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An IMM architecture for track fusion
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ABSTRACT

A numeric solution for the fusion of multiple tracks produced from an arbitrary number of asynchronous
measurements has been recently developed. This track fusion solution is a weighted sum of the values associated
with the previous fused estimate and the multiple individual estimates. This Optimal Asynchronous Track Fusion
Algorithm (OATFA) has properties that are identical to the Kalman filter. However, the deficiencies of the Kalman
filter when tracking maneuvering targets are also exhibited by the OATFA but can be overcome with the use of
the Interacting Multiple Model (IMM) algorithm. Consequently, it should be possible to replace the Kalman filter
commonly employed in a conventional IMM algorithm with the OATFA to form the IMM-OATFA. The IMM-OATFA
will be developed and simulation results will be used to compare its performance with a conventional IMM tracker.

Keywords: Track fusion, IMM algorithm, Kalman filter, Asynchronous, Optimal, Feedback

1. INTRODUCTION

An analytic solution for the fusion of track estimates produced from two asynchronous measurements has been
recently developed [1-3]. The fusion process can occur at any time in the interval between the arrival of the final
(i.e., second) measurement of a fusion interval and the next measurement (i.e., the first measurement of the next
fusion interval). The track fusion solution was stipulated to be a weighted sum of the values associated with the
previous fused estimate and the two individual estimates. The matrix weights are the unknowns for which a solution
was formulated. Even though this technique was a breakthrough, it is restricted to the fusing of only two estimates.

A numeric solution to this problem with an arbitrary number of asynchronous measurements is provided by
the Optimal Asynchronous Track Fusion Algorithm (OATFA) with feedback [4]. Two properties of the OATFA are
identical to those of the Kalman filter. First, the OATFA solution is optimal when the dynamics of the target match
those employed in the fusion model. Second, the OATFA uses the previous fused state estimate as feedback when
computing a new state estimate. The OATFA can address several critical issues [4]. Unlike the Kalman filter, a state
estimate need not be computed as soon as a measurement arrives. The measurement can be processed at any time
before the end of the fusion interval. The data can be buffered and processed at a convenient time. Thus, the OATFA
can greatly reduce the adverse effects of latent data and lessen peak processing requirements. The deficiencies of the
Kalman filter when tracking maneuvering targets are also exhibited by the OATFA but can be overcome with the
use of a multiple model tracking approach such as the Interacting Multiple Model (IMM) algorithm [5,6].

G.A.W.: watsonga@nswc.navy.mil, phone: (540) 653-7378, fax: (540) 653-7775
T.R.R.: ricetr@nswc.navy.mil, phone: (540) 653-6466, fax: (540) 653-7775
A.T.A.: aalouani@tntech.edu, phone: (931) 372-3383, fax: (931) 372-3436
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The IMM algorithm uses multiple models that interact through state mixing to track a target through an arbitrary
maneuver. The state estimates are mixed according to their model probabilities and model switching probabilities.
The output estimate is a probabilistic sum of the individual filter estimates and represents the relative performance
of each model. The IMM algorithm provides a flexible method for tracking maneuvering targets and is considered
a nearly-consistent estimator since its output error covariance reflects the actual tracking performance. The IMM
provides more accurate state estimates when compared to traditional methods and the error covariance can be reliably
employed for adjusting the tracking parameters, making system decisions, and performing resource management [5-
8]. Consequently, it should be possible to replace the Kalman filter commonly employed in a conventional IMM
tracker with the OATFA to form the IMM-OATFA. The purpose of this paper is to present and discuss the feasibility
of the IMM-OATFA. Simulation results will be employed to compare the performance of the IMM-OATFA and a
conventional IMM tracker.

The paper is organized as follows. Section 2 presents background material and Section 3 outlines the IMM
algorithm. Sections 4 and 5 describe the OATFA and IMM-OATFA respectively while Section 6 presents the
simulation results. Concluding remarks are provided in Section 7.

2. BACKGROUND

The conventional discrete-time model for target tracking is typically a linear (or linearized) stochastic system
given by
Xe=¢f 1 Xem1 +WE,  and Zr=H: X +Vi (2.1)

where W_, is a process noise vector, Vi is a measurement error vector, Xy is a state vector, Z; is a measurement
vector, and

E[Vi.Vil] = 8;;Rs, (2.2)

E[W:.-‘.—l (W:;—I)T] =85QF . (2.3)
te

Wi, = ¢+ GW (1)dr (24)
te—1
th

Q= [ #Gan)(e6) ar (25)

with d;; being the Kronecker delta function and E[-] denoting the expectation value. The Kalman filter algorithm is
commonly used to estimate the state and error covariance of the system from the measurements. The equations for
the Kalman filter are outlined as follows.

Time Update:

T
Xije—1 =$5_1 Xe-1jk-1 Pepe—1 = f_1 Pe-1je—1 ($5-1) " + Q5 (2.6)
Measurement Update:
Xk =Xgje—1 + K Zg Py = [I — Ki Hi] P (2.7)
with _
Zx=Zx — HiXaper = Zk = Zae—r,  Ki = Pup1 H{Si', Sk = HiPe1 Hf + Ry (2.8)

where Xj;|; denotes the state estimate for time i given measurements through time j, and P;; denotes the
corresponding error covariance. An extended Kalman filter is employed in this paper since target measurements
of range, bearing, and/or elevation are a nonlinear function of the state. For the extended Kalman filter, the
measurement update is modified to reflect the nonlinear relation between the state and measurement according to

Zy = Zg — hx(Xyjp—1) (2.9)
where hi(Xgjk—1) is the expected measurement. The Hy(Xgx—1) is computed as the gradient of hx with respect

to Xi. The extended Kalman filter readily accommodates track updates with measurements from a multitude of
dissimilar sensors [5,6,8].
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Figure 3.1 IMM Algorithm for Two Models
3. IMM ALGORITHM

The IMM algorithm consists of a filter for each model, a model probability evaluator, an estimate mixer at the
input of the filters, and an estimate combiner at the output of the filters. A flow diagram of an IMM a,lgorithm with
two models is given in Fig. 3.1, where X, is the output state estimate based on both models, X k & is the state
estimate for time k based on model j, Ly is the vector of model likelihoods, and u is the vector of model probabilities.
The mlxer uses the model probabilities and the model switching probabilities to compute a mixed estimate for éach
filter, X% k—1[k—1" Each filter uses a mixed estimate and a measurement, Z;, to compute a new estimate and a likelihood
for the model within the filter. The likelihoods, prior model probabilities, and the model switching probabilities are
then used to compute new model probabilities. The output state estimate is then computed with the new state
estimates and their model probabilities. The IMM algorithm for tracking with NV models is outlined in the following
5 steps. A derivation and detailed explanation of the IMM algorithm are given in [9)].

Step 1: Mixing of State Estimates

The filtering process starts with a priori state estimates Xl];—1|k—1’ state error covariances Plf~1| #—1» and the

associated probabilities “171 for each model. The mixed state estimate for model j at time k, M ,ﬂ , is computed as

> ¢l 1lk=1 Z“k 1E—1Xk—1]k—1 3.1)
where
i 1 ; ) _ ;
I»‘l‘iuk__l = E—jpij#k—n with G = Zpijﬂk—l . (3:2)

and p;; is the probability of switching from model i to model j. The mixed error covariance for M, ,g is computed as

N

0j i|j i i 03 i i T

Pk 1{k—1 Zy’killk—l [PI:~III=-1 + (Xk~1|k~1 - Xk1~1|k—1) (Xk—llk-1 - XI(:J»HI:—I) ] (3.3)
i=1
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Step 2: Model-Conditioned Updates

The Kalman filtering equations provide the model-conditioned updates.
Step 3: Model Likelihood Computations

The likelihood of M}, L1, is given by

: 1 St e S
L = ———exp[ - 0.5(Z])"(s]) " Z{] (3.4)
jorsi]

Step 4: Model Probabilities Update

Each model probability, uj’;, is updated as
i Lojo i
s = szcj, where c¢= E Lic; (3.5)

Step 5: Combination of State Estimates

The state estimate and error covariance for the IMM algorithm output, Xyx and Pyx, are given by

N N
Xie =Y piXip and  Py=) pi [Piu + (X — Xoe) (Xipe — Xk|k)T] (3.6)

i=1 =1

4. OPTIMAL ASYNCHRONOUS TRACK FUSION ALGORITHM

The OATFA is presented in this section. The OATFA employs a feedback architecture to optimally solve the
asynchronous track fusion problem. A flowchart of the OATFA is presented in Fig. 4.1, where k; is the time to
perform the fusion operation, X i, is the fused state estimate at ky, Zj, is the sensor measurement at time k;, and
Xk, |k; is the state estimate based on Zi, and the previously fused estimate X ;—1jk;—1- The OATFA is outlined in
the following 4 steps. A derivation and detailed explanation and implementation of the OATFA are given in [1,3,4].



4.1. Formulation of the Fused State Estimate

For the feedback process, the fused state estimate at time k computed from n state estimates in the time interval
k—1tok, X,{I(k"), is written as

n n n . n
X[ =3 LiXi e, =Y Ttk Xh e = 3 TXi, = ToX],_, + Y TiXiy, (4.1.)
=0 i=0 1=0 i=1

where X0 = X[ . ,, ¢, = #f_,, and XP, = X{, . The fused state estimate at time k — 1 is X/ In

k—1{k—1"
the development, fusion estimates occur at time k and individual state estimates occur at time k;.

By employing Egs. (2.1), (2.6), and (2.7), state estimate 7« when feedback is considered, X,‘;_,Ik__, can be written

as
Xiaw = XLy + Kb (24 - HE XL, ) (4.1.2)
= (I - KLHL) XL + KL HE X, + KLV, (4.1.3)
= (I — KLHE) (¢h) 7 ¢k XLy + K B X, + KLV (4.1.4)
= (I - KiHL)(¢h) " X],_, + KL HE (64) 7 (X - WE) + KL VE, (4.15)
= DiX[,_, + Bi(Xs - WE) + KL Vi, (4.1.6)
where
B= KiHi ()™ and  Di=(1-KLHL)(#) " = (¢k) " - B: (4.1.7)

With the fused estimate given by

n n
Xk!|(k") =Todk 1 XL ypus + 3 Tidh Xhu, = ToXfp y + Y LiXiy, (4.1.8)

=1 i=1

substituting Eq. (4.1.6) into Eq. (4.1.8) yields

X1 = (To +y L,-D.-) Xl + Y LiBiXi - Y LBWE + Y LK Vi (4.1.9)
i=1

i=1 i=1 i=1

4.2. Development of the Fusion Constraint

The residuals (i.e., estimation errors) for X '{I(kn) and X ,{| B b ,{'(,:') and X '{I «_1 Trespectively, are defined by
SIm) _ v = _
Xkl(:) = Xkl(kn) —Xe  and XI{[k—l = XI{]k—l = Xk (4.2.1)

By using Eqs. (4.1.9) and (4.2.1), X/ can be written as

n n n n
b4 (T., +3 L,—D;) Xfes + (To +Y Li(Di+B) - 1) Xx— Y LBWE + Y LKLVE  (422)

i=1 i=1 =1 =1

Since E[W}] = E[Vi] = E[X, ,';(k“)] =E[X '{I x_1] = 0 for an unbiased estimate of X/{™, the following must be

klk
true in Eq. (4.2.2)
n n 1 n n
To+Y Li(Di+B)=To+Y Li(¢f,)" =To+y Tigk (k) =) Ti=1 (4.2.3)
i=1 i=1 i=1 i=0



By employing Eq. (4.2.3), Eq. (4.2.2) can be written as

,{f;) ( ZL B) 1 ZL B;WE + ZL.K,,_V,‘, (4.2.4)

i=1
4.3. Formulation of the Fused Error Covariance
The error covariance associated with X '{I(: ), P,fls:'), is given by

Employing Eqgs. (2.2), (2.3), and (4.2.4), and the fact that

i i\T
E[Xfs (%) = Pluy  and  E[ViAT]| = E[A(Vi)T] =0 (4.3.2)
where A is a matrix, the fused error covariance Pkflsc") can be written as
PJ{[S:) CoP)| klk— 100 _COZE[)?fu—l(Wk ) ](L, ZL iBi E[Wk ( klk—1 ]Cg
=1
n n
+ L:B:Qk,(L:B:)" + S LK}, Ry, (L:K},)" (4.3.3)
i=1 i=1
where -
Co=1I1-) LB (4.3.4)
i=1

By using Egs. (2.1), (2.3), and (4.3.4), and the fact that

B[}, (wk)T| = E[wk (Xf,_,)"] = -@k, (4.35)

Eq. (4.3.3) can be rewritten as
PEO = Gor), 0T+ Z (CoQk (LiB:)" + LiB:Q§,CT + LiB:Q%, (LiB:)™ + LiKj, R}, (L,vK,‘;i)T) (4.3.6)

_Pl;flk—l_ZL"B"(Pkflk—l_Qk. E( klk— 1“Qk (LB) +ZLBQk (LB)

i=1 i=1

+ 3 LKL Ry, (LiKL) "+ Y LiBi(Pf,_, - Q% - QF,) (L;B;)" (4.3.7)

=1 i=1 j=1
By defining the following quantities
Y = Bi(Pl_y — Qb — Qk, +65Q5) BT + 8, KLRL (KL)T  and  Ui=Bi(Pf_,-QL)  (438)
Eq. (4.3.7) can be expressed as

PiY =Pl -3 (LU + (L) )+ZZL Y LT (4.3.9)

=1 =1 j=1
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4.4. Solution for the Fusion Estimates

When taking the derivative of tr (P,{li")) , as defined in Eq. (4.3.9), with respect to each element of {L;}2_,, only
the terms for k = i, j need to be considered. The derivative of Eq. (4.3.9) with respect to Ly is given by

o tr(P’{l(kn)) = T - T T - T
——a—L—k—sziYk,. +§L,-Y,;k~Uk ~UF =2 (izzlek —U,,) (4.4.1)

The values of L; can be computed using the n generalized equations given by

Y Li¥y=Uf, for j=lu.yn (4.4.2)

5. IMM-OATFA

The IMM-OATFA is presented in this section. The IMM-OATFA combines the IMM algorithm with the OATFA
to exploit the inherent benefits of both algorithms while simultaneously minimizing their deficiencies [4-6]. A flow

diagram of an IMM-OATFA with two models is given in Fig. 5.1, where X '{JI ks is the output fused state estimate
based on both models, X ,’J Ik, is the fused state estimate for time k; based on model j, X 051 _, is the mixed

ky—1|k
fused estimate for each OATFA, Ly, is the vector of model likelihoods, and ug, is the vector (;f mo!del probabilities.

The IMM-OATFA operates in a manner similar to the conventional IMM algorithm.
Step 1: Mixing of Fused State Estimates

The filtering process starts with a priori fused state estimates Xif —1jk—10 fused state error covariances

Pg —1lky—1 and the associated probabilities p)i!_l for each model. The mixed fused state estimate for model j
at time kjy, M, ’{/’ is computed as

N
0jf _ ilj if
Xy, “1ky—1 = Zl‘k,-llk,—lxk,-uk,—l (5.1)
i=1



