections
and some of the optional sections and teach a course that is about 90 percent operating
systems and 10 percent design issues. Alternatively, the design issues could be covered
in a separate one-unit course, strictly on design, that is taken along with the operating
systems course,

ACKNOWLEDGMENTS

I want to thank my colleague Barney Maccabe who started out as my co-author on
the book but had too many other commitments to work on the book. Qur discussions
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