lllllllll-

OPERATING SYSTEMS
A Design-Oriented Approach

Charles Crowley

OPERATING SYSTEMS
A Design-Oriented Approach

Charles Crowley

University of New Mexico

IRWIN

Chicago e Bogota « Boston e Buenos Aires e Caracas
Lendon e Madrid e Mexico City e Sydney e Toronto

&% IRWIN Concerned about Our Environment
‘ ; In recognition of the fact that our company is a large end-user of fragile yet
replenishable resources, we at IRWIN can assure you that every effort is made to
meet or exceed Environmental Protection Agency (EPA) recommendations and require-
ments for a "greener” workplace.

To preserve these natural assets, a number of environmental policies, both companywide
and deparment-specific, have been implemented. From the use of 50% recycled paper in
our textbooks to the printing of promotional materials with recycled stock and soy inks to our
office paper recycling program, we are committed to reducing waste and replacing environ-
mentally unsafe products with safer alternatives,

© Richard D. Irwin. a Times Mirror Higher Education Group, Inc., company, 1997

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying. recording, or otherwise, without the prior
written permission of the publisher.

Irwin Book Team

Publisher: Tom Casson

Senior sponsoring editor: Elizabeth A. Jones

Senior developmental editor: Kelley Butcher

Project supervisor: Lynne Basler

Senior Production supervisor: Laurie Sander

Director, Prepress Purchasing: Kimberly Meriwether David
Compositor: /nteractive Composition Corporation

Typeface: {10/12 Times Roman

Printer: Times Mirror Higher Education Group, Inc., Print Group

® Times Mirror
M Higher Education Group

Library of Congress Cataloging-in-Publication Data

Crowley, Charles (Charles Patrick)
Operating systems : a design-oriented approach / Charles Crowley.
p. cm.

Includes bibliographical references and index.
ISBN 0-256-15151-2
1. Operating systems (Computers) 1. Title.

QA76.76.063C77 1997

005.4°3—dc20

Printed in the United States of America
234567890WCB3210987

9643708

PREFACE

In this book I have tried to approach the traditional, junior or senior level operating systems
course in a new way. There are several areas where I have done things differently:

o Describe the external operating system interface: 1 start with a description of the sys-
tem call interface to an operating system.

s Use of code: 1 have tried to steer a middle course between a concepts approach and a
case study approach.

> Development of concepts: | have tried to show how the operating system concepts de-
veloped into their present form.

» Design orientation: I have tried to show how ideas from the design of operating sys-
tems relate to the design of other types of programs.

EXTERNAL OQOPERATING SYSTEM INTERFACE

Many students come to an operating system class without a clear understanding of what an
operating system really does. These students should understand how operating system ser-
vices are used before learning how these services are implemented. To deal with this, the
book begins with a simplified, UNIX-like set of system calls. The book includes a discus-
sion of these calls, example programs using these calls, and a simple shell program to inte-
grate the examples.

CONCEPTS OR CASE STUDIES

There have always been two approaches to the operating systems class. The first approach
is the concept or theory approach which concentrates on the basic conceptual issues in the
design of operating systems. These courses discuss each of the basic problems in operating
systems design and the range of common solutions to those problems. The books are
mostly text and diagrams with very little code. The second approach is the case srudy
method which concentrates on an example operating system that is simple but complete.
The books contain a lot of code and spend a lot of pages explaining the code in detail.

There are advantages and disadvantages to both approaches. Some people feel the
ideal situation is to take both classes but this is rarely possible in an already crowded com-
puter science curriculum so one is required to make a choice.

USE OF CODE
1 have tried to find a middle course between the two approaches. This book is basically a

concepts oriented book with more code than is usual. I have found that seeing actual code
allows the students to understand the concepts more deeply, feel more comfortable about

vii

viii

PREFACE

the material, and ask questions they wouldn’t have thought to ask in a purely con-
cepts oriented course. The code does not comprise a complete operating system how-
ever and it as simple as possible in order to reduce the amount of pages devoted to
explaining it.

DEVELOPMENT OF CONCEPTS

I have tried to show how these ideas developed. Many of the concepts in operating
systems have developed over many years and the current solutions were developed
slowly, in several stages. Each new solution had a problem that the next solution tried
to fix. I think it helps the student to understand this development and see that these
ideas were not brilliant flashes of insight that came out of nowhere but ideas that
were improved by many people over many years. The development was a series of
good ideas where each improvement made sense in the context in which it was de-
veloped. Seeing this development helps to understand why the solutions have their
present form. In addition, it is useful to know the design constraints that caused so-
lutions to develop into their present form because technological advances often
change these constraints and old solutions that used to be inferior suddenly become
practical again. Finally these developments give students examples of the design
process through a series of potential but flawed solutions to a problem to a final so-
lution that is acceptable.

DESIGN ORIENTATION

Finally there is a concentration on design. In some ways designing an operating sys-
tem is a pretty specialized activity having to do mainly with resource management.
But many basic design ideas run through all designs and they show up in operating
systems as much as anywhere else. Throughout the book I note places where we are
presented with typical design problems. I abstract the operating systems related
probiems and solutions from the book into the general design problems and solutions
and present them in a way that they can be applied to design problems in other areas
of computer science.

Clearly it is not possible to cover all design topics and issues. [am striving for
two things. First, I want to give the student an awareness of design issues, where they
come up, which techniques to apply, how they can be generalized, etc. I do not pre-
sent an organized survey of design techniques but a series of useful ones that come
up in the context of operating systems. I hope to make the student aware of design
and to enable the student to start doing their own generalizing about design. Second,
I present a collection of useful design techniques that the students can use in their de-
sign toolkit.

Very few computer professionals will participate in the design of an operating
system during the course of their careers. While it is important that students of
computer science have a good foundation in the basic concepts in specialized areas
such as operating systems, it is not necessary that every computer science student

Preface

understand all the details. However, there is a thread running through all areas of
software engineering: the concept of design. There are many issued which are tack-
led during the design of an operating system which can be generalized and applied
to other areas of computer science. In this book, I attempt to focus on these design
issues and their implications for other areas.

I have oriented this book to provide a solid preparation for the larger design
projects the student will encounter in later software engineering courses and as
preparation for their career as a software professional designing, implementing
and maintaining a wide variety of systems. This orientation also enables the oper-
ating systems course follows modern developments in the field of computer sci-
ence. The interrelations between the separate areas of computer science are
becoming more important. For example, in the area of high speed paraliel ma-
chines, it is clear that it is necessary to think of the hardware, the operating sys-
tem, and the programming language as a single system to get maximum
performance. Optimization in any part of the system will have consequences for
the other parts of the system.

The design techniques are noted in side bars as they come up and longer expla-
nations of each design topic are placed in separate chapters from the operating sys-
tem material. The instructor can structure a course with varying degrees of
concentration on design aspects. The goal is that the design sections are independent
of the main flow of the text and independent from each other. This will allow the in-
structor to pick and choose those design sections he or she finds to be useful.

USING THIS BOOK IN A COURSE

There is more material in this book than can be comfortably covered in 4 one-semester
course. A number of the sections of the book have been marked with an asterisk. This
indicates that they can be skipped with no loss of continuity in the presentation. In ad-
dition, all of the design chapters and design sidebars can be skipped with no loss of
continuity. If you skip all the design chapters you can probably just cover the book in a
semester. [expect that most instructors will choose to skip some of the design sections
and some of the optional sections and teach a course that is about 90 percent operating
systems and 10 percent design issues. Alternatively, the design issues could be covered
in a separate one-unit course, strictly on design, that is taken along with the operating
systems course,

ACKNOWLEDGMENTS

I want to thank my colleague Barney Maccabe who started out as my co-author on
the book but had too many other commitments to work on the book. Qur discussions
lead to the conception of the book and the design orientation. I have talked with Bar-
ney on many aspects of operating systems and computer science and those discus-
sions shaped many of my ideas.

PREFACE

Lalso want to thank John Brayer who used drafts of the book in several of his op-
erating systems courses and put up with many typos, badly written sections, and un-
finished sections. His comments helped in the development of the book.

[also want to thank my other colleagues in the Computer Science Department at
the University of New Mexico. Continuing “in-the-hall” discussions with them have
helped me formulate and improve my ideas.

Many students in CS 481 have used drafts of the books and have provided many
useful comments and suggestions. [want to particularly thank Dave Rosenbaum who
provided extensive comments on the entire draft, found numerous errors and typos
and taught me some things about writing good English as well.

My treatment of the design chapters was greatly influenced by the design pat-
terns developments in recent years and particularly the fine book by Gamma et el.
(1995). I used their presentation format in the design chapters.

I want to thank all the people who reviewed this book while it was being devel-
oped. I corrected many problems and got many ideas for the presentation from their
careful reviews and comments. The design chapters especially profited from their
comments.

* Mustaque Ahamad, Georgia Institute of Technology
* Jim Alves-Foss, University of 1daho
+ Anish Arora, The Ohio State University
» Brent Auernheimer, California State University - Fresno
= Anthony Q. Baxter, University of Kentucky
* Mahesh Dodani, University of Iowa
« H. George Friedman, Jr., University of lllinois - Urbana
+ Tim Gottleber
» Stephen J. Hartley, Drexel University
« Giorgio P. Ingargiola, Temple University
* Stephen J. Krebsbach, South Dakota State University
* Donald S. Miller, Arizona State University
» Matt W. Mutka, Michigan State University
* Richard Newman-Wolfe, University of Florida
¢ Steve Reichenbach, University of Nebraska - Lincoln
* Bernhard Weinberg, Michigan State University
Finally my wife, Ella Sitkin, put up with many bad moods and excuses that I was

“too busy” during the years this book was developed. As if that wasn’t enough, she
also edited several chapters.

1

CONTENTS

Introduction 1

1.1

Where Does an Operating System
Fitin? 2
1.1.1 System Levels 2

1.2 What Does an Operating System Do?
1.2.1 Hardware Resources 4
122 Resource Management 5
1.2.3 Virtual Computers 6
1.3 A Virtual Computer 8
1.3.1 Virtual Processor &
1.3.2 Virtual Primary Memory 10
1.3.3 Virtual Secondary Memory 10
1.34 Virtual /O 10
1.4 Do We Need an Operating System?
1.5 Summary 12
1.5.1 Terminology 13
1.5.2 Review Questions 14
153 Further Reading 14
1.6 Problems 14
2
The Hardware Interface 16
2.1 The CPU 17
2.141 General-Purpose Registers 17
2.1.2 Control Registers 17
2.1.3 Processor Modes 18
214 Instruction Set 18
2.1.5 Machine Instructions in C++
Code 19
2.2 Memory and Addressing 19
2.3 Interrupts 20
24 I/O Devices 21
2.4.1 Disk Controller 22
2.5 Summary 23

2.5.1 Terminology 23
252 Review Questions 23
253 Further Reading 24
2.6 Problems 24

4

11

xi

3

The Operating System Interface 25

3.1

3.2

3.3
34
35

3.6

3.7

3.11
3.12

What Are System Calls? 26

31 How to Make a System Call 27
3.1.2 What Is a System Call Interface? 28
An Example System Call Interface 28

3.2.1 System Call Overview 28

322 Hierarchical File Naming
Systems 29

323 File and 1/O System Calls 31

324 Open Files 34

325 Examples of File I/O 36

Information and Meta-Information 39

Naming Operating System Objects 40

Devices as Files 41

3.5.1 Unification of the File and Device
Concepts 42

The Process Concept 42

361 Processes and Programs 43

36.2 Process Management System
Calls 44

3.63 Process Hierarchy 48

Communication between Processes 49

3.7.1 Communication-Related System
Calls 50
3.7.2 Example of Interprocess

Communication 51
UNIX-Style Process Creation 55
Standard Input and Standard Qutput 57
3.10 Communicating with Pipes 59
3.10.1 Naming of Pipes and Message
Queues 62
Summary of System Call Interfaces 63
Operating System Examples 64

3.12.1 UNIX 64
3.122 Mach 65

3.123 MS/DOS 65
3.124 Windows NT 66
3125 082 66

3.12.6 Macintosh OS 66

xii

3.13

3.14

3.15

4

CONTENTS

The User Interface to an Operating
System* 67

3.13.1 Why You Need a Shell 67
3.13.2 The Specification of the Shell 67
3.13.3 Implementing the Shell 67
Summary 71

3.14.1 Terminology 72
3.142 Review Questions 73
3.143 Further Reading 74
Problems 74

Design Techniques I 78

4.1

42

4.3
4.4

4.5

4.6

Operating Systems and Design 79

4.1.1 The Design Process 79

4.1.2 Relationship to Software
Engineering 80

4.1.3 A Design Example 81

4.14 Learning Design through Operating

Systems 82
Design Problems 82
4.2.1 Design Skills 83
4.2.2 Design Space 84
423 Design Levels 85
Design Techniques 86
Two-Level Implementation 86
44.1 Overview 86
4.4.2 Motivation 86
4.4.3 Operating System Examples 87
444 Computer Science Examples 88
44.5 Applicability 88
4.4.6 Consequences 89
4.4.7 Implementation Issues and
Variations 89
44.8 Related Design Techniques 95
Interface Design 95
4.5.1 Overview 95
4.5.2 Motivation 96
453 Applicability 99
454 Consequences 99
4.5.5 Related Design Techniques 99
Connection in Protocols 99
4.6.1 Overview 99
4.6.2 Motivation 100
4.6.3 Operating System Examples 101
4.6.4 Computer Science Examples 101
4.6.5 Applicability 102
4.6.6 Consequences 102

4.7

4.8

49

4.10
5

4.6.7 Implementation [ssues and
Variations 102

4.6.8 Related Design Techniques 104

Interactive and Programming

Interfaces 105

4.7.1 Overview 105

4.7.2 Motivation 105

473 Operating System Examples 106

4.7.4 Computer Science Examples 107

4.7.5 Applicability 107

4.7.6 Consequences 107

4.7.7 Implementation Issues and
Variations 107

4.7.8 Related Design Techniques 108

Decomposition Patterns 108

4.8.1 Overview 108

4.8.2 Motivation 108

483 Operating System Examples 110

4.8.4 Computer Science Examples 110

4.8.5 Applicability 111

4.8.6 Consequences 111

4.8.7 Implementation Issues and
Variations 111

4.8.8 Related Design Techniques 112

Summary 113

4.9.1 Terminology 113

492 Review Questions 114

Problems 115

Implementing Processes 116

5.1
52

53

The System Call Interface 117
Implementation of a Simple Operating
System 119

5.2.1 Guide to the Code 119

522 The Architecture 121

5.23 System Constants 122

524 Global Data 123
Implementation of Processes 126
5.3.1 Process Creation 126

532 Process States 128

533 Process Dispatching 129
534 The System Stack 132

535 Timer Interrupts 132

System Initialization 133

5.4.1 The Initial Process 134
Process Switching 136

5.5.1 Switching between Processes 136

5.6

57
58

5.9

5.10
5.11
5.12
5.13

5.14

5.15
5.16

5.17

5.18

6

552 Flow of Control 137

System Call Interrupt Handling 140

5.6.1 Copying Messages between Address
Spaces 145

Program Ervor Interrupts 146

Disk Driver Subsystem 146

5.8.1 Communicating with the Disk
Controller 149

Implementation of Waiting 150

5.9.1 Waiting for Messages 150

592 Waiting inside a System Call 151

5.9.3 Suspending System Calls 152

Flow of Control through the Operating

System 153

Signaling in an Operating System 156

Interrupts in the Operating System 157

Operating Systems as Event and Table

Managers 158

Process Implementation 160

5.14.1 The Process Table and Process
Descriptors 160

Examples of Process Implementation 161

Monoprogramming* 161

5.16.1 Batch Systems 162

5.16.2 Multiprogramming and 1/O
Overlap 163

5.16.3 Personal Computer Systems 164

Summary 167

5.17.1 Terminology 167
5.17.2 Review Questions 168
5.17.3 Further Reading 169

Problems 169

Parallel Systems 175

6.1
6.2

6.3

6.4

6.5

Parallel Hardware 176

An Operating System for a Two-Processor

System 177

6.2.1 Using Two Separate Operating
Systems 177

6.2.2 Sharing the Operating System 178

Race Conditions with a Shared Process

Table 180
Atomic Actions 181
6.4.1 Hardware Implementation of Atomic

Actions 183
A Multiprocessor Operating System 183

6.6

6.7

6.8

6.9

Contents xiii

6.5.] The Current Process Variable 185

6.5.2 Dispatching With a Shared Process
Table 185

6.5.3 Busy Waiting 187

6.5.4 Handling the Queues 187

6.5.5 Grouping of Shared Variables 188

6.5.6 A General Solution 189

6.5.7 Using Two Process Tables 192

Examples of Multiprocessor Operating

Systems 193

Threads 193

6.7.1 The Thread Concept 193

6.7.2 Thread System Calls 194

6.7.3 Advantages of Threads 195

6.7.4 Uses of Threads 195

6.7.5 Thread Implementation®* 197

6.7.6 Splitting the Process Concept 203

6.7.7 Lightweight Processes and User
Threads 203

6.7.8 Examples of Threads 204

Kernel-mode Processes* 205

6.8.1 Data Structures for Kernel-Mode
Processes 206

6.8.2 Process Creation with Kernel-Mode
Processes 207

6.8.3 Interrupt Handlers for Kernel-Mode
Processes 208

6.84 Switching Processes for Kernel-Mode
Processes 210

6.8.5 How the System Stack is Used 211

6.8.6 Waiting with Kernel-Mode
Processes 212

6.8.7 Dispatching with Kernel-Mode
Processes 213

6.8.8 Kernel-Mode only Processes 214

6.8.9 Trade-Offs of Kernel-Mode

Processes 215

Examples of Kernel-Mode

Processes 215

Implementation of Mutual Exclusion 216

6.9.1 First Solution: Disabling
Interrupts 216

6.9.2 Second Solution: Using
ExchangeWord 217

6.9.3 Third Solution: Software
Solutions 217

6.9.4 When to Use Each Solution 219

6.9.5 Examples of Implementing Mutual
Excluston 219

6.8.10

Xiv CONTENTS

6.10 Varieties of Computer Models* 220
6.10.1 Multiprogramming 221
6.10.2 Multiprocessing 221

6.11 Summary 223
6.11.1 Terminology 223
6.11.2 Review Questions 224
6.11.3 Further Reading 225

6.13 Problems 225

7

Interprocess Communication
Patterns 230

7.1 Using Interprocess Communication 231
7.2 Patterns of Interprocess
Communication 231
7.2.1 Competing and Cooperating 232
7.3 Problems When Processes Compete 233
7.4 Race Conditions and Atomic Actions 235
7.5 New Message-Passing System Calls 238
7.6 1PC Pattern: Mutual Exclusion 239
7.6.1 N Process Mutual Exclusion 241
7.6.2 Voluntary Cooperation in Mutual
Exclusion 241
7.7 IPC Pattern: Signaling 242
7.8 IPC Pattern: Rendezvous 243
7.8.1 Many Process Rendezvous 244
7.9 IPC Pattern: Producer-Consumer 245
791 The Basic Producer-Consumer
Pattern 247
7.9.2 Limiting the Number of Buffers
Used 248
7.9.3 Multiple Producers and
Consumers 249
7.10 IPC Pattern: Client-Server 250
7.11 IPC Pattern: Multiple Servers and
Clients* 254
7.12 IPC Pattern: Database Access and
Update 256
7.12.1 Scheduling 260
7.12.2 Priority 262
7.12.3 Scheduling Queues 262
7.13 Review of Interprocess Communication
Patterns 262
7.13.1 Mutual Exclusion 262
7.13.2 Signaling 263
7.13.3 Rendezvous 263
7.13.4 Producer-Consumer 263

7.14
7.15

7.16

7.17
8

7.13.5 Client-Server 264

7.13.6 Multiple Servers and Clients 264
7.13.7 Database Access and Update 265
A Physical Analogy 265

Failure of Processes 267

7.15.1 Recovery from Failure 270
Summary 270

7.16.1 Terminology 272

7.16.2 Review Questions 272

7.16.3 Further Reading 273

Problems 273

Processes 277

8.1

8.2

8.3

8.4
8.5

8.6
8.7
8.8
8.9

Everyday Scheduling 278

8.1.1 First-Come, First-Served
Scheduling 278

8.1.2 Shortest-Job-First Scheduling 278

8.1.3 Highest-Response-Ratio-Next
Scheduling 280

8.1.4 Priority Scheduling 281

8.1.5 Deadline Scheduling 281

8.1.6 Round-Robin Scheduling 281

8.1.7 Summary 282

Preemptive Scheduling Methods 282

8.2.1 Scheduling Overview 283

8.2.2 Round-Robin Scheduling 283

8.2.3 Heavily Loaded Systems 285

8.2.4 Two Queues 285

8.2.5 Multiple Queues 286

Policy versus Mechanism in

Scheduling 286

A Scheduling Example 288

Scheduling in Real Operating

Systems 288

8.5.1 Scheduling in UNIX SVR4 289

8.5.2 Scheduling in Solaris 290

8.5.3 Scheduling in 0§/2 2.0 290

83.5.4 Scheduling in Windows NT 3.51 290

855 Scheduling in Other Operating
Systems 290

Deadlock 291

Why Deadlock Is a Problem 293

Conditions for Deadlock to Occur 293

How to Deal with Deadlock 294

8.9.1 Deadlock Prevention 294

8.9.2 Deadlock Avoidance 295

8.9.3 Deadlock Recovery 295

8.10

8.11
8.12
8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20

8.21

8.22

A Sequence of Approaches to the Deadlock

Problem 296

Two-Phase Locking 296

Starvation 297

Message Passing Variations 298

8.13.1 Using PIDs as Message
Addresses 298

8.13.2 Message Passing with Nonblocking
Receives 298

8.13.3 Message Passing with Blocking
Sends 301

8.13.4 Remote Procedure Calls 302

Synchronization 305

8.14.1 Definition of Synchronization 305

8.14.2 Review of Synchronization 306

Separating Data Transfer and

Synchronization 308

Semaphores 308

8.16.1 Specification of Semaphore
Operations 309

8.16.2 Implementation of Semaphores 310

8.16.3 AnAnalogy 31

8.16.4 Mutual Exclusion with
Semaphores 311

8.16.5 Rendezvous with Semaphores 312

8.16.6 Producer-Consumer (oune buffer) with
Semaphores 312

8.16.7 Counting Semaphores 313

8.16.8 Producer-Consumer (N buffers) with
Semaphores 314

8.16.9 Semaphores and Messages 316

Implementing Semaphores* 316

8.17.1 System Constants 316

Using Semaphores in the Simple Operating

System 320

Programming-Language-Based

Synchronization Primitives 322

8.19.1 Monitors 323

8.19.2 Synchronization Primitives in
Ada95 328

Message Passing Design Issues 335

8.20.1 Copying Messages 333

8.20.2 Longer Messages 337

IPC in Mach 337

821.1 Tasks and Threads 337

8.21.2 Ports and Messages 337

8.21.3 Objects 338

IPC and Synchronization Examples 338

Contents xv

8.22.1 Signals 338

8.22.2 SVR4UNIX 339
8.22.3 Windows NT 339
8.22.4 0OS/2 339

8.22.5 Solaris 340

8.23 Summary 340

8.23.1 Terminology 341
8.23.2 Review Questions 342
8.23.3 Further Reading 343
8.24 Problems 343

9

Design Techniques II 350
9.1 Indirection 350
9.1 Overview 350
9.1.2 Motivation 350
9.1.3 Operating System Examples 351
9.14 Computer Science Examples 352
9.1.5 Discussion 354
9.1.6 Applicability 355
9.1.7 Consequences 356
9.2 Using State Machines 356
9.2.1 Overview 356
9.2.2 Operating System Example 356
9.23 Computer Science Example 356
924 Applicability 356
9.2.5 Consequences 357
9.2.6 Implementation Issues and
Variations 357
9.3 Win Big, Then Give Some Back 358
9.3.1 Overview 358
93.2 Motivation 358
933 Operating System Examples 359
9.3.4 Computer Science Examples 359
9.35 Applicabitity 3359
9.3.6 Consequences 359
9.4 Separation of Concepts 360
9.4.1 Overview 360
942 Motivation 360
9.4.3 Operating System Examples 360
9.4.4 Computer Science Examples 361
945 Applicability 362
9.4.6 Consequences 362
947 Implementation Issues and
Variations 362
948 Related Design Techniques 363
9.5 Reducing a Problem to a Special Case 363
9.5.1 Overview 363
9.5.2 Motivation 363

9.6

9.7

9.8

9.9

9.10

10

Memory Management

10.1
10.2

10.3

CONTENTS

9.5.3 Operating System Examples 363

954 Computer Science Examples 364

9.5.5 Applicability 364

9.5.6 Consequences 365

9.5.7 Implementation Issues and
Variations 365

Reentrant Programs 365

9.6.1 Overview 365

9.6.2 Motivation 365

9.6.3 Operating System Examples 366

9.6.4 Computer Science Examples 367
9.6.5 Applicability 367
9.6.6 Consequences 367

9.6.7 Implementation Issues and
Variations 368

9.6.8 Related Design Techniques 368

Using Models for Inspiration 368

9.7.1 Overview 368

9.7.2 Motivation 368

9.7.3 Operating System Examples 369

9.74 Computer Science Examples 369

9.7.5 Applicability 369

9.7.6 Consequences 369

Adding a New Facility to a System 369

9.8.1 Overview 369

9.8.2 Motivation 370

9.8.3 Operating System Examples 370

9.84 Computer Science Examples 371

9.8.5 Applicability 371

9.8.6 Consequences 372

9.8.7 Related Design Techniques 372

Summary 373

9.9.1 Terminology 373

99.2 Review Questions 374

Problems 374

377

Levels of Memory Management 378
Linking and Loading a Process 378

10.2.1 Creating a Load Module 379
1022 Loading a Load Module 387
10.2.3 Allocating Memory in a Running

Process 388
Variations in Program Loading 389
10.3.1 Load Time Dynamic Linking 389
10.3.2 Run Time Dynamic Linking 390

104

10.5

10.6

10.7
10.8

10.9
10.10

10.13
10.14
10.15

10.16

10.17

Why Use Dynamic Memory
Allocation? 393

The Memory Management Design
Problem* 394

Solutions to the Memory Management
Design Problem* 395

10.6.1 Static Division into a Fixed Number
of Blocks 395

10.6.2 Buddy Systems 397

10.6.3 Powers-of-two Allocation 398

Dynamic Memory Allocation* 399
Keeping Track of the Blocks* 400

10.8.1 The List Method 400

10.8.2 Keeping Allocated Blocks on the
Block List 401

10.8.3 Where Is the Block List Kept? 402

10.8.4 Using Block Headers as Free List
Nodes 403

10.8.5 The Bitmap Method 404

10.8.6 Comparing Free List Methods 405

Which Free Block to Allocate?* 406
Examples of Dynamic Memory
Allocation 407

10.11 Logical and Physical
Memory 408
10.12 Allocating Memory to
Processes 409
10.12.1 Static Memory Management 410
10.12.2 Handling Variable-Sized

Processes 411
Multiprogramming Issues 412
Memory Protection 413
Memory Management System Calls 414
10.15.1 Static Allocation of Memory to
Processes 414
Dynamic Allocation of Memory to
Processes 414
What about New and Malloc? 417
Freeing Memory at Each
Level 417
A Different Memory Management
System Call 419
Example Code for Memory
Allocation* 419
Summary 423
10.17.1 Terminology 424
10.17.2 Review Questions 425

10.15.2

10.15.3
10.15.4

10.15.5

10.17.3 Further Reading 425

10.18 Problems 426

11

Virtual Memory 429

11.1
11.2

11.3
114

11.5

11.6

11.8

119
11.10
1111

Fragmentation and Compaction* 430
Dealing with Fragmentation 430

11.2.1 Separate Code and Data Spaces 431
[1.22 Segments 431
11.2.3 Noncontiguous Logical Address
Spaces 434
11.24 Page Tables in Hardware
Registers 436
11.2.5 Page Tables in Memory 437
11.2.6 Using a Page Table Cache 438
11.2.7 Analysis Models of Paging with
Caching 441
11.2.8 Memory Allocation with Paging 442
11.2.9 Terminology: Page and Page
Frame 443
11.2.10 Page Tables 443
11.2.11 Paging Summary 443

Memory Allocation Code with Pages* 446

Sharing the Processor and Sharing

Memory* 449

Swapping* 450

11.5.1 Efficient Resource Use and User
Needs 451

Overlays* 454

11,6.1 Overlays in PCs 455

Implementing Virtual Memory 457

11.7.1 Hardware Required to Support Virtual
Memory 458
11.7.2 Software Required to Support Virtual

Memory 459
What is the Cost of Virtual Memory? 461
11.8.1 Paging More Than One Process 462
11.8.2 Locality 462
Virtual Memory Management 464
Daemons and Events 467
File Mapping 469
{1.11.1 The System Call Interface 470
11.11.2 An Example of Using File
Mapping 471
Advantages of File Mapping 471
Memory and File Mapping on the
IBM 801 472

11.11.3
11.11.4

Contents xvii

11.11.5 File Mapping Examples 474

11.12

Summary 474
11.12.1

Terminology 475

11.12.2 Review Questions 476
11.12.3 Further Reading 477

11.13

12

Virtual Memory Systems

Problems 477

483

12.1 Page Replacement 484
122 Global Page Replacement Algorithms 484

1221

12.2.2
12.2.3

1224
12.2.5

12.2.6

12.2.7
12.2.8

Measuring the Performance of a Page
Replacement Algorithm 484
Optimal Page Replacement 484
Theories of Program Paging
Behavior 485

Random Page Replacement 485
First-In, First-Out FIFO Page
Replacement 486

Least Recently Used Page
Replacement 487
Approximations of LRU 489
Clock Algorithms 490

12.3 Page Replacement Examples 493

12.4
12.4.1
12.4.2
12.4.3
12.4.4

12.4.5
12.4.6

Local Page Replacement Algorithms 494

What Is a Working Set? 495
Program Phases 495

Variable Resident Set Sizes 497

The Working Set Paging

Algorithm 498

Approximating the Working Set 498
WSClock Paging Algorithm 499

12.5 Evaluating Paging Algorithms* 501

12.5.1

12.5.2
12.6
12.6.1
12.6.2
12.6.3
12.6.4
12.6.5

12.6.6
12.6.7
12.7
12.7.1

Methodology for Paging
Simulation 501
Some Page Simulation Results 503

Thrashing and Load Control 504

How Thrashing Occurs 504
Load contro} 505

Swapping 505

Scheduling and Swapping 506
Load Control and Paging
Algorithms 507

Predictive Load Control 507
Preloading of Pages 508

Dealing with Large Page Tables 509

What Is the Problem? 509

xviii

12.8
12.9

12.10

12.11

12.12

12.13

12.14
12.15

12.16

CONTENTS

12.7.2
12.7.3
1274

Two-Level Paging 509 13
Benefits of Two-Level Paging 511
Problems with Two-Level
Paging 511

12.7.5 Software Page Table Lookups
Recursive Address Spaces® 516
Paging the Operating System Address
Space 518

129.1 Locking Pages in Memory 519
Page Size* 519

12.10.1 Reasons for a Large Page Size 519
12.10.2 Reasons for a Small Page Size 520
12.10.3 Clustering Pages 521
Segmentation 521

12.11.1 What Is a Segment?
12.11.2 Virtual Memory with
Segmentation 522
Segmentation with Paging 523
12.11.4 History of Segmentation 523
12.11.5 Segment Terminology 524
Sharing Memory 526

12.12.1 Reasons for Sharing Memory 527
12.12.2 Shared Memory System Calls 527
Examples of Virtual Memory Systems 528
12.13.1 Swap Area 528

12.13.2 Page Initialization 529

12.13.3 Page Sharing 529

12.13.4 Double-Handed Clock

Algorithm 530

Standby Page Lists 531

Clustering Pages 533

File Mapping 533

Portable Virtual Memory

Systems 533

12.13.9 Sparse Address Space 534

12.13.10 OS/2 Version 2.0 534

12.13.11 Windows NT 535

12.13.12 Mach and OSF/1 536

12.13.13 System V Release 4 537

12.13.14 Other Systems 537

13.1
512

13.2

521

12,113

133

12.13.5
12.13.6
12.13.7
12.13.8

13.4

13.5

Very Large Address Spaces 538
Summary 538

12.15.1 Terminology 539
12.15.2 Review Questions 540

12.15.3 Further Reading 541
Problems 541

Design Techniques III 547

Multiplexing 547

13.1.1 Overview 547

13.1.2 Motivation 547

13.1.3 Operating System Examples 549

13.1.4 Computer Science Examples 549

13.1.5 Applicability 550

13.1.6 Consequences 550

Late Binding 550

13.2.1 Overview 550

13.2.2 Motivation 550

13.2.3 Operating System Examples 551

13.24 Computer Science Examples 551

13.2.5 Applicability 552

13.2.6 Consequences 552

13.2.7 Implementation Issues and
Variations 553

13.2.8 Related Design Techniques 3554

Static Versus Dynamic 554

13.3.1 Overview 554

13.3.2 Motivation 554

13.3.3 Operating System Examples 554

13.3.4 Computer Science Examples 536

13.3.5 Applicability 3557

13.3.6 Consequences 557

13.3.7 Implementation [ssues and
Variations 558

13.3.8 Related Design Techniques 561

Space-Time Tradeoffs 561

134.1 Overview 3561

1342 Motivation 562

13.4.3 Computer Science Examples 564

1344 Applicability 565

13.4.5 Consequences 565

13.4.6 Implementation Issues and
Variations 566

13.47 Related Design Techniques 566

Simple Analytic Models 567

13.5.1 Overview 567

13.5.2 Motivation 567

13.5.3 Operating System Examples 568

13.54 Applicability 568

13.5.5 Consequences 568

13.5.6 Implementation Issues and

Variations 569

13.6 Summary 570
13.6.1 Terminology 570
13.6.2 Review Questions 571

13.7 Problems 571

14

I/O Devices 573

14.1 Devices and Controllers 574
14.1.1 Device Controllers 574

14.2 Terminal Devices* 575
14.2.1 Basic Terminals 375
1422 Display Commands 579
14.2.3 Example Display Commands 580
1424 Keyboard Events 582
14.2.5 Terminal Capability Databases 583
14.2.6 Virtual Terminals 585
14.27 Terminal Interfaces 587
14.2.8 Mouse Devices 588
14.2.9 Event Streams 588
14.2.10 Varieties of Two-Stage

Processing 589
14211 Graphics Terminals 591
142,12 Color and Color Maps 592
14.2.13 Command Oriented Graphics 592
14.2.14 X Terminals 592
14.2.15 Terminal Emulators 593
14.2.16 Virtual Terminals and Terminal
Emulators 596

14.2.17 PPP: a Network Emulator 596
14.2.18 Modems 596

14.3 Communication Devices* 598
14.3.1 Serial Ports 598
14.3.2 Parallel Ports 599
14.3.3 Ethernet Devices 599
14.3.4 Other Network Devices 601

14.4 Disk Devices 601
1441 Timing of a Disk Access 603
14.4.2 Floppy Disks 604
14.43 RAID Devices 604

14.5 Disk Controllers 606

14.6 SCSI Interfaces* 607

14.7 Tape Devices* 608

14.8 CD Devices* 609

149 Summary 610

14.9.1
14.9.2

Terminology 610
Review Questions 611

Contents xix

14.9.3 Further Reading 612
14.10 Problems 613

15

1/O Systems 616
15.1 I/O System Software 617
15.1.1 Device Drivers 617
15.1.2 Device Driver Interfaces 618
15.1.3 The Two Categories of Device
Drivers 619
15.1.4 The Block Device Interface 619
15.1.5 The Character Device Interface 620
15.2 Disk Device Driver Access Strategies 621
15.2.1 Handling Disk Requests
Efficiently 621
15.2.2 Double Buffering — An Aside 622
15.2.3 A Disk Scheduling Example 622
15.2.4 Sector Scheduling within Cylinder
Scheduling 629
15.2.5 Combined Sector and Cylinder
Scheduling 630
15.2.6 Real-Life Disk Head Scheduling 631
15.3 Modeling of Disks™* 631
15.3.1 A Disk Scheduling Anomaly 631
1532 Cylinder Correlations 633
15.3.3 A More Accurate Disk Model 633
15.4 Device numbers 634
{5.5 Unification of Files and I/O Devices 634
15.6 Generalized Disk Device Drivers 636
15.6.1 Partitioning Large Disks 636
15.6.2 Combining Disks into a Large
Logical Disk 636
15.6.3 RAM Disks 637
15.6.4 Memory as a Device 638
1565 Pseudo-ttys 640
15.7 Disk Caching 641
15.8 Two-Level Structure of Device
Drivers 643
15.9 SCSI Device Drivers 643
15.10 Examples of 1/O Systems 644
15.11 Summary 645
15.11.1 Terminology 645
15.11.2 Review Questions 646
15.11.3 Further Reading 647
15.12 Problems 647

XX CONTENTS

16

File Systems 653
16.1 The Need for Files 654
16.1.1 Using Disks Directly for Persistent
Storage 654
16.1.2 Files 654
16.1.3 Levels in the File System 654
16.2 The File Abstraction 656
16.2.1 Variations on the File
Abstraction 656
16.2.2 Logical File Structure 657
16.2.3 File Size and Granularity 658
16.2.4 File Meta-Data 659
16.3 File Naming 660
16.3.1 Component Names 660
16.3.2 Directories 660
16.3.3 Path Names 660
16.3.4 Variations and Generalizations 662
16.3.5 File Name Extensions 663
163.6 Aliases 664
16.4 File System Objects and Operations 665
16.5 File System Implementation 668
16.5.1 File System Data Structures 668
16.5.2 File System Organization and Control
Flow 670
16.5.3 Connecting to Device Drivers 673
16.5.4 Reading and Writing from Special
Files 674
16.5.5 Other File System Calls 674
16.5.6 Avoiding Copying Data 676
16.5.7 Directory Implementation 677
16.6 An Example File System
Implementation* 679
16.6.1 System Constants and Global
Data 679
16.6.2 Disk Cache 680
16.6.3 File Descriptors 682
16.64 OpenFiles 684
16.6.5 Directories 685
16.6.6 File System Initialization 686
16.6.7 File-Related System Calls 686
16.6.8 System Call Procedures 688
16.7 Summary 692
16.7.1 Terminology 693
16.7.2 Review Questions 694
16.7.3 Further Reading 694
16.8 Problems 694

17

File System Organization 697
17.1 File System Organization 697
17.1.1 What Is a File System? 697
17.1.2 File System Structure 697
17.1.3 The File System Descriptor 699
17.1.4 Variations in File System Layout 699
17.1.5 File Systems in Disk Partitions 700
17.1.6 Combining File Systems 700
17.1.7 Network Mounting of File
Systems 702
17.2 File Descriptors 703
17.2.1 Where to Keep File Descriptors 703
17.3 How File Blocks Are Located on Disk 703
17.3.1 The Block-Mapping Problem 704
17.3.2 Contiguous Files 705
17.3.3 Interleaved Files 706
17.3.4 Keeping a File in Pieces 707
17.3.5 Where to Keep the Disk Block
Pointers 708
17.3.6 Disk Block Pointers in the File
Descriptor 708
17.3.7 Disk Block Pointers Contiguously on
Disk 708
17.3.8 Disk Block Pointers in the Disk
Blocks 709
17.3.9 Index Blocks in a Chain 710
17.3.10 Two Levels of Index Blocks 712
17.3.11 Large and Small Files 713
17.3.12 Hybrid Solutions 713
17.3.13 Analogy with Page Tables 714
17.3.14 Inverted Disk Block Indexes 715
17.3.15 Using Larger Pieces 717
17.3.16 Variable-Sized Pieces 718
17.3.17 Disk Compaction 720
17.4 Review of File Storage Methods 721
17.5 Implementation of the Logical to Physical
Block Mapping* 723
17.6 File Sizes 725
177 Booting the Operating System* 726
17.8 File System Optimization* 727
17.8.1 Biock Size 728
17.8.2 Compressed Files 729
17.83 Log-Structured File Systems 729
17.9 File System Reliability 730
17.9.1 Backups 730
17.9.2 Consistency Checking 731

