GERALD N. PITTS
BARRY L. BATEMAN

s com

ESSENTIALS OF
COBOL PROGRAMMING:

A Structured Approach

GERALD N. PITTS
BARRY L. BATEMAN

COMPUTER SCIENCE PRESS

ESSENTIALS OF COBOL

PROGRAMMING:
A Structured Approach

OTHER BOOKS OF INTEREST

Wayne Amsbury
Structured Basic and Beyond

Pierre Barrette, Editor
Microcomputers in K-12 Education

M. Carberry, H. Khalil, J. Leathrum, and L. Levy
Foundations of Computer Science

Erik L. Dagless and David Aspinall
Introduction to Microcomputers

William Findlay and David Watt
Pascal: An Introduction to Methodical Programming, Second Edition

Harold Lawson
Understanding Computer Systems

Tom Logsdon
Computers and Social Controversy

Vern McDermott and Diana Fisher
Learning Basic Step by Step

James J. McGregor and Alan H. Watt
Simple Pascal .

Ira Pohl and Alan Shaw
The Nature of Computation: An Introduction to Computer Science

Donald D. Spencer
Computers in Number Theory

Ivan Tomek
Introduction to Computer Organization

PREFACE

This text begins with structured programming concepts and evolves through
the introductory concepts of COBOL clearly and concisely. More advanced
topics include tape and disk processing, sorting techniques, and report
writing capabilities as applied to the COBOL language. Also contained in the
volume are examples of each of the general instruction formats as well as
specific examples of their use. Detailed examples of MOVE statements
demonstrating editing capabilities are presented. The appendices include er-
ror correction (or debugging) concepts, a reserved word list, a summary of
general instruction formats for easy reference, and a complete COBOL pro-
gram which uses the concept of tables and a detailed explanation of the pro-
gram’s design and how execution of the program would proceed.

The text is written for a first course in COBOL programming but contains
sufficient depth and emphasis on the relationships among the usetr’s program
environment, files accessed, the compiler itself, and the system to allow a
more in-depth coverage, if desired.

ACKNOWLEDGEMENT

This book is dedicated to the Computer Science Department at Texas
A&M University and Dr. Dan Drew who has shaped that program from its
inception.

vi

TABLE OF CONTENTS

PIeEate « oy bt BRI BI I B i i me s s me e MBI BIGI BB IBIHI IR v
1. PROBLEM ANALYSIS AND STRUCTURED
PROGRAMMINGc.oiiiiiiiiiiiiiiii i, 1
Problem Analysis.oiiiiiiniiiiiiiiiiiiiiii i 1
Structured Programmingooiiiiiiiiiiiieian, 3
Basic Computer Operations. ..., 10
2. INTRODUCTION TO THE COBOL LANGUAGE 13
COBOL Instruction Formatccooiiiiiiiiina.. 14
COBOL Program Structureovviiiiiiiiiiinneennnn.. 15
STl T ERINS & arsis sy im0 s 0y g s o e o v o 16
GUOSSATY' 55150000 wim o s 506 505 20 0008 © 000 0 0 0 8 0 46 900 35 9 17
3. IDENTIFICATION AND ENVIRONMENT DIVISIONS 19
Identification Division oot 19
Environment Division............ ..., 19
PLODTATINS (& 55515 5 o6 95 504 w8 569 65 0505 515 515 B 6 556 558 548 080 508 3.8 808 07 916 8 24
4. DATA DIVISION FUNDAMENTALS..............coovo... 27
THE FIle SECHION.. 2 s 010 cins i 3vw sy wrwars wrw wrg gow s o 5 s 65185 1505 s i 27
Blocking and Deblocking..............ooiiiiiiiiiiiiiiat, 27
Record and Field Descriptionscoooviiiiiiiin. 29
Data-Name L I s o G e o 31
Pictit e CIaTISE: e i i b frosss vesos s rorajien S0 5 0 505 00 5 e 32
Samiple PIOErams «co:espsaissasmipossasmesenssrnsssossisinss 37
5. PROCEDURE DIVISION FUNDAMENTALS 4
Obtaining Information FromaFile 44
Arithmetic Operationsciiiiiiiiiiiiii... 48
Altering the Execution Sequenceccoiiiiiiiin... 51
The TEBotmat : «ims s sms s o sssmsm s o es s m s 5s 8 se @06 55 558 bis 52
Program Terminationooiiiiiiiiiiiiiinnann. 56
6. ADDITIONAL PROCEDURE DIVISION ABILITIES—I 61
Compound Conditional Statementscooooenn. 61
PERFORM Statementsoovuiiiinneieiinannnennn. 63
THe BXIEVEID! . e v viiiio v mrves e s s wre wis sca im s ocs oo e e s 66
The GOTO Variablec.oiiiiiiiiiiiiiiiiii i, 67
7. ADDITIONAL DATA DIVISION ENTRIES.................. 69
B SYMDIOIS 5 505066 0006 005 005 s 50005 508 595580 805 508 385080 0 5550 ¥ 0 o 60 69
Usage Clausettt i 71
Other Optionsottt i e 71

viii

8. ADDITIONAL PROCEDURE DIVISION ABILITIES—II 75
The EXAMINE Statementcooiiiiiiiiinieiennnnn.. 75
The TRANSFORM Statementc.cooiiiiiiiiiininnnnnnn. 77
The ACCEPT Statementoovitiiiiiiieenriinneeennnns 78
The DISPLAY Statementcoouuiiiiiiiiiinneneennnn. 79
The COMPUTE Statement...........oouiiiiiiiiiniinnnnnn. 80
The MOVE Corresponding Statement.oonnn 81
Inserting CommENtsvvutttitiiiiiiie e 82
Interaction Between Main Programs and Subprograms 83

9. TAPE AND DISK FILE PROCESSING 87
Data Organizationccoviiieeiiniinnneernereineenns 87
Tape File Processingoooiitiiiiiiiiiiiiiii i, 87
Disk File Processing ...ttt 89
INTOOPION . ..o vvvvviiiteninrernianesneenenerssseeonnnens 90
FROM OPHION . .. cvvvi it 91
RANAOIM ACCESS « v v eeeeeeeeee ettt 91
ENVIRONMENT DIVISION Entriescoooviiiieiinnn 92
PROCEDURE DIVISION Entries.ooooiiiiiiannn, 94

10. SORTINGottt 105
Procedure Division Entriescoiiiiiiiiiiiiiin 105
Using Option ovinuit e 107
Input Procedureooiiiiiiiiiiiiiiiiiiiiiii 107
GIVING OPtions . ..ovviiiiiteeeiiiiiite e eaaieeeens 108
OUTPUT Procedureccouoiniiiiiiineenrnnnnnneeeennnn. 109
Environment Division Entriest 110
Data Division Entriescoovviiiiiiiiiiiiiineiiiiinanes 110
Examplesof SOIS .. .oouvnueninsivinnrvsasnsssnswansnsnsnsncs 111

11. AUTOMATIC REPORT WRITINGcoonnnn 116
Procedure Division Entriesccooiiiiiiiiiiiiiii.., 116
Report Writerooviiniiiiiiiii e 116
DATA DIVISION Entries-Report Section 118
Sample Report Writer Program oo 123

APPENDIX A ...ttt it iiiiaa s 126

Error Correction CONCePtsovuvriinireeniueeanneennneennns 126
The TRACEOpOnoinuiriiiiiiiiiiiiiii e 126
The DISPLAY Optioncouviiitiiiiiiiiiii i 126
DUMPS . oo e 127
APPENDIX B iz s msms s m s i 505 508 a0s gos 65 500 o5w wte ore o siaimn o omo ais 128
COBOL Reserved Wordsovvviiimmmnmmnnnnnnnennnnnnns 128
APPENDIX € ..ottt 132

COBOL Instruction FOrmatsvueitinenenenenenaennannn 132

Identification DIVISIONvvveeetiiinnreeeeennnneneeneneenns 132
Environment DIvisioncoeeeiemiiineeneeiiiianaaennaenns 132
Data DiVISION . oovivteeeeeeenttneeananeensosnanaanaensseeanes 133
Procedure DivISION « . .o vvvveeeeeeneiieaenaaaniiiaaaaaaee 134
APPENDIX D ...ttt e e 135
COBOL PrOgramo.oveeentnearmmnnancasanmnansssecn s 135

Example Problemoouvuiiniiiiiiiii e 139

Chapter I

PROBLEM ANALYSIS AND
STRUCTURED PROGRAMMING

Problem solving is a task that is basic to many everyday situations. Gener-
ally, people are not fully aware of what thought processes enter into the solu-
tion of their particular problems. A problem presents itself and the solution,
if determined, is implemented. Humans are able to solve problems in a rela-
tively informal manner. Computers, due to their limited capabilities, usually
cannot solve problems in this fashion. The greatest success in computerized
problem solution is attained through strict, rigid expression of the problem
and of its solution.

There are various techniques that one can use in formally defining a prob-
lem situation. Most theorists agree that one should attempt to put the
problem definition in writing. This formalizes the individual aspects of the
problem. The written definition can be subdivided many times into lesser
problems until the entire problem has been broken down into relatively ele-
mentary operations. The problem and all of its subdivisions are then ana-
lyzed in order to determine what information or action each segment needs in
order to perform its function properly, and what information or action the
step produces so that succeeding steps can perform their functions properly
or for the achievement of the solution to the problem. Completion of the sub-
division and analysis steps is followed by translation of the problem into com-
puter language and by subsequent testing of the solution to insure that it is
truly correct.

Problem Analysis

The most commonly used method for expressing the analyses of the problem
is first to develop a word description of the problem, second to list the major
points of the problem, and third, to make a flow-diagram of the problem
solution. A flow-diagram of the solution process is nothing more than a step
by step explanation of the solution. The main purpose of this method is to de-
fine completely the problem and its solution so that every facet of these two

1

2 Problem Analysis and Structured Programming

items is completely understood. Consequently, you should employ whatever
method or combination of methods is easiest to use and promotes the best
comprehension of the problem.

Consider the application of the problem analysis discussed above to the
following problem. Suppose that one wanted to know the gas mileage of an
automobile. The previous sentence becomes the word description or defini-
tion of the problem. Subdividing the problem statement into subproblems
could be illustrated as follows: 1) How is gas mileage calculated; 2) How
many gallons does the gas tank hold; 3) How does one calculate the miles
driven?

By analyzing the three subproblems, assuming the gas tank is filled prior
to starting, one realizes that required information is the number of gallons
used and the miles traveled.

A flow-diagram of the solution to the problem could be:

Find gallons | ., Subtract gallons put into tank after trip from tank
utilized capacity

Find miles .. Subtract initial odometer reading from final read-
traveled

ing (after trip)

Calculate . miles traveled
gas mileage ..Gasmileage = —— —

gallons used

Report
answer

Figure 1.1

This flow-diagram is opposite from the problem subdivision shown pre-
viously because the first subproblem must be solved before the second and
third subproblems become useful.

In order to understand the flow-diagram (flowchart) form, one should be-
come familiar with the following table of basic symbols used in flow-charting:

Structured Programming 3
Table 1.1: Symbols of the Flowchart Language

Symbol Meaning

Start or Stop box, initial or terminating position of
solution, has only an entry or an exit.

Process box, any action or operation in the solution
other than a decision, has one entry and one exit.

9

Connector box, all flow lines with symbol *“r” are
connected together, has one or more entries and an
exit.

Decision box, a decision-making operation within
the problem solution, has one entry and two exits.

<> It is called a decision box because the computer
must decide whether a statement is true or false, as
indicated by the two possible exits.

Flow line, denotes direction of flow for the process,
connects all symbols of the language together in the
order the various functions are to be performed.

If we were to formalize the gas mileage flow-diagram given previously into
a flowchart, only two of the symbols in Table 1 would be used (the terminal
and process symbols).

To use the computer to solve a problem, the flowchart must be trans-
formed into instructions to the computer. These instructions must be written
in a language that the computer can understand. It is the primary purpose of
this book to teach the essentials of one of the languages that a computer un-
derstands. However, the process of problem solving must be evolved by read-
ers in their own ways before successful application of this language can be ac-
complished. It is hoped that the concepts explained previously will provide a
basis for this individual evolution.

Structured Programming

Computer solutions to problems can take many forms. It has been found that
programmers who use a structured form of program logic tend to write pro-
grams with fewer bugs (or errors) than those who do not. Programs written in

4 Problem Analysis and Structured Programming

Calculate
Gallons
Utilized

l

Calculate
Miles
Traveled

Calculate
Gas
Mileage

Exhibit
Answer

(Stop)

Figure 1.2

a structured form are usually easier to “‘debug” once the bug is found. The
logic forms used are generally one of three types, a sequential form, a simple
loop, or a simple decision. These forms, in flowchart language, are shown
below. A problem, along with illustrated steps toward its solution, is shown
to enable you to follow the logical progression of each form.

The one characteristic of these three forms is that each has only one entry
point and one exit point. All problems generally start as a sequential series of
processes or one of the other two simple logic forms (simple loop, simple de-
cision). Since the process box generally has only one entry point and one exit
point, it is possible to substitute any combination of the three basic forms for
a process box and still maintain the exact same logical pattern. This charac-
teristic provides well-structured programs that allow easy modifications and
program maintenance. A well-structured program often performs its as-
signed task with less overall expended effort because there is a higher proba-
bility of its being bug-free.

An example of this technique can be seen by constructing a set of instruc-
tions for counting by ones from one to any given integer value, n. When

a. Sequential

(START)

Process 1

Process 2

Process 3

(False) Else

Process 2

Simple Decision

Structured Programming 5

b. Simple Loop

(START

Process 1

Finishe
No ?

Yes

Figure 1.3b

~
=z

—

(True) Then

Process 1 %l [|

Figure 1.3¢

6 Problem Analysis and Structured Programming

creating an instruction set for something, one must consider the ability of the
entity which will follow the instructions. For most people, one could simply
say, “count to ten for me,” and the person would. However, if the person did
not know how to count, then the instructions would be in a considerably dif-
ferent form.

For this individual, it is necessary to define how to perform the action of
counting when defining the problem. The problem definition could be stated
as follows. Given a number n, start at 1 and add 1 successively until the
number, n, has been reached. This definition still assumes that the user of
the definition understands the elementary ideas of number 1, and addition.
In some cases, still further redefinition would be necessary. The flowchart
language version of the definition/solution to the situation is:

(start)

Give value
for N, Set
1=0

O
Exhibit I Add 1 toI

Figure 1.4

Testing the flowchart solution with » = 10, n = 1.2 and n = 55 shows that
the solution seems to work, even when given non-integer values for ». Further
testing with » = —10 or n = —1.2 illustrates a situation that does not do

Structured Programming 7

anything. The problem accepts a number and then stops, without perform-
ing the counting procedure. This bug (error) indicates a problem in the origi-
nal definitions of the solution. (Sometimes bugs are caused by incorrect im-
plementation of the definition).

A better flowchart definition would be:

(START)

Set value
for N
No
1=2
I1=I+1 Exhibit I Exhibit I I=1-1
Yes No No Yes

()

Figure 1.5

Testing this new definition with the previous values illustrates that it works
for all of those values. However, it is not generally safe to state that a problem
solution is bug-free because it works for the test values. Perhaps the problem
has not been tested properly.

8 Problem Analysis and Structured Programming

Analyzing the better definition for its structure shows the following forms:

(Sequential)

Set Value
for n

l

Count to
n

Figure 1.6

Step 1.

Step 2. Count to n requires further subdivision:

(simple decision)

(TRUE. .. THEN)
Yes

(FALSE. . . ELSE)
No

Count in Count in
positive negative
direction direction

Figure 1.7

