PROGRAMMING

STANDARD
PASCAL

RC. Holt
JN.P Hume

PROGRAMMING
STANDARD
PASCAL

R. C. Holt
J. N. P. Hume

Department of Computer Science
University of Toronto

RESTON PUBLISHING COMPANY, INC., Reston, Virginia
A Prentice-Hall Company

Library of Congress Cataloging in Publication Data

Holt, Richard C
Programming standard Pascal.

Includes index.
1. PASCAL (Computer program language) I. Hume,
J. N. P., joint author. II. Title.
QA76.73.P2H64 001.64"'24 80~456
ISBN 0-8359-5691-1
ISBN 0-8359-5690-3 pbk.

© 1980 by
RESTON PUBLISHING COMPANY, INC., Reston, Virginia 22091
A Prentice-Hall Company

All rights reserved. No part of this
book may be reproduced in any way,

or by any means, without permission
in writing from the publisher.

10 9 8 7 6 5 4 3

Printed in the United States of America.

PREFACE

This book is intended to form the basis of an introductory
course in computing. No particular mathematical background
beyond basic arithmetic is assumed; examples are taken largely
from everyday life. 1In this way, the focus is on programming and
problem solving, rather than on mathematics. It is our strong
conviction that the foundation of computer programming must be
carefully 1laid. Bad habits once begun are hard to change. Even
for those who do not continue to study computer science, an
experience in the systematic analysis of problems from the
statement of "what is to be done" to the final algorithm for
"doing it" can be very helpful in encouraging logical thinking.

The programming 1language presented here is Pascal, a high-
level language that encourages good programming style. The
language Pascal was devised by Niklaus Wirth and his book "Pascal
User Manual and Report"” with Kathleen Jensen contains the
definition of what is called Standard Pascal. One of the great
advantages of Pascal over other high-level languages is that it

is not a language with a very 1large number of 1language
constructs. It is possible because of this to implement it even
on very small computer systems from minicomputers to

microcomputers. This book can be used with any Pascal compiler
that supports Standard Pascal, such as UCSD Pascal and Pascal
6000.

In this book, Standard Pascal is introduced in a series of
subsets that we call PS/1, Ps/2, Ps/3, and so on. The PS stands
for Pascal Subsets. The book is about structured programming and
that is what we hope a student will be learning by following this
step-by-step presentation of Standard Pascal subsets.

Just as a program provides a list of instructions to the
computer to achieve' some well-defined goal, the methodology of
structured programming provides a list of instructions to persons

who write programs to achieve well-defined goals. The goals of

iii

iv Preface

structured programming are to get a programming Jjob done
correctly and in such a form that later modifications can be done
easily. This means that programs must be understood by people
other than their authors.

As each Pascal subset is learned, new possibilities open up.
Even from the first subset PS/1, it is possible to write programs
that do calculations and print. By the time the subset Ps8/5 is
reached, a student has learned how to handle alphabetic
information, as well as to 4o numerical <calculations and
structure the control flow of the program.

structured programming is especially important when working
on larger programs; a detailed discussion of the techniques of
modular programming and top-down design accompanies the
introduction of Pascal subprograms in PS/6.

Many examples in the book are from data processing, and in
PS/8 the ability to handle files and records is introduced.
General concepts of data structures, searching, and sorting fit
well into this important area that touches all our lives.

The book includes examples of scientific calculations and
numerical methods and a chapter comparing various high-level
languages. It ends with a discussion of the operation of a
computer and the translation of a high-level programming language
into machine language.

At all times we have tried to present things in easy to
understand stages, offering a large number of program examples
and exercises to be done by the student. Each chapter has a
summary of the important concepts introduced in it.

The subsets PS/1, PS/2, PS/3, ..., referred to as a group by
the name PS/k, are based on subsets for PL/1 called SP/k designed
by Richard Holt and David Wortman of the University of Toronto.

This book was prepared using a text editing system on a

computer. Each program was tested using a Pascal compiler. The
job of transcribing the authors' pencil scrawls into the computer
was done with great care and patience by Inge Weber. The book

has ‘been class tested. We are indebted to many people but rather
than mentioning a lot of names here we have sprinkled through the
book names of people who have helped us.

The time taken to write a book comes at the expense of other
activities. Since most of the time was in the evenings or
weekends we must end with grateful thanks to our wives Marie and
Patricia.

R.C. Holt

J.N.P. Hume

CONTENTS

1. INTRODUCTION

WHAT IS
WHAT IS
WHAT IS
WHAT IS

t
TO STRUCTURED PROGRAMMING

PROGRAMMING?
STRUCTURED PROGRAMMING?
PASCAL?

PS/k?

WHY LEARN JUST A SUBSET?
CORRECTNESS OF PROGRAMS

SUMMARY

2. THE COMPUTER

PARTS THAT MAKE THE WHOLE
CODED INFORMATION

MEMORY

ARITHMETIC UNIT

CONTROL

UNIT

INPUT AND OUTPUT

PROGRAM
SUMMARY

TRANSLATION

3. PS/1: PROGRAMS THAT CALCULATE AND OUTPUT

CHARACTERS

NUMBERS

CHARACTER STRINGS
EXPRESSIONS
EXAMPLES OF ARITHMETIC EXPRESSIONS

PRINTING

FORMATTING AND PRINTING
THE PROGRAM

CONTROL

CARDS

AN EXAMPLE PROGRAM

SUMMARY

EXERCISES

U E F WK

~I

vi

4.

5.

6.

7.

Contents

PS/2;:

PS/3:

VARIABLES, CONSTANTS, AND ASSIGNMENTS

VARIABLES
DECLARATIONS
ASSIGNMENT STATEMENTS
TRACING EXECUTION
INPUT OF DATA
CONVERSION BETWEEN INTEGER AND REAL
COMMENTS

AN EXAMPLE JOB

LABELING OF OUTPUT

PROGRAM TESTING

COMMON ERRORS IN PROGRAMS

SUMMARY

EXERCISES

CONTROL FLOW

COUNTED LOOPS

CONDITFONS

BOOLEAN VARIABLES
CONDITIONAL LOOPS
READING INPUT

EXAMPLES OF LOOPS
BRANCHES IN CONTROL FLOW
THREE-WAY BRANCHES

CASE STATEMENTS

EXAMPLE IF STATEMENTS
PARAGRAPHING THE PROGRAM
SUMMARY

EXERCISES

STRUCTURING CONTROL FLOW

PS/4:

4

BASIC STRUCTURE OF LOOPS

FLOW CHARTS

PROBLEMS WITH LOOPS

NESTED LOOPS

AN EXAMPLE PROGRAM

LOOPS WITH MULTIPLE CONDITIONS

IF STATEMENTS WITH MULTIPLE CONDITIONS
SUMMARY

EXERCISES

ARRAYS

DECLARATION OF ARRAYS
TWO-DIMENSIONAL ARRAYS

AN EXAMPLE PROGRAM
SUBRANGE TYPES

NAMED TYPES

ARRAYS OF ARRAYS

ARRAYS AS DATA STRUCTURES
OTHER DATA STRUCTURES
SUMMARY

EXERCISES

91

91
93
9y
96
97
97
98

100
101

Contents vii

8. PS/5: ALPHABETIC INFORMATION HANDLING 103
CHARACTER STRINGS 103
READING AND PRINTING CHARACTERS 104
READING AND PRINTING LINES 106
DETECTING END-OF-FILE 107
USING EOF WHEN READING NUMBERS 108
USING STRINGS OF CHARACTERS 110
COMPARISON OF STRINGS FOR RECOGNITION 110
SEQUENCING STRINGS 112
HANDLING ARRAYS OF STRINGS 113
AN EXAMPLE PROGRAM 115
CONVERTING BETWEEN CHARACTERS AND NUMBERS 117
CHAR AS A SCALAR TYPE 118
ENUMERATED TYPES 121
SUMMARY 123
EXERCISES 125

9. STRUCTURING YOUR ATTACK ON THE PROBLEM 129
STEP-BY-STEP REFINEMENT 129
TREE STRUCTURE TO PROBLEM SOLUTION 130
CHOOSING DATA STRUCTURES 131
GROWING THE SOLUTION TREE 131
DEVELOPING AN ALGORITHM 132
THE COMPLETE PROGRAM 134
ASSESSING EFFICIENCY 135
A BETTER ALGORITHM 136
BETTER ALGORITHMS 137
SUMMARY 138
EXERCISES 139

10. THE COMPUTER CAN READ ENGLISH 143
WORD RECOGNITION ‘ 144
WORDS WITH PUNCTUATION 147
WORD STATISTICS 148
READING PASCAL 150
SUMMARY 150
EXERCISES 151

11. PS/6: SUBPROGRAMS 153
PROCEDURES 153
FUNCTIONS 155
NESTING AND SUBPROGRAMS 157
ACTUAL PARAMETERS AND FORMAL PARAMETERS 159
ARRAY VARIABLES AND CONSTANTS

AS ACTUAL PARAMETERS 161
GLOBAL AND LOCAL VARIABLES 162
SUMMARY 163

EXERCISES 166

viii Contents

12. MODULAR PROGRAMMING 169
A PROBLEM IN BUSINESS DATA PROCESSING 169
DIVIDING THE PROGRAM INTO PARTS 171
COMMUNICATION AMONG MODULES 171
WRITING THE MODULES 173
THE COMPLETE PROGRAM 175
USING MODULES 176
MODIFYING A PROGRAM 177
SUMMARY 178
EXERCISES 178

13. SEARCHING AND SORTING 181
LINEAR SEARCH 181
TIME TAKEN FOR SEARCH 183
BINARY SEARCH 183
A PROCEDURE FOR BINARY SEARCH 184
SEARCHING BY ADDRESS CALCULATION 187
SORTING 188
SORTING BY MERGING 188
EFFICIENCY OF SORTING METHODS 189
SUMMARY 190
EXERCISES 191

14. MAKING SURE THE PROGRAM WORKS 193
SOLVING THE RIGHT PROBLEM 193
DEFENSIVE PROGRAMMING 194
ATTITUDE AND WORK HABITS 194
PROVING PROGRAM CORRECTNESS 194
PROGRAMMING STYLE 195
USE OF COMMENTS AND IDENTIFIERS 195
TESTING 197
DEBUGGING 199
SUMMARY ‘ 201
EXERCISES 202

15. P8/7: PILES AND RECORDS 203
RECORDS 203
MOVING RECORDS 204
ARRAYS OF RECORDS 205
INPUT AND OUTPUT OF RECORDS 206
FILES IN SECONDARY MEMORY 208
FILE MAINTENANCE 210
PASCAL TEXT FILES 212
SUMMARY 212
EXERCISES 215

16. DATA STRUCTURES 217
LINKED LISTS 217
INSERTING INTO A LINKED LIST 219
MEMORY MANAGEMENT WITH LISTS 219
PROCEDURE FOR INSERTING INTO A LINKED LIST 220
DELETING FROM A LINKED LIST 223

RECORDS AND NODES 223

Contents ix

STACKS 224
RECURSIVE PROCEDURES 225
QUEUES 226
TREES 228
ADDING TO A TREE 229
DELETING FROM A TREE 230
PRINTING A TREE IN ORDER 231
SUMMARY 232
EXERCISES 233
17. PS/8: POINTERS AND FILE BUFFERS 237
POINTERS 237
MEMORY MANAGEMENT WITH POINTERS 239
DANGLING POINTERS 240
USING POINTERS 241
FILE BUFFERS 242
FILE MERGE USING BUFFERS 243
SUMMARY 245
EXERCISES 246
t
18. SCIENTIFIC CALCULATIONS 247
EVALUATING FORMULAS 248
PREDECLARED FUNCTIONS 249
GRAPHING A FUNCTION 250
A PROCEDURE FOR PLOTTING GRAPHS 252
USING THE GRAPH PROCEDURE 254
FITTING A CURVE TO A SET OF POINTS 255
SOLVING POLYNOMIAL EQUATIONS 256
SOLVING LINEAR EQUATIONS 258
COMPUTING AREAS 258
SUMMARY 259
EXERCISES) 261
19. NUMERICAL METHODS 263
EVALUATION OF A POLYNOMIAL 263
ROUND-OFF ERRORS 265
LOSS OF SIGNIFICANT FIGURES 265
EVALUATION OF INFINITE SERIES 266
ROOT FINDING 269
PROCEDURE FOR ROOT FINDING 270
NUMERICAL INTEGRATION 271
LINEAR EQUATIONS USING ARRAYS 273
LEAST SQUARES APPROXIMATION 274
MATHEMATICAL SOFTWARE 275
SUMMARY 276
EXERCISES 278
i
20. PROGRAMMING IN OTHER LANGUAGES 281
PL/1 AND FORTRAN 77 282
ALGOL 60 286

COBOL 287

x Contents

SUMMARY
EXERCISES

i
21. ASSEMBLY LANGUAGE AND MACHINE LANGUAGE

MACHINE INSTRUCTIONS

INSTRUCTIONS FOR A VERY SIMPLE COMPUTER
TRANSLATION OF A PASCAL PROGRAM
MNEMONIC NAMES AND MACHINE LANGUAGE
STORING MACHINE INSTRUCTIONS IN WORDS

A COMPLETE MACHINE LANGUAGE PROGRAM
SIMULATING A COMPUTER

USES OF SIMULATORS

SUMMARY

EXERCISES

22. PROGRAMMING LANGUAGE COMPILERS

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

A SIMPLE HIGH~LEVEL LANGUAGE
SYNTAX RULES

USING SYNTAX RULES TO PRODUCE A PROGRAM
ACTIONS OF THE COMPILER
SCANNING WORDS AND CHARACTERS
COMPILING ASSIGNMENT STATEMENTS
COMPILING WRITELN STATEMENTS
COMPILING WHILE AND END

THE COMPILER

RUNNING THE COMPILED PROGRAM
SUMMARY

EXERCISES

1: SPECIFICATIONS FOR THE PS/k LANGUAGE
/
2: SYNTAX OF Ps/k

3: PREDECLARED PASCAL FUNCTIONS

4: SUMMARY OF PASCAL INPUT/OUTPUT FEATURES

5: COLLATING SEQUENCE

6: SYNTAX DIAGRAMS FOR FULL PASCAL

289
290

291

291
293
294
294
296
297
299
301
302
303

305

305
306
308
3N
313
314
315
316
318
323
325
326

328

349

353

355

359

3e3

367

Chapter 1
INTRODUCTION TO STRUCTURED
PROGRAMMING

We hope that it is no secret that the book has to do with
computers and particularly with the use of computers rather than
their design or construction. To use computers you must learn
how to speak their language or a language that they can
understand. We do not actually speak to computers yet, although
we may some day; we write messages to them. The reason we write
these messages is to instruct the computer about some work we
would like it to do for us. And that brings us to programming.

WHAT IS PROGRAMMING?

Programming is writing instructions for a computer in a
language that it can understand so that it.can do something for
you. You will be learning to write programs in one particular
programming language called Pascal. When these instructions are
entered into a computer directly by means of a keyboard input
terminal or are put on to some medium that a computer can read
such as punched cards and then fed into the machine, they go into
the part of the computer called its memory and are recorded there
for as 1long as they are needed. The instructions could then be
executed if they were in the language the computer wunderstands
directly, the 1language called machine language. If they are in
another language such as Pascal they must first be translated,
and a program in machine language compiled from the original or
source program. After compilation the program can be executed.

Computers can really only do a very small number of different
basic things. For example, an instruction which says, STAND ON
YOUR HEAD, will get you nowhere. The repertoire of instructions
that any computer understands usually includes the ability to
move numbers frolm one place to another in its memory, to add,
subtract, multiply, and divide. They can, in short, do all kinds

2 Introduction to Structured Programming

of arithmetic calculations and they can do these operations at
rategs of up to a million a second. Computers are extremely fast
calculating machines. But they can do more; they can also handle
alphabetic information, both moving it around in their memory and
comparing different pieces of information to see if they are the
same. To include both numbers and alphabetic information we say
that computers are data processors or more generally information

rocessors.

When we write programs we write a sequence of instructions
that we want executed one after another. But you can see that
the computer could execute our programs very rapidly if each
instruction were executed only once. A program of a thousand
instructions might take only a thousandth of a second. One of
the instructions we can include in our programs is an instruction
which causes the use of other instructions to be repeated over
and over. 1In this way the computer is capable of repetitious
work; it tirelessly executes the same set of instructions again
and again. Naturally the data that it is operating on must
change with each repetition or it would accomplish nothing. .

Perhaps you have heard also that computers can make
decisions. In a sense they can. These so-called decisions are
fairly simple. The instructions read something like this:

IF JOHN IS OVER 16 THEN PLACE HIM ON THE HOCKEY TEAM
ELSE PLACE HIM ON THE SOCCER TEAM

Depending on the condition of John's age, the computer could
place his name on one or other of two different sports teams. It
can decide which one if you tell it the decision criterion, in
our example being over sixteen or not.

Perhaps these first few hints will give you a clue to what
programming is about.
/

WHAT IS STRUCTURED PROGRAMMING?

Certain phrases get to be popular at certain times; they are
fashionable. The phrase, "structured programming” is one that
has become fashionable. It is used to describe both a number of
techniques for writing programs as well as a more general
methodology. Just as programs provide a list of instructions to
the computer to achieve some well-defined goal, the methodology
of sgtructured programming provides a 1list of instructions to
persons who write programs to achieve some well-defined goals.
The goals of structured programming are, first, to get the job
done. This deals with how to get the job done and how to get it
done correctly. The second goal is concerned with having it done
so that other people can see how it is done, both for their
education and in case these other people later have to make
changes in the original programs.

What is Pascal? 3

Computer programs can be very simple and straightforward but
many applications require that very large programs be written.
The very size of these programs makes them complicated and
difficult to understand. But if they are well-structured, then
the complexity can be controlled. Controlling complexity can be
accomplished in many different ways and all of these are of
interest in the cause of structured programming. The fact that
structured programming is the "new philosophy"” encourages us to
keep track of everything that will help us to be better
programmers. We will be cataloguing many of the elements of
structured programming as we go along, but first we must look at
the particular programming language you will learn.

WHAT IS PASCAL?

Pascal is a language that has been developed to be
independent of the particular computer on which it is run and
oriented to the problems that persons might want done. We say
that Pascal is a high-level language because it was designed to
be relatively easy to leatn. As a problem-oriented language it
is concerned with problems of numerical calculations such as
occur in scientific and engineering applications as well as with
alphabetic information handling required by business and
humanities applications.

Pascal 1is a reasonably extensive language, so that although
each part is easy to learn, it requires considerable study to
master. Many different computer installations, ranging in size
from large computers to microcomputers, have the facilities to
accept programs written in Pascal. This means that they have a
Pascal compiler that will translate programs written in Pascal
into the language of the particular machine that they have. Also
many programs have already been written in Pascal; in some
installations a standard 1language is adopted, and Pascal is
sometimes that standard language.

It has been the experience over the past years that a high-
level language lasts much longer than machine languages, which
change every five years or so. This 1is because once an
investment has been made in programs for a range of applications,
an installation does not want to have to reprogram when a new
computer is acquired. What is needed is a new compiler for the
high-level language and all the old programs can be reused.

Because of the 1long 1life-span of programs in high-level
languages it becomes more and more important that they can be
adapted to changes in the application rather than completely
reconstructed.

A high-level language has the advantage that well-constructed
and well-documented programs in the language can be readily
modified. Our aim is to teach you how to write such programs.

4 Introduction to Structured Programming

To start your learning of Pascal we will study subsets of the
full Pascal language called PS/k.

WHAT IS PS/k?

The PS in the name PS/k stands for "Pascal Subset". There
really is a series of subsets beginning at PS/1, then PS/2, and
going on up. The first subset contains a small number of the

language features of Pascal, but enough so that you can actually
write a complete program and try it out on a computer right away.
The next subset, PS/2, contains all of PS/1 as well as some
additional features that enlarge your possibilities. Each subset
is nested inside the next higher one so that you gradually build
a larger and larger vocabulary in the Pascal language. At each
stage, as the special features of a new subset are introduced,
examples are worked out to explore the increased power that is
available.

THE PS/k SUBSETS

In a sense, the step-by-step approach to learning Pascal is
structured and reflects the attitude to programming that we hope
you learn.

/

There 1is no substitute for practice in learning to program,
so as soon as possible and as often as possible, submit your
knowledge to the test by creating your own programs.

WHY LEARN JUST A SUBSET?

The Pascal language is reasonably extensive; some features
are only used rarely or by a few programmers. If you know
exactly what you are doing, then these features may provide a
faster way to program; otherwise they are better 1left to the
experts. A beginner cannot really use all the features of the
complete Pascal language and will get lost in the complexity of
the language description. With a small subset it is much easier
to pick up the language and then get on with the real job of
learning programming.

Correctness of Programs 5

But perhaps most important, the PS/k language has been
selected from the Pascal language so as to provide the basic
features that encourage the user to produce well-structured
programs. This is why it is so appropriate as a means of
learning structured programming.

CORRECTNESS OF PROGRAMS

One of the maddening things about computers is that they do
exactly what you tell them to do rather than what you want them
to do. To get correct results your program has to be correct.
When an answer is printed out by a computer you must know whether
or not it is correct. You cannot assume, as people often do,
that because it was given by a computer it must be right. It is
the right answer for the particular program and data you provided
because computers now are really very reliable and rarely make
mistakes. But is your program correct? Are your input data
correct?

One way of checking whether any particular answer is correct
is to get the answer by some other means and compare it with the
printed answer. This means that you must work out the answer by
hand, perhaps using a hand calculator to help you. When you do
work by hand you probably do not concentrate on exactly how you
are getting the answer but you know you are correct (assuming you
do not make foolish errors). But this seems rather pointless.
You wanted the computer to do some work for you to save you the
effort and now you must do the work anyway to test whether your
computer program is correct. Where is the benefit of all this?
The labor saving comes when you get the computer to use your
program to work out a similar problem for you. For example, a
program to compute telephone bills can be checked for correctness
by comparing the results with hand computation for a number of
representative customers and then it can.be used on millions of
others without detailed checking. What we are checking is the
method of the calculation.

We must be sure that our representative sample of test cases
includes all the various exceptional circumstances that can occur
in practice, and this is a great difficulty. Suppose that there
were five different things that could be exceptional about a
telephone customer. A single customer might have any number of
exceptional features simultaneously. So the number of different
types of customers might be 32, ranging from those with no
exceptional features to those with all five. To test all these
combinations takes a lot of time, so usually, we test only a few
of the combinations and hope all is well.

Because exhaustive testing of all possible cases to be
handled by a program is too large a job, many programs are not
thoroughly tested and ultimately give incorrect results when an
unusual combination of circumstances is encountered in practice.
You must try to test your programs as well as possible and at the

6 Introduction to Structured Programming

same time realize that with large programs the job becomes very
difficult. This has led many computer scientists to advocate the
need to prove programs correct by various techniques other than
exhaustive testing. These techniques rely partly on reading and
studying the program to make sure it directs the computer to do
the right calculation. Certainly the well-structured program
will be easier to prove correct.

CHAPTER 1 SUMMARY

The purpose of this book 1is to introduce computer
programming. We have begun in this chapter by presenting the
following programming terminology.

Program (or computer program) - a list of instructions for a
computer to follow. We say the computer "executes"
instructions.

Programming - writing instructions telling a computer to

perform certain data manipulations.

Programming language - used to direct the computer to do work

for us.

Pascal - a popular programming language. PL/1, Fortran,
Cobol, Basic and APL are some other popular programming
languages.

PS/k - the programming language used in this book. PS/k is a
subset of the Pascal programming language, meaning that
every PS/k program is also a Pascal program, but some
Pascal programs are not PS/k programs. PS/k is itself
composed of subsets PS/1, Pﬁ/z and so on. This book
teaches PS/1, then PS/2, and so on up to PS/8.

High-level language - a programming language that is designed
to be convenient for writing programs. Pascal is a
high-level language.

Structured programming - a method of programming that helps
us write correct programs that can be understood by
others. The PS/k language has been designed to

encourage structured programming. This book teaches a
structured approach to programming.

Correctness of programs - the validity of programs should be
checkead. This can be attempted by comparing test
results produced by the computer with the results of
calculations made in another way, e.g., by using a hand
calculator. Although the ideal 1is to try to prove a
program correct by mathematical means, it is often
extremely helpful to read and study the program to see
that your intentions will be carried out.

