COMPUTER

SCIENCE

A First Course

FFFFFFFF

KEENAN

OOOOOO CK
- STENBERG

ALEXANDRA |. FORSYTHE, M.A.

Department of Mathematics,
Gunn High School,
Palo Alto

THOMAS A. KEENAN, Ph.D.

Director, Educational Information Network,
EDUCOM

ELLIOTT I. ORGANICK, Ph.D.

Professor and Chairman, Department of Computer Scienc«
University of Houston

WARREN STENBERG, Ph.D.

Associate Professor of Mathematics,
University of Minnesota

JOHN WILEY & SONS, INC.

New York - London - Sydney * Toronto

Copyright © 1969 by John Wiley & Sons, Inc.

All rights reserved. No part of this book may
be reproduced by any means, nor transmitted,
nor translated into a machine language without
the written permission of the publisher.

10 9 8 7 6 5 4 3 2 1

Library of Congress Catalog Card Number 74-76053
SBN 471 26678 7
Printed in the United States of America

COMPUTER SCIENCE: A FIRST COURSE

COMPUTER
SCIENCE:

A First Course

Computer science is an entirely new course subject, although its con-
cept has been developing for many years. Our purpose in this book,
Computer Science: A First Course, is to help students understand today’s
world (and the world of tomorrow) where information of all kinds is the
prime commodity. The processing of this information in business,
science, government, and industry is rapidly becoming one of the nation’s
major endeavors. Computers are an indispensable tool in information
processing. Students in this course will learn not only what computers
are but what computers can and cannot do—they will learn to under-
stand and appreciate the step-by-step methodical chain that begins with
a problem, processes it through a computer, and ends with a satisfactory
solution.

This book is the outgrowth of a School Mathematics Study Group
(SMSG) program, begun in 1964, of which we were a part. This effort
resulted in 1966 in a widely used experimental SMSG text called Algo-
rithms, Computation and Mathematics which was directed to twelfth-
grade mathematics students. From the beginning, we found that this
material was equally instructive for college-level audiences. Computer
Science: A First Course is based on the SMSG text and on our experience
in teaching this text at high-school and college levels. Although the pres-
ent volume draws significantly from the SMSG material and retains its
spirit, we believe that this book and its supplementary texts comprise a
major revision of the SMSG material with significant extensions in con-
tent. In short, we think that this work and its supplements are a distinct
improvement worthy of independent use.

A recent report of the Curriculum Committee on Computer Science
of the Association for Computing Machinery® has offered recommenda-
tions for a college-level course, entitled, “Introduction to Computing.”

? “Curriculum 68, Recommendations for Academic Programs in Computer Science,”
Communications of the ACM, Vol 11, No. 3, March 1968, pp. 151-197.

vi PREFACE

We believe that this book is compatible with those recommendations
and that it will be useful as a text for such a course.

Since a great deal of material is included here, it may be practical to
study only portions of it. Another version of this textbook is available:
Computer Science: A Primer. That version does not include Part III:
“Nonnumerical Applications.” Thus the primer may be more suitable for
a short course or for one that concentrates exclusively on numerical
computation.

As companion pieces to this volume and to the Primer version, several
programming language supplements and a teacher’s commentary are
available. The programming language texts are especially useful because
they are designed to dovetail, section for section, with the principal
chapters of the basic text. The study of a computer programming
language, such as FORTRAN, BASIC, or PL/1, from one of these sup-
plements will help the student to convert the abstract algorithmic solu-
tions of the problems from the basic text into actual solutions on the
computer that is available to him.

The present volume centers around the study of computing rather
than computers. Whereas many computer textbooks place significant
emphasis on the design of complex networks of circuits and electronics
that make up a computer, Computer Science: A First Course deals with
the organization of problems so that computers can work them. Com-
puting hinges primarily on the study of algorithms: not only learning to
understand them but learning to construct and improve them.

Much thought has been given to the selection and ordering of the
problems and exercises. The exercises are to be considered in the sense
of five-finger piano exercises that test or strengthen some specific “local”
learning. On the other hand, the problems require that the student
organize local learning in order to reach a satisfactory solution. The solv-
ing of problems helps to synthesize knowledge into a more unified whole.
The solution of at least some problems and exercises is considered vital
to the progress of any student who uses this text.

The subject matter of this book constitutes a challenging first course
in computer science for students with good high school-level preparation
in mathematics.

Alexandra I. Forsythe
Thomas A. Keenan
Elliott 1. Organick
Warren Stenberg

For organizational purposes, the thirteen chapters of this book are
divided into three parts. The first five chapters, which comprise Part I,
form a basic introductory unit. Three fundamental ideas of computing
are presented in the first chapter: the algorithm, its expression as a flow
chart, and a conceptual model of a computer. In addition, the reader is
introduced to a hypothetical but realistic digital computer capable of
executing algorithms. By the end of this chapter, all of the fundamentals
of flow-chart language have been introduced with appropriate discus-
sions of assignment, branching, and looping. The next two chapters
develop a more thorough explanation of the fundamentals and add some
auxiliary concepts for computation and for data organization such as
arithmetic expressions, compound conditions, multiple branching, vectors,
and arrays. Chapter 4 integrates and refines the student’s understanding
of all these concepts by means of illustrative examples. An efficient
shorthand for loop control, which simplifies the construction of many
algorithms, is presented. Chapter 5, which does not depend on the
specifics of the earlier chapters, alerts the student to pitfalls inherent in
the use of approximations.

Part II is primarily concerned with numerical applications. In Chap-
ter 6 the student is introduced to the procedure, the (isolated) program
building-block unit from which complex systems can be formed. Pro-
cedures are explained in terms of a conceptual model that is easy to
understand and to remember. Chapters 7 and 8 develop mathematical
applications of computing that are selected from those called numerical
methods. The solution of an equation by bisection is studied in Chap-
ter 7, along with methods for finding the maximum or minimum of a
function and for computing the area under a curve. The Gauss elimination
method for solving a system of linear equations is given in Chapter 8,
followed by an introductory treatment of averaging and linear regression.
Part II is designed for students who have not studied calculus. However,
students with calculus training may find that their understanding of
mathematics and statistics has been strengthened after studying this
material.

vii

viii ORGANIZATION OF THE BOOK

Part III is devoted to nonnumerical applications of computing (some-
times called symbol manipulation), representative of the newer areas of
computer science research. Chapter 9 introduces the reader to an inter-
esting representation of important classes of information: tree structures.
Only the first four chapters of the book are prerequisite to this material.
Certain decision processes (such as two-person games) and certain types
of data (such as strings that represent arithmetic expressions) inherently
possess or are best exhibited as tree structures. Tree-searching algorithms
are introduced. Chapter 10 considers the subject of compiling, the
process of translating from the familiar mathematical notation exhibited
in various programming languages to forms that computers can execute
more easily. Chapter 11 returns to the topic of trees. A level-by-level
tree search method is applied to the problem of finding the best route or
path on a map. Several new concepts for storing tree-structured data
and for the pruning of such structures are introduced. Algorithms are
developed that analyze the outcome of games. Chapter 12, on text edit-
ing and list processing, gives the student some insight into the kinds of
problems involved in representing and operating on character “strings.”
For such data, an effective storage model is designed and algorithms are
built up to transform strings in various ways. This chapter provides an
excellent background for a student who will use one of the string-
processing programming languages, such as SNOBOL. Chapter 13 takes
another look at compiling, this time as an application of the string-
operation concepts developed in Chapter 12. Combining this material
with the material in Chapter 10, the student can follow the principal
steps of compiling from the input (consisting of statements like those in
a FORTRAN program) to the output (consisting of the equivalent ma-
chine language code).

The SAMOS Appendix amounts to an elementary programmer’s
reference manual for the hypothetical digital computer called SAMOS
that was discussed briefly in Chapter 1. This appendix is suggested for
collateral reading at various times in the course. SAMOS has been sim-
ulated on several actual computers,® making it possible for students to
gain an easy initial exposure to machine-language programming through
laboratory practice.

¢ Simulated on the IBM 1401 and 7090 computers and on the CDC 6400. (The simulator
program written in FORTRAN was developed by and has been made available from the
Florida State University Computer Center, E. P. Miles, Director.)

Much of the credit for this book belongs to our many colleagues who
participated in the organizational, planning, and computer text-writing
sessions of the SMSG project and to the excellent supporting staff of
SMSG at Stanford University. Below is a copy of the title page (and copy-
right) from the student text, which gives the names of the project’s many
contributors. To each of our colleagues on this list and to others who have
offered contributions to this project, we express our sincere appreciation
and the hope that our new book confirms the value of the initiating work.

ALGORITHMS,
COMPUTATION
AND
MATHEMATICS

Student Text
Revised Edition
The following is a list of all those who participated in the preparation of this volume:
Sylvia Charp, Dobbins Technical High School, Philadelphia, Pennsylvania
Alexandra Forsythe, Gunn High School, Palo Alto, California
Bernard A. Galler, University of Michigan, Ann Arbor, Michigan
John G. Herriot, Stanford University, California
Walter Hoffmann, Wayne State University, Detroit, Michigan
Thomas E. Hull, University of Toronto, Toronto, Ontario, Canada
Thomas A. Keenan, University of Rochester, Rochester, New York
Robert E. Monroe, Wayne State University, Detroit, Michigan
Silvio O. Navarro, University of Kentucky, Lexington, Kentucky
Elliott I. Organick, University of Houston, Houston, Texas
Jesse Peckenham, Oakland Unified School District, Oakland, California
George A. Robinson, Argonne National Laboratory, Argonne, Illinois
Phillip M. Sherman, Bell Telephone Laboratories, Murray Hill, New Jersey
Robert E. Smith, Control Data Corporation, St. Paul, Minnesota
Warren Stenberg, University of Minnesota, Minneapolis, Minnesota
Harley Tillitt, U.S. Naval Ordnance Test Station, China Lake, California
Lyneve Waldrop, Newton South High School, Newton, Massachusetts

X ACKNOWLEDGMENTS

The following were the principal consultants:

George E. Forsythe, Stanford University, California
Bernard A. Galler, University of Michigan, Ann Arbor, Michigan
Wallace Givens, Argonne National Laboratory, Argonne, Illinois

© 1965 and 1966 by The Board of Trustees of the Leland Stanford Junior University
All rights reserved

Like many texts that originate as a committee effort, the early drafts
were revised a number of times. Two parts of the present work have
passed the scrutiny of these repeated revisions without losing the char-
acter or content contributed by their originators. Chapter 5, “Approxi-
mations,” still bears the distinctive imprint of Professor Walter Hoffman
of Wayne State University who wrote the first draft. The SAMOS Appen-
dix, which appears here in much the same form as in its first draft, is the
work of the late Silvio O. Navarro, Professor of Computer Science at the
University of Kentucky, who is fondly remembered by his friends and
colleagues.

We also acknowledge the support of individuals who either recom-
mended that the writing project be initiated or who played a part in
organizing it. Among these were:

Dr. Arthur C. Downing, Control Data Corp.

W. Eugene Ferguson, Newton Mass. School System
Professor Robert Gregory, The University of Texas
George Heller, International Business Machines Corp.
Professor R. J. Walker, Cornell University

Four men were the “prime movers” of the SMSG project: Professor
Edward G. Begle, SMSG’s Director convinced the SMSG Executive
Board and the National Science Foundation that the computer text
project was a worthy undertaking and deserved the financial support of
NSF. Professor George E. Forsythe of Stanford University, Professor
Bernard A. Galler of the University of Michigan, and Dr. Wallace Givens
of Argonne National Laboratories not only helped Professor Begle in his
initiating efforts but provided the project with critical technical and
organizational guidance during its initial stages.

Finally, we thank the National Science Foundation for its continued
support of SMSG projects in the computer science area and Stanford
University for giving us approval to incorporate the cited SMSG material
in our text. SMSG, by giving this approval, does not endorse the current
work in any way.

ALF.

T.AK.
E.IO.
W.S.

USING THE COMPUTER

For optimal learning, each beginner needs contact with a computer,
primarily to verify and troubleshoot the algorithms that he constructs.
What is meant by “contact” with a computer varies. One excellent form
of contact is gained these days through the use of typewriter-like or key-
board/TV consoles that are connected to time-shared computer systems.
Another form of desirable contact can be obtained by submitting pro-
grams and data that are prepared on punch cards and run on computers
controlled by batch monitor operating systems. In any case, the com-
puter contact should be held to the minimum that is necessary for
adequate check-out of programs. Hands-on-the-computer experience is
not a goal of this course.

At least as important as one’s physical proximity to the computer
should be the programming language that it requires and the special
program that implements this language on the computer. Since the num-
ber of people using it is not necessarily a measure of how good a pro-
gramming language is, the choice of a language, a computer, and a soft-
ware system requires very careful professional study. (“Software” refers
to the service programs used to operate and exploit the computer for
the user’s benefit.)

The software program that carries a language into effect on a com-
puter is called a compiler. Compilers vary a great deal in the rate at
which they cause programs to be translated or interpreted by the com-
puter. A fast compiler is wanted. Compilers also vary widely in their
handling of programming and language errors. For teaching purposes,
the best compiler is one that detects, clearly identifies, and either reports
or corrects these errors at the time the program is being compiled.

Some types of programming errors (such as dividing by zero) can only
be detected and reported during the execution of the target (compiled)
program. The quality of this detection is dependent on still another
piece of software called the executive system. Furthermore, whether this
executive system detects such problems as equipment malfunction during
input or output and misuse of library subroutines will be very important
to you, as the user.

xi

xii USING THE COMPUTER

The ability to run large numbers of small programming exercises in a
reasonable amount of time and with satisfactory results is, as one can
see, highly dependent on the software system. It is a disappointing but
true fact that any particular programming language, such as FORTRAN,
can still vary considerably in its implementation on different computers.
It is even possible that the FORTRAN used on two copies of the same
machine may differ materially in its ability to provide the desired service.

Many high schools and a great many colleges (also almost all of the
large business or governmental institutions) already have computers that
use a batch monitor type of operating system. For those who have no such
facility of their own (and, sometimes, even for those who do), an arrange-
ment with a nearby university or other institution for the use of their
computer laboratory is urged. A computer 100 miles away and well
equipped with software adapted to educational use may be better for
the purpose than a small computer in the next room. A smooth educa-
tional software system on a machine, even if it is remote, allows students
to focus on the construction of algorithms in a programming language.
With this knowledge comes more rapid insight into the uses of com-
puters in science and industry. Arrangements for remote use of time-
shared computer systems (especially if one is favored with good-quality
telephone service) via rented teletype or other keyboard consoles can be
very effective.

To increase the applicability of this book, the specific syntactic details
of computer language have been separated from the main flow-chart
text into a language supplement. The flow-chart language used in the main
textbook deals only with concepts of central interest to all programming
languages. Although embodying a set of general syntactic concepts, flow-
chart language contains few such details. Having learned one basic pro-
gramming language, it is easy to learn another. After the flow-chart
language in this book has been studied, PL/1, BASIC, FORTRAN,
COBOL, ALGOL, or any similar algebraic procedural language can be
learned with ease as a second language. This organization enables a
school to choose a programming language from among any of those just
mentioned (or their equivalent) and still emphasize the fundamental
concepts behind most computer usage. The great reward to the student
from this separation of main concepts from syntactic details is the uni-
versal applicability of flow-chart language, which he learns first.

Those who read Chapter 12 (on strings) will find themselves well pre-
pared for the string-oriented procedural languages like SNOBOL, and for
special string-manipulating features of some of the other languages. For
anyone studying Part IIT of this text in depth, a second programming
language like SNOBOL is recommended in addition to (and comple-
mentary to) others such as PL/1, BASIC, or FORTRAN.

A brief comment on how the language supplements are organized
will be helpful. We recommend that Chapter 1 of the language supple-
ment should be studied only after completing the reading of Section 1-4
of Chapter 1 in the main textbook. The reason for this is to introduce
the student to elements of the flow-chart language before he meets the
programming language equivalent. In this way, a language like FORTRAN,
BASIC, or PL/1 is already a second language.

After reading Chapter 1 of the supplement, small computer programs
can be written as laboratory exercises. The instructor can be expected to
supply particularized information to close the gap between the language
supplement and your computer facility. Often, this type of special infor-

xiii

xiv USING A PROGRAMMING LANGUAGE

mation is also available from local computer personnel. General-refer-
ence manuals are detailed technical publications that are seldom appro-
priate as an introduction and hardly ever specific to a facility. For
instance, some computer facilities require that problems be submitted on
special coding sheets. At other facilities, it may be necessary to key-
punch cards or paper tape. If cards are used, there are nearly always
particular details that differ among facilities regarding the preparation
of card decks, including, for example, identification cards or job control
cards. If typewriter-like terminals are used, each has its own method of
operation and such details can only be supplied locally.

Each chapter of the supplement adds more language capability. Begin-
ning with Chapter 2, any corresponding chapter can be read, section by
section, along with the main textbook.

Some final remarks are in order concerning the handling of input-
output details. To write a program in some languages, especially
FORTRAN, one must learn certain data format details, but there is
a risk of spending too much time learning these particulars at the
expense of developing problem-solving experience. To avoid this, the
FORTRAN supplement offers format details piecemeal, as needed,
beginning with Chapter 1. The complete subject of format can be quite
complex and, here again, one can profit from experienced assistance.
Consult highly technical reference manuals only as a last resort.

Format in a language like PL/1 (or SNOBOL) need not be studied
initially (or at all) because a set of “simplified” input-output statements
is available. Thus the need to learn format codes and associated details
is lessened and may be avoided entirely. Some FORTRAN implementa-
tions have available a very simple, easily learned 1/O scheme involving
a minimum of format control or none whatsoever.

COMPUTER SCIENCE: A FIRST COURSE

CONTENTS

PART |

Chapter 1

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8

BASIC CONCEPTS

Algorithms and Computers

Algorithms and Flow Charts

A Numerical Algorithm

A Model of a Computer

Input/Output

Computer Memory

Arithmetic and Control Units of SAMOS
Machine Language

Floating-Point Representation

Chapter 2 The Flow-Chart Language

2-1
2-2
2-3
2-4
2-5

Rules of “Basic Flow Chart”
An Illustrative Example
Arithmetic Expressions
Rounding

Alphanumeric Data

Chapter 3 Additional Flow-Chart Concepts

3-1
3-2
3-3
3-4
3-5
3-6
3-7

Problem Solving—Some Simple Examples
The Euclidean Algorithm
Refining the Euclidean Algorithm

Compound Conditions and Multiple Branching

Evaluation of Relational Expressions
Subscripted Variables
Double Subscripts

Chapter 4 Looping

4-1

Looping

4-2 Illustrative Examples

11
20
23
33
34
41

45
52
58
68
77

84

85
93
99
104
112
114
128

136

137
148

Xxv

