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Preface

Smooth ergodic theory of deterministic dynamical systems deals with the study
of dynamical behaviors relevant to certain invariant measures under differentiable
mappings or flows. The relevance of invariant measures is that they describe the fre-
quencies of visits for an orbit and hence they give a probabilistic description of the
evolution of a dynamical system. The fact that the system is differentiable allows
one to use techniques from analysis and geometry.

The study of transformations and their long-term behavior is ubiquitous in math-
ematics and the sciences. They arise not only in applications to the real world but
also to diverse mathematical disciplines, including number theory, Lie groups, al-
gorithms, Riemannian geometry, etc. Hence smooth ergodic theory is the meeting
ground of many different ideas in pure and applied mathematics. It has witnessed
a great progress since the pioneering works of Sinai, Ruelle and Bowen on Axiom
A diffeomorphisms and of Pesin on non-uniformly hyperbolic systems, and now it
becomes a well-developed field.

In this theory, among the major concepts are the notions of Lyapunov exponents
and metric entropy. Lyapunov exponent describes the exponential rate of expansion
or contraction in certain direction along an orbit. Obviously, positive Lyapunov ex-
ponents corresponds to the local instability of trajectories. One of the paradigms of
dynamical systems is that the local instability of trajectories may lead to the stochas-
tic behavior of the system. Metric entropy, introduced by Kolmogorov and Sinai, is
a purely measure-theoretic invariant, which measures the complexity of the dynam-
ical system generated by iterations of the transformation. It has been studied a good
deal in abstract ergodic theory, see [75].

The relationship between these two concepts has always been an important prob-
lem. A fundamental result concerning this problem is Margulis-Ruelle inequality,
which states that the metric entropy can be bounded from above by the sum of posi-
tive Lyapunov exponents (See Chapter II). More deep results can be obtained when
the system exhibits certain hyperbolicity. The strongest hyperbolicity occurs in the
important class of Axiom A systems. In the ergodic theory of Axiom A diffeomor-
phisms developed by Sinai [88], Ruelle [76] and Bowen [10, 11], it was shown that
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viii Preface

for an Axiom A attractor there is a unique invariant measure which is characterized
by each of the following properties:

(1) The metric entropy is equal to the sum of positive Lypunov exponents.

(2) The conditional measures of the invariant measure on unstable manifolds are ab-
solutely continuous with respect to the Lebesgue measures on these manifolds.

(3) Lebesgue almost every point in an open neighborhood of the attractor is generic
to this measure.

Property (1) is now known as Pesin’s entropy formula and property (2) is known
as SRB property of the invariant measure. Each of these properties has been shown
to be significant in its own right, but it is also remarkable that they are equivalent
to each other in the case of an Axiom A attractor. In mid-seventies, in a series of
papers Pesin developed a machinery to study non-uniformly hyperbolic systems
[62, 63]. He obtained a general theorem on the existence and the absolute continuity
of invariant families of stable and unstable manifolds of a smooth dynamical sys-
tem, corresponding to its non-zero Lyapunov exponents. Meanwhile, he also studied
the ergodic properties of smooth dynamical systems possessing an absolutely con-
tinuous invariant measure. The most striking result is that Pesin’s entropy formula
also holds in this case. Then it was conjectured by Ruelle and later on proved by
Ledrappier, Strelcyn and Young that for an invariant measure of a C? diffeomor-
phism, Pesin’s entropy formula holds if and only if it satisfies the SRB property
[41, 42]. In other words, the equivalence of properties (1) and (2) can hold in a more
general circumstance.

The above results have been successfully generalized to several frameworks.
Among them are random iterations of diffeomorphisms and deterministic endomor-
phisms. For random diffeomorphisms, first initiated by Ledrappier and Young [44],
Liu and Qian provided a systematic treatment on the subject [51]. However the re-
sults for deterministic system are still scattered in the literature.

The main purpose of this monograph is to summarize these results and to provide
a systematic treatment on this aspect for deterministic systems. The novelty of our
treatment lies in the fact that we directly consider endomorphisms throughout the
monograph. The results for diffeomorphisms can be obtained as a special case. It
is interesting to point out that the method developed to attack Random Dynamical
Systems [38, 44] can be adapted to treat the endomorphism case. It turns out to be the
inverse sequence approach known in the dynamical system theory but it has never
been detailed into a systematic treatment as one can see in [44]. Therefore, this
monograph gives convincing evidence how deterministic theory can be benefited by
probabilistic consideration. '

The monograph is organized as follows.

We will review some fundamental concepts in Chapter I. Since the whole mono-
graph mainly deals with endomorphisms with the help of inverse limit space, we
also provide the simple relations of entropies and Lyapunov exponents between the
base dynamical system and the induced dynamical system on the inverse limit space.

Chapter I1 is devoted to the Margulis-Ruelle inequality. This inequality was first
given by Margulis in the case of diffeomorphisms preserving a smooth measure.
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The general statement is due to Ruelle [77]. Rigorous proofs are available in several
books for the case of diffeomorphisms only, see [32] and [57]. We present a short
and rigorous proof for the general C' maps in this chapter.

In Chapter III, we study the simplest case—expanding maps. Although Pesin’s
entropy formula is actually a consequence of the main theorem in Chapter VI, there
are still some other nice results under weak conditions. This chapter follows from
the work of H.-Y. Hu [27].

In Chapter IV, we study the strongest hyperbolic case, the ergodic theory for
Axiom A endomorphisms. This chapter is from the work of Qian and Zhang [72].

Chapter V consists of the study of the structure of unstable manifolds. Since in
general the unstable manifold at each point depends on the whole backward or-
bit, for different orbit there might be different unstable manifold at the same point.
Therefore, there is no foliation structure of unstable manifolds in these case. We
consider the structure of unstable manifolds in the inverse limit space. The source
of this chapter is the work of S. Zhu [100] with slight modification.

In Chapter VI we extend Pesin’s entropy formula to the general C? endomor-
phisms. This is done by Liu [46] recently in a different approach.

In Chapter VII we present a formulation of the SRB property for invariant mea-
sures of C? endomorphisms of a compact manifold via their inverse limit spaces,
and then prove that this property is sufficient and necessary for the entropy for-
mula. This is a non-invertible version of the main theorem of [42]. As a nontrivial
corollary of this result, an invariant measure of a C> endomorphism has this SRB
property if it is absolutely continuous with respect to the Lebesgue measure of the
manifold. Invariant measures having this SRB property also exist on Axiom A at-
tractors of C? endomorphisms. Comparing with the case of diffeomorphisms, the
major difficulty arises from non-invertibility. To overcome this deficiency, the in-
verse limit space has to be introduced. Notice that, when the inverse limit space is
introduced, one can compare a full orbit with a sample orbit from random iteration
of diffeomorphisms. Keep this in mind, with some necessary modifications, many
ideas and techniques developed for the random diffeomorphisms, for which a sys-
tematic treatment is now available in [51], can be applied to our present study. The
result was given by Qian and Zhu in [73], and we provide a detailed presentation in
this chapter.

In Chapter VIII, we study the ergodic hyperbolic attractors. This chapter follows
from the work of Jiang and Qian [28].

Chapters IX and X may be viewed as the climax of this book. In Chapter IX, we
present here a generalized entropy formula for any Borel probability measure in-
variant under a C?> endomorphism. It is a non-invertible endomorphisms version
of a formula obtained by Ledrappier and Young [43], hence covers theirs as a
consequence. The generalized entropy formula relates closely to Eckmann-Ruelle
conjecture for the endomorphism version; In Chapter X, we apply this entropy
formula to hyperbolic measures preserved respectively by expanding maps and dif-
feomorphisms, proving Eckmann-Ruelle conjecture in these two situations. These
two chapters are rewritten from the work of Qian and Xie [71] and Liu and Xie [54].
The proof of Eckmann-Ruelle conjecture (for diffeomorphisms) was first presented
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by Barreira et al [7] (see also [64, pp. 279-292]); our proof is slightly different from
theirs and seems more accessible.

In Appendix A, we show that Pesin entropy formula still holds true for C? random
endomorphisms if the sample measures of the invariant measure are smooth. This
result covers those obtained by Pesin [63] for c? diffeomorphisms, Liu [46] for c?
endomorphisms, Ledrappier and Young [44] for i.i.d. random diffeomorphisms and
Liu [48] for two-sided stationary random endomorphisms.

In Appendix B, we present a large deviation theorem, it was included as one
chapter in the first draft of the manuscript. Since the presentation is not self-
contained, we prefer to shift it to the end as Appendix B. This part of the manuscript
was prepared by Y. Zhao, see [53].

We would like to thank Prof. P.-D. Liu for very useful discussions. We are deeply
indebted to Prof. Ledrappier for his helpful comments on Qian and Xie’s work
[71]. S. Zhu also wishes to thank Profs. Anatole Katok, Yakov Pesin, Luis Barreira
and Wenxian Shen for many helpful conversations during his visit at Pennsylva-
nia State University and Auburn University. During the long editing period of this
monograph, M. Qian was partially support by the 973 Fund of China for Nonlinear
Science and the NSFC of China; and J.-S. Xie is partially support by NSFC Grant
No. 10701026.

Beijing, Shanghai, Min Qian
February 2009 Jian-Sheng Xie
Shu Zhu
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Chapter 1
Preliminaries

In this part we review some necessary concepts and results from ergodic theory,
which will be frequently used in this monograph.

Throughout this book, M is an my-dimensional, smooth, compact and connected
Riemannian manifold without boundary. We use f € C"(O,M) to denote a C" map
from O to M, where O is an open subset of M, and we call f a C" endomorphism on
M if feC'(M,M). We use T f to denote the tangent map induced by f when r > 1.

For any compact metrizable space X and continuous map 7 : X — X, We use
A7 (X) to denote the set of T-invariant Borel probability measures on X.

I.1 Metric Entropy

Let X be a compact metrizable space, T : X — X a continuous map on X, and U a
T-invariant Borel probability measure on X .
For any finite partition n = {C;} of X, define the entropy of 1 by

Hy(n) = = X u(Ci) logu(C).
i
Let _ ,
hy(T,n) = lim ~H,(MAT 'nA---AT " n).
n—oo p
Then define the metric entropy of T with respect to U as
hy(T) = sup{ hy(T,n) : n is a finite partition of X }.

For properties of the metric entropy, we refer the reader to [92].

M. Qian et al., Smooth Ergodic Theory for Endomorphisms, Lecture Notes |
in Mathematics 1978, DOI 10.1007/978-3-642-01954-8 _I,
© Springer-Verlag Berlin Heidelberg 2009



2 I Preliminaries

1.2 Multiplicative Ergodic Theorem

From Oseledec’s theorem we have the following version of Multiplicative Ergodic
Theorem for differentiable maps [92].

Theorem 1.2.1 Let f be a C' endomorphism on M. Then there exists a Borel subset
' C M with fT’ C T and u(T') =1 for any p € #(M). Moreover, the following
properties hold.

(1) There is a measurable integer functionr : I’ — Z* withro f = r.
(2) For any x € T, there are real numbers

Ho0 > A1 (x) > Aa(x) > -+ > Ay (x) = —oo,

where A, (x) could be —eo.
(3) If x € T', there are linear subspaces

V(O)(x) =TMD V“)(x) S--D V("(-‘))(x) = {0}

of TM
@ IfxeTl and 1 <i<r(x), then

lim — log|Tf”§| =

n—ee N
forall & € V=D (x)\VD(x). Moreover,

r(x)
llm —log|det T.f" | = ZA, i(x),

where mi(x) = dimV =1 (x) —dimV ) (x) forall 1 <i < r(x).
(5) Ai(x) is measurably defined on {x € I" | r(x) > i} and f-invariant, i.e. 4;(fx) =

Ai(x).
©) Tf (VO (x)) cVvO(fx) ifi>o0.

The numbers {li(x)}:gl), given by Theorem 1.2.1 are called the Lyapunov expo-
nents of f at x, and m;(x) is called the multiplicity of A;i(x).

In many cases, we require that system (M, f, 1) satisfies the following integra-
bility condition

log|det(T.f)| € L'(M, ). (L.1)

By Multiplicative Ergodic Theorem, under condition (I.1) we have

| ogldet(Tf)|dute) = [ Zux mi(x) du(x). (1.2)
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Define
L oo, = {x erlr

T.f is degenerate or A,y (x) = —oo}.
The integrability condition (I.1) and identity (1.2) imply that

w(r.) =0. (1.3)

Let -
= | ] r2). (1.4)
n=0
It is easy to see that f(I'") C I'’ and for any x € I'’, T, f is an isomorphism and
Ar(x) (xX) > —oo. From (1.3) we have u(I'"') = 1.
For x € M and 1 < k < my, let (T,M)"t be the k™-exterior power space of T,M,

namely, (T,M )" is the linear space of all linear combinations of elements in {51 A
..N& & € TM, 1 <i <k} in which the following relations hold:

(1) forallo,f € Rand 1 <i<k,

G N A(@Ei+BEN AN = aby A NEA- N
+ B A NG NG

(2) forall 1 <i,j <k,
é[/\"‘/\éi/\"'/\g,/‘/\"'/\gk:_él/\“‘/\;i/\"'/\gi/\"‘/\gk

Obviously, if {& : 1 <i<mg} isabasis of .M, then {& A---AE :1<ij <. <
i < mo} is a basis of (T,M)"*. Now, if {e,- 1<i< mo} is an orthonormal basis of
T:M, then by letting

<ejN---Nej,ej N---

) dﬁf 11f(l],7lk):(.ll7,.]k)
Al == {0 otherwise

we can define an inner product < -,- > on (T,M)"*, and it is clearly independent of
the choice of the orthonormal basis {e,- 1<i< mo}. We shall denote also by | - |
the norm on (7,M)"* induced by this inner product.

If f:M — M is aC' map, we define for x € M and 1 < k < my

(Tf)™ = (TM)M — (TM)™
EiN-NE— (Tof&1) NN (Tef&)

and define

(TN E 1+ Y (1),
k=1



4 I Preliminaries

Then an important conclusion from [77] gives

Proposition 1.2.2 Let (M, f, 1) be given. Then we have

lim %log[(T..f”)/\| = Ai(x) " mi(x), p— ae

n——-o0

and

Jim g1 = [ A )

I.3 Inverse Limit Space

Let X be a compact metric space. For any continuous map 7 on X, let X7 denote
the subset of XZ consisting of all full orbits, i.e.,

xT = {f= {xiticz ’X,‘ eX, Txi=xjs, ViGZ}.

Obviously, X is a closed subset of X Z (endowed with the product topology and the
metric d(%,5) = X1 27 1d(xi, yi) for £ = {x;}icz, § = {yi}iez € X?). XT is called
the inverse limit space of system (X, T). Let p denote the natural projection from
XTtoX,ie.,

p(%) =xo, VEeXT,

and 0 : X7 — X7 as the shift homeomorphism. Clearly the following diagram

commutes,

xT &, x7

r| |P

X X

ie.po@=Top.

It is a basic knowledge that p induces a continuous map from .Z(X") to
AT (X), usually still denoted by p, i.e. for any 8-invariant Borel probability mea-
sure fi on X7, p maps it to a T-invariant Borel probability measure pft on X
defined by

pi(e) =f(pop), YoeC(X).

The following proposition guarantees that p is a bijection between .#5(X ) and
M1 (X).

Proposition 1.3.1 Let T be a continuous map on X. For any T-invariant Borel prob-
ability measure 1 on X, there exists a unique 6-invariant Borel probability measure
ft on XT such that pfi = .

Before providing the proof of the above proposition, we first introduce two ele-
mentary lemmas.
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Lemma 1.3.2 Let X and Y be two compact metrizable spaces, and h: X — Y a
continuous surjective map. Then for any Borel probability measure |1 on Y, there
exists a Borel probability measure v on X such that hv = L.

Proof. Let
W= {yeC(X)|3peC(Y)suchthat y = poh}.

Obviously W is a linear subspace of C(X). Define a bounded linear functional L on
W as follows,

Ly =u(p), where ¢ € C(Y)suchthat y=g@oh.

It is easy to see that L is a positive bounded linear functional with L1 = 1. By a
modification of the Hahn-Banach Theorem L can be extended to a positive bounded
linear functional on C(X) preserving the property L1 = 1. Then Rieze Represen-
tation Theorem implies that there is a Borel probability measure v on X such that
Ly = v(y) forall v € C(X). It is easy to verify that hv = . O

Lemma 1.3.3 Let X and Y be two compact metrizable spaces, and T : X — X and
S :Y — Y measurable mappings on corresponding spaces. Suppose there is a con-
tinuous surjective map h: X — Y such that Soh = hoT. Then for any S-invariant
Borel probability measure L on'Y, there is a T-invariant Borel probability measure
v on X such that hv = .

Proof. From Lemma 1.3.2, there is a Borel probability measure vy on X such that
hvp = u. Let

ln~1 )
Vn = — 2 TlVOv
n i=o

and suppose that v,,, — v as ny — +oo. It is then easy to see that v € .#7(X) and
hv=pu. O

We are now ready to prove Proposition 1.3.1.

Proof of Proposition 1.3.1. Let X = (\;_oT"(X). Obviously Xj is a compact
subset of X, and T(Xo) = Xo, 1t(Xo) = 1 for any u € .#r(X). Therefore X7 = X[
and p :XOT — Xp is continuous and surjective. As a consequence of Lemma 1.3.3,
there is fi € .#g(XT) such that pji = . Since X7 is a compact subset of X%, fi can
be uniquely determined by its values on all cylinder sets. For any Borel subsets Ag,
Ay, ...,A, CM, we have

£([A0,ArL-- - AL) = p(A (T AL+ T AW,

where
[A0,A1,...,An) = {X€XT | xi € A;,i=0,1,...,n}

is a cylinder set in X7 This ensures that i is uniquely determined by . The proof
is completed. O



6 I Preliminaries

Remark I.1. In the circumstances of Proposition 1.3.1, it is not hard to see that
(X7, 0, 1) is ergodic if and only if (X, T, i) is ergodic.

The following proposition provides the relationship between the entropies of
these two systems.

Proposition 1.3.4 Let T : X — X be a continuous map on the compact metric space
X with an invariant Borel probability measure y. Let XT be the inverse limit space of
(X,T), O the shift homeomorphism and i the 8-invariant Borel probability measure
on X7 such that pfi = u. Then

hy(T) = hy(8). | (L5)

Proof. For each n € N, take a maximal 1/n-separated set E, of X. (Recall that a
subset E of a metric space (X,d) is an €-separated set of X iff d(x,y) > € for any
distinct points x,y € E. It is called a maximal €-separated set of X if in addition E is
maximal, i.e., for any pointx € E and y € E, d(x,y) < €. Given a transform T : X «
and a positive integer n, one can define a new metric d,, as

dy(x,y) := max{d(T"x,T"y) 0<k< n}.

Then an e-separated set of (X, d,,) is called an (n, €)-separating set of X.) We define
a measurable finite partition &, = {&,(x) | x € E, } of X such that &, (x) C Int(§, (x))
and Int(&,(x)) = {y € X | d(y,x) <d(y,x;) if x # x; € E,, } for every x € E,. Clear]y
Diam&, < 1/n. By Theorem 8.3 of [92],

hy(T) = lim hy (T, &,). (1.6)

J1—o0

Using &,, we may construct a measurable finite partition 7, of XT by
p!
M = \/ 9 én
i=—n

It is easy to see Diamn,, — 0 as n — oo, thus

hy(0) = lim hz(6,n,). (1.7)
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Notice that @ is invertible, by Theorem 4,12 (vii) of [92] we have

hﬂ(67nn) = hﬂ(evl]ilén) = h,u (Tvgn)-

This together with (I.6) and (1.7) yields that identity (I.5) holds. 0

In the previous proposition, we see that the entropies of these two systems are in
fact identical. Now we consider the relationship between the Lyapunov exponents
of these two systems.



