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'Preface to English Edi_tion

This is a translation of Yuugen-youso-hou To Sono Ouyou, written in
Japanese. The translation was done by the author of the original edition: -
Since the original edition was intended to present the fundamentals of.
the finite element method, and fo avoid including material that might be
out-of date in several years, the original edition has been translated faith-’
fully into English without changing the contents, except that books [7],
_[8],and [10] on the reference list, which were written in Japanese, have
been replaced by equivalent books written in English.

1 have attempted to ‘correct errors in the original edition and wish'to

- thank those who have pointed out such errors, in particular, Shinsuke

Suga. Thanks are also due to Atsuko Yamamoto and Tami Nakata for
typing the manuscript. :

Masatake Mori
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~ The purpose of this book is to introduce the finite element method from
the standpoint of applied mathematics. While this technique is indispen- .
sable in the field of structural mechanics, it is also a powerful tool for the
numerical solution of partial differential equations related to various nat- .
.ural phenomena. Actually it has been a long time since the finite element .

_method established itself in the natural sciences and in engineering. Ac-
cordingly, a variety of books about ‘this method have been published.
There are two conventional ways-to approach the finite element
method—from structural mechanics and from the solutlon of partial dif-
ferential equatlons Consequently,.there are also two standpoints’ when
writing a book on this subject. I intended to write this book from the
standpoint of solvmg partial differential equations. Furthermore, books
on the finite element method may be classified into two groups—books
about techniques and books about mathematics. Thns book be]ongs in
the latter group. .

Although in practice the finite element method is appliéd to problems
in two or three space dimensions, this book starts with applications to
problems in one dimension in order to provide an easily understood
description of the basic idea of the method, and then presents the mathe-
matical background and error analysis. The main part of the book
describes the application of the finite element method to partial differen-
tial equations in two dimensions, including time-dependent equations
such- as the heat equation and the wave equation. Chapters 3, 6, 7, and
14 are deveted mainly to error analysis, and the description is more

ix -
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mathematical, so that these chapters may be omitted on a first reading if
the reader is more interested in the techniques of the ﬁmte element
method."

In practice, in the final stage of the ﬁmte element method a system of
linear equations with a large, sparse coefficient matrix of order, say, sev-
eral tens of thousands must be olved, or an eigenvalue problem with re-
spect to such a matrix must be solved. Therefore, in order to master"
thoroughly the techniques of the finite element method numerical analy-
sis of such large-scale matrices should be learned. However, the
numerical analysis of linear algebra is itself a large problem, and to
describe it is beyond the scope of this book, hence only 'bnef comments$
on this subject are included.

The amount of work published in the field of the ﬁmte element
method is enormous, and it is impossible to describe all of it in a single
book. Therefore the material presented is not exhaustive but is limited to
what is necessary for readers studying this procedure for the first time.
In particular, in Chap. 13, methods but not theories for solving nonlinear
problems are presented. I hope that those who become interested in this
method after reading the book will expand their knowledge by consulting
* the references listed at the end.

) I intended to write this book so that it could be read" w1thout referring
to other books or papers. In order to learn about the finite element
- method knowledge of the variational principle is necessary. And in order
‘to understand it mathematically a knowledge of functional analysis is
required. However, this book does not assume this specialized know!-
edge. On the contrary, the reader will be able to.learn about the varia-
. tional principle and functional analysis in a practical way using the finite
element method. Although this book belongs to the field of matheématics,
1 have avoided descriptions that are too-abstract and tried to write so
that the reader can understand the mathematical theorems intuitively. In
this way. I hoped to bridge the gap between the theory and the practice .
of the finite element method. Furthermore, in the theoretical discussions
1 have tried to explain modern ideas using classical terms so that physi-
cists and engineers who are not familiar with the technical terms of mod-
-ern mathematics.can read the book without difficulty. 1 hope that this
book will be useful not only as an introductory text for students studying
the finite element method for the first time but also in satisfying the
mathemamal interests of scientists and engineers who have used the ﬁ-
“nite element method as a tool for solving problems.
Special thanks are due to Professor Hiroshi Hujita who aroused my
“interest in the mathematical aspect of the finite element method. 1 also
thank my many colleagues, especially Makoto Natori, Masaaki Naka-
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mura, and Masaaki Sugihara, who read the manusCript.' carefully and-
" provided many ‘suggestions. Finally, thanks are due to Mr. Hisao
Miyauchi of Iwanami Shoten._ . :

Masatake Mori
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The Basic Idea of the Finjte
Element Method

1.1 A Two-Point Bouﬁdary Value Problem

~ In order to sketch the basic idea of the finite element method (FEM) we
first consider a two-point boundary ‘value problem in onvimension:
' d ( du .

= s ‘[)m>+qll=f(.\') . 0 <xA< 1. . (1.1.1)

a0y =u(1) =0 - (1.1.2)

where p and g are given positive constants and f( x) is a given. function.
. The boundary condition (1.1.2), which prescribes the values at both end.
_-points to vanish, is a 1yp1cal example of a homogeneous Dirichlet condi- .
tion. :
Since (l,l.l) is a linear differential equation with constant coefficients
having an inhomogeneous term. it is easy to solve for « in a closed form:
However, we consider here an approximate solution in terms of a Fourier
series with N terms as follows in order to explain the basic idea of the
FEM: : .
N
:1\(\:)—2 a; sin jmx - .E (1.1.3)
j=1 . ’
The terms of cos jmx that may appear in a general Fourier scries are dis-
carded at the beginning in the present series so that it satisfies the bound-
ary condition (1.1.2). In order to obtain the values of the qoefﬁcients a;we
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use a conventional procedure that is, we substitute uy in (1.1. 3).for uin
(1.1.1), multiply_both sides by sin kx, and integrate over (0,1). Then we
have

N a 21 N . 1 '
2 a,-pUn-)zf sin k7x sin jmx dx + E a,-qf sin kmx sin jmx dx.
= o : = o
=f f(x) sin k7x dx o (1.1.4)
Jo . ) .

From the orthogona]ity of {sinjmx} over (0,1),
e k=]

1 . ‘
fosm kmx smjm"dx={0 [y (1.1‘.5)~

“we have '
Wp—ﬁfﬂx)sm kmx dx E (1.1.6)

' Therefore if we substltute this expression into (1.1.3) we eventually ob-
tain an approximate solution to the problem (1.1.1) and (1.1.2).

1.2. A Solution in Terms of a Generdlized Fourier Series -
We can generalize the procedure stated above in the following way. First
we choose a set of linearly independent functions

¢i(x) i=1,2,...., N ‘ C(1.2.0)

and construct an approximate solution to the boundary value problem
(1.1. l) and (1.1.2) in terms of a hnear combination of these functions: -

u(x) = 3 ases(x) S22
=1 .
We assume here that each ¢;(x) satisfies .
o Ce0)=g()=0 (1.2.3)
This assumptioﬁ torces uy(x) to satisfy the boundary condition
uy (0) = uy(1) =0 - . (1.2.9)

corresponding to (1.1.2) from the begihning'. Substituting uy(x) for u, in
(1.1.1), multiplying both sides by ¢« (x), and integrating over (0,1), we
have

’ N . 1 dZ
- }_‘,_GJP fo‘iok_ X) —5—=5— ‘P’

i=1

2 dx+ 2 aa [ er(x)es(x) dx -
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=f1f(-r)<pk(.’r) dx . (1.2.5)_‘

Integrating {he first term by parts using the boundary condition (1.2. 3)
results in

N[ [V dee deg
Z { a‘};" dﬁ‘ d\-’r-qf Ok Oi dX} f F(x)e
‘ ' k=12, .. N (1.2.6)

- The set of functions _
¢i(x) =sinjmx  j=1,2,., N (1.2.7):

mentioned above has an orthogonality in the sénse of (1.1.5) over (0,1). In
addition,. their derivatives

dgi(x)

P2l —jmcosjmx j=1.2...N (1.2:8)

also have the same type of orthogonality. Therefore only the term with j=
k on the left side of (1.2.6) remains without vanishing, and the coefficients
{a;} can be obtained by simple algebraic division. An arbitrarily given set
of functions {¢;(x)}, on the other hand, usually has no orthogonality.
Even if these functions {¢;(x)} satisfy an orthogonality requirement -by
themselves, their derivatives {d¢;(x)/dx} in general will not. Also, if p or
q is a function of x, the orthogonality of the functions {d>,( x) } will gain
nothing at all. :
The system of equations (1.2.6), which is obtained on the basis of
{d;(x)}, is a system of simultaneous linear equations with N unknowns
{a;}. If the coefficient ma*rix of (1.2.6) is not singular we can obtain a solu-
tion by solving this system of equations for-a;, j = 1, 2,..., N. Each
member of the set of functions given by (1.2.1) is called a basis function )
and the method for obtaining a solution in the form of a Fourier series in a -
wider sense as shown above is called Galerkin’s method. Typical basis
functions that have been conventionally used in applied analysis are trigo-
nometric functions, simple monomials, and orthogonal polynomials.

1.3 Piecewise Linear Basis Functions

_Consider a pyramid-shaped Set of basis functions ¢ (x) as shown in Fig.
1.1. In order to define this set of functions we first divide the interval
_[0,1] into n subintervals with an equal mesh size.

{1.3.1)

h=l
n
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#,(x)

i
I
]
i
. Al
0 o1 %j Ty 1
-.-H. . N .
: : d@,(x)
1t dx
h 1 |
gt
N LA .
0 ~1/~1i1.: ix_,ﬂ_ ’ 1
ok : .
| | Fig. 1.1 Piecewise linear basis func-
L 7 tion and its derivative.

Then, in each subintefval bounded by the nodes

xe=kh  k=0,1,2....n (1.3.2)
we define
0 0 <x < x4,
%1 ey =X <xp
or(x) =1 _ . ' A
ﬁ’%ﬁ . %= X < Xiii
L 0. Xpor Sx =1 (1.33)

where qSo x) and d) ) are defined by the right half and left half of (1.3.3),

respectively. This type of basis function is called a piecewise linear basis
function. One of the remarkable characteristics of this function is that its
support is extremely localized to a-small domain. Such a function is some-,
times called a local basis function. The fact that the support of the basis
function is localized is, as will be shown later significant from the stand-
point of numerical computatlon

The derivatives of the basis function (1.3.3) are

0  0=x<ux,
1 ' L <
T Xp-1 =X < Xp -
dec _ ] h |
a T—l Xr = x <x
; n k= | ket
. 0 .

Xprp =X =1 (1.3.4)

as shown in Fig. 1.1.
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1.4 Construction of an Approximate Equation - -

We write here an approximate S-olution of (1.1.1) and (1.1.2) in terms of a
linear combination of {¢;(x)}:

) Con-1 . . . )
() =S a,3(x) B RY
3 s Jj=1

Because of the boundary condition (1.1.2) we have omitted the terms cor-
responding to j = 0 and j = n from the beginning. It is evident that the
function given by (1.4.1) consists of polygonal lines as shown in Fig. 1.2.
A function of this shape is called a piecewise linear ponnomzal The ex-
pansion (1. 4 1) satisfies

sl =a; : . (1.4.2)

“at the node x = xj; that is, the coefficient a; of the expansion is equal to the
valué of 4,(x) at the node which is qunte convenient for practlcal pur-
poses. ’

Now when we try to apply the procedure stated in‘the prevnous sec~
tion starting with the expansion (1.4.1), we encounter an unfavorable situ-
ation. That is, although i,(x) can be differentiated once, it cannot be dif-
ferentiated twice. The first derivative of ‘iz, (x) is discontinuous as seen
from (1.3.4), and when'we try to differentiate further, the Dirac &function” .-
appears at every node in the second derivative of ¢;( x) It lS ewdent
that this is not consistent with (1.1.1). . h

In order to avoid this inconsistency we consider an equation of the fol-
lowing form instead of (1.1.1):

R LT
fo (p I dx +qu,,‘p,) dx Lfgo, dx:  -j - 1,2,:. .n—1
‘ . : : (1.4.3)

That is, we.start with (1.2.6) which is obtamed by multlplymg (1.1.1) by
¢; followed by integration by parts. ‘

We substitute (1.4.1) for &, on the left-hand side of (1. 4 3) and carry
out termwise integration using (1.3.3) or (1.3.4). Then corresponding to
.each integral we have

Flg 1.2 Piecewise linear polynomxal
0o ' 1 da(x).
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(0 J<k-—1

1 . 7y — ,._.
Eh Ji=k—1

l ) ." 2 . .

f @ (X)@;(x) dx = §h Jj=k

0
l./1 j=k+ 1
6 47
0 i>k+1 - (1449

(0 j<k—1

— j=k=1
‘doc doi y ) 20
o dx -dx ¥ 1 7 J=k
‘ I L ,
L 0 >k+1 (1.4.5)

* Substitution of these values mto (1.2.6) leads to the following system
_ of linear equations with respect to {a;}:

.(K+M)a=f ) , (1.4.6)
where '
a=| © (1.4.7)
ar;——l
and, if we define
1 ) N
f,=j f{x)@;(x) dx (1.4.8)
0
then
fi
;f= »ﬁ' (1.4.9)
i

. Kand M are (n— 1) X .( n — 1) matrices déﬁned as
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2 =1
—1-2-1, 0 \. |
k=2 Lo (1.4.10)
0 25 ‘
1 2
41
141 0
4 |
m=a LA ] (1.4.11) .
6 A " e :
0 .41

1 4

In accordance with the traditional terminology of structural mechanics K
and M are called the stiffness matrix and the mass matrix, respectively.

1.5 Piéperties of Matrices and the Finite Element Soilutiovn '

One of the most remarkable features of the matrices mentioned above is
that they are rridiagonal. A tridiagonal matrix is a matrix whose entries
vanish except on the diagonal and on the subdiagonal. In the first example
(1.1.3), in which trigonometric functions were used as basis functions
" that were orthogonal to each other along with their derivatives, the matri-
ces K and M were both diagonal. On the other hand, in the present ex-
ample in which the basis functions (1.3.3) are used, the matrices are not
completely diagonal but nearly diagonal, that is, tridiagonal. It is evident
that the reason why they are nearly diagonal is that the support of the
basis functions (1.3.3) is localized in a very small domain. Generally .
speaking, if functions whose support is localized in a small domain are
used as basis functions, the nonzero entries of the coefficient matrix of the
system of linear equations will be concentrated close to the diagonal, al-
- though not completely on the diagonal. As will be seen later, this matrix
pattern leads to highly efficient numencal computation and substantial
saving of computer memory. .

The coefficient matrices K and M of Ihe system of linear equations
(1.4.6) are symmetric. In addition, K is positive deﬁmze in the present
case, because for any vector

by

b= bzz 0 B (1.5.1)

i bn—l
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we. have

L dgNt :
T . 1 i
bTKb = Lp(gl b, dx) dx >0 (1.5.2)

since p is assumed to be positive.. Here b” is the transposed vector of b.

.The matrix M is also shown to be positive definite in the same way. When
p or q is a function of x, K and M also become positive definite provided
thatp( x}>0and g(x) >0.IfK and M are positive definite, then K + M
is also positive definite, so that (1.4.6) can be solved for {g;}. Then; if we
substitute {a;} into+(1.4.1), we have an dpproximate solution i,(x). This
solution is just the finite element solution, which is the main topic of this
book. It will become clear in Chap. 3 in what sense it is an approximation
to.an exact solution of the. problem.

Although the example stated above is a 51mpJe model problem in ane
dimension, the same idea applies directly to problems in two or three
dimensions. For example, in a two-dimensional problem, we divide the
given domain into small triangles.and choose piecewise polynomial basis
“functions each of which vanishes except in a small number of triangles ad-
jacent to each other. Then we construct an approximate solution in terms
of a .linear combination' of these basis functnons and -apply Galerkm S
‘method.

The method stated above in which we dlvxde the whole domain into
subdomains, for-example, triangles with (not an .infinitely small but) a
finite-area, choose basis functions such that each of them does not vanish
only in the near nelghborhood of a particular node, construct .1 approxi-
‘mate solution to the given problem in terms of a linear combination of
piecewise polynomials, and -apply the Galerkin method, is generically
called the finite element method.(FEM).

In the FEM we usually must solve a large system of linear equations
such as (1.4.6). For this reason no one thought of applying the FEM as a
powerful tool for solving practical problems until high-speed computers
with large storage capacities became available. .



