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Preface

Differential problems should not be restricted to vector spaces in general.
The Main Goal of This Book

Ordinary differential equations play a central role in science. Newton’s Second
Law of Motion relating force, mass and acceleration is a very famous and old
example formulated via derivatives. The theory of ordinary differential equations
was extended from the finite-dimensional Euclidean space to (possibly infinite-
dimensional) Banach spaces in the course of the twentieth century. These so-called
evolution equations are based on strongly continuous semigroups.

For many applications, however, it is difficult to specify a suitable normed vector
space. Shapes, for example, do not have an obvious linear structure if we dispense
with any a priori assumptions about regularity and thus, we would like to describe
them merely as compact subsets of the Euclidean space.

Hence, this book generalizes the classical theory of ordinary differential equations
beyond the borders of vector spaces. It focuses on the well-posed Cauchy problem
in any finite time interval.

In other words, states are evolving in a set (not necessarily a vector space) and,
they determine their own evolution according to a given “rule” concerning their
current “rate of change” — a form of feedback (possibly even with finite delay). In
particular, the examples here do not have to be gradient systems in metric spaces.

The Driving Force of Generalization: Solutions via Euler Method

The step-by-step extension starts in metric spaces and ends up in nonempty sets that
are merely supplied with suitable families of distance functions (not necessarily
symmetric or satisfying the triangle inequality).

Solutions to the abstract Cauchy problem are usually constructed by means of the
Euler method and so the key question for each step of conceptual generalization is:
Which aspect of the a priori given structures can be still weakened so that the Euler
method does not fail ?

Diverse Examples Have Always Given Directions ... Towards a Joint
Framework.

In the 1990s, Jean-Pierre Aubin suggested what he called mutational equations and
applied them to systems of ordinary differential equations and time-dependent com-
pact subsets of RV (equipped with the popular Pompeiu-Hausdorff metric). They
are the starting point of this monograph.

Further examples, however, reveal that Aubin’s a priori assumptions (about the addi-
tional structure of the metric space) are quite restrictive indeed. There is no obvious
way for applying the original theory to semilinear evolution equations.
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Our basic strategy to generalize mutational equations is simple: Consider several
diverse examples successively and, whenever it does not fit in the respective muta-
tional framework, then find some extension for overcoming this obstacle.

Mutational Analysis is definitely not just to establish another abstract term of solu-
tion though. Hence, it is an important step to check for each example individually
whether there are relations to some more popular meaning (like classical, strong,
weak or mild solution).

Here are some of the examples under consideration in this book:

Feedback evolutions of nonempty compact subsets of RV

Application to image segmentation

Birth-and-growth processes of random closed sets (not necessarily convex)
Semilinear evolution equations in arbitrary Banach spaces

Nonlocal parabolic differential equations in noncylindrical domains
Nonlinear transport equations for Radon measures on RV

Structured population model with Radon measures on R

— Stochastic ordinary differential equations with nonlocal sample dependence

|

In particular, these examples can now be coupled in systems immediately — due to
the joint framework of Mutational Analysis. This possibility provides new tools for
modelling in future.

The Structure of This Extended Book ... for the Sake of the Reader

This monograph is written as a synthesis of two aims: first, the reader should have
quick access to the results of individual interest and second, all mathematical con-
clusions are presented in detail so that they are sufficiently comprehensible.

Each chapter is elaborated in a quite self-contained way so that the reader has the
opportunity to select freely according to the examples of personal interest. Hence
some arguments typical for mutational analysis might appear rather frequently,
but they are always adapted to the respective framework. Moreover, the proofs are
usually collected at the end of each subsection so that they can be skipped easily if
wanted. References to results elsewhere in the monograph are usually supplied with
page numbers. Each example contains a table that summarizes the choice of basic
sets, distances etc. and indicates where to find the main results.

The introductory Chapter O summarizes the essential notions and motivates the gen-
eralizations in this book.-Many of the subsequent conclusions have their origins in
88 1.1 — 1.6 and so these subsections facilitate understanding the modifications later.

Experience has already taught that such a monograph cannot be written free from
any errors or mistakes. I would like to apologize in advance and hope that the gist
of both the approach and examples is clear. Comments are very welcome.

Heidelberg and Frankfurt, January 2010 Thomas Lorenz
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Chapter 0
Introduction

Think beyond vector spaces !

0.1 Diverse Evolutions Come Together Under the Same Roof

Many applications consist of diverse components and thus, their mathematical
description as functions often starts with long preliminaries (like restrictive as-
sumptions about regularity).

However, shapes and images are basically sets, not even smooth (Aubin [10]).

This observation leads to the question how to specify models in which both real- or

vector-valued functions and shapes are involved. The components usually depend

on time and have a huge amount of influence over each other. Consider e.g.

— A bacterial colony is growing in a nonhomogeneous nutrient broth. For the
bacteria, both speed and direction of expansion depend on the nutrient concen-
tration close to the boundary in particular. On the other hand, the nutrient con-
centration is changing due to consumption and diffusion. (Further applications
of set-valued flows in biological modeling are sketched in [57].)

— A chemical reaction in a liquid is endothermic and depends strongly on the
dissolved catalyst. However, this catalyst is forming crystals due to temperature
decreasing.

— In image segmentation, a computer is to detect the region belonging to one and
the same object. An example of a so-called region growing method (presented
here in § 1.10) is based on constructing time-dependent compact segments so
that an error functional is decreasing in the course of time. So far, smoothing
effects on the image within the current segment are not taken into account.
Basically speaking, it is an example how to extend Lyapunov methods to shape
optimization. Further examples can be found in [58, 71].

— In dynamic economic theory, the results of control theory form the mathemat-
ical basis for important conclusions (e.g. [11]). Coalitions of economic agents,
technological progress and social effects due to migration, however, have an
important impact on the dynamic process that is difficult to quantify by vector-
valued functions. Thus, some parameters ought to be described as sets of per-
missible values and, these subsets might depend on current and former states.

Our goal consists in a joint framework for Cauchy problems of maybe completely
different types. In particular, examples of evolving shapes motivate the substantial
aspect that we dispense with any (additional) linear structure whenever possible.
In other words, the key question here is how to extend ordinary differential equations
beyond vector spaces.

T. Lorenz, Mutational Analysis: A Joint Framework for Cauchy Problems I
In and Beyond Vector Spaces, Lecture Notes in Mathematics 1996,
DOI 10.1007/978-3-642-12471-6_1. (©) Springer-Verlag Berlin Heidelberg 2010



2 0 Introduction

Why We Need a “Nonvectorial”’ Approach to Evolving Subsets of R

In regard to time-dependent subsets of the Euclidean space RV, several formulations
in vector spaces have already been suggested and, they have proved to be very use-
ful. Each of these “detours” via a vector space, however, has conceptual constraints
for analytical (but not geometric) reasons. This observation strengthens our interest
in describing shape dynamics on the basis of distances (not vectors).

Osher and Sethian, for example, devised new numerical algorithms for fronts prop-
agating with curvature-dependent speed in 1988 [149]. Describing these fronts as
level sets of a real-valued auxiliary function leads to equations of motion which re-
semble Hamilton-Jacobi equations with parabolic right-hand sides. As an essential
advantage, their numerical methods can handle topological merging and breaking
naturally.

Meanwhile this level set approach has a solid analytical base in the form of viscosity
solutions introduced by Crandall and Lions (see e.g. [51, 52], [43, 44], [24, 175]).
The viscosity approach, however, has two constraints due to the parabolic maximum
principle as its conceptual starting point:

(1.) All these geometric evolutions have to obey the so-called inclusion principle,
i.e., whenever an initial set contains another initial subset, this inclusion is al-
ways preserved while evolving.

De Giorgi even suggested to use this inclusion principle for constructing sub-
solutions and supersolutions whose values are sets with nonsmooth bound-
aries — similarly to Perron’s method for elliptic partial differential equations
[54], [28, 29]. Cardaliaguet extended this notion to set evolutions depending
on their nonlocal properties [36, 37, 38]. However, there is no obvious way
how to apply these concepts to the easy example that the normal velocity at

the boundary is Tset:ﬁm >0.
(2.) There is no popular theory for the existence of viscosity solutions to systems
so far.

Replacing viscosity solutions by weak (distributional) solutions to the equations of
motion, we always have to neglect any influence of subsets with measure 0.

The distance from a given subset might provide a suitable alternative to the charac-
teristic function of this set, but in general, the distance is just Lipschitz continuous.
The choice of the function space is directly related to the regularity of the topologi-
cal boundary. Delfour and Zolésio pointed out that the oriented distance function is
often a more appropriate way to characterize a closed subset K C RV i.e.

dist(x, K) = inf {|x—y| : ye K} if xe RN\ K
— dist(x, dK) if xe K.
If its restriction to a neighborhood of the topological boundary dK belongs to the

Sobolev space Wlf)c” with p > N, for example, then the well-known embedding the-
orem of Sobolev implies immediately that the set K is of class C'* [55, § 5.6.3].

RN — R, xi—v{
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0.2 Some Introductory Examples

0.2.1 A Region Growing Method of Image Segmentation

An important problem of computer vision is the detection of image segments which
belong to the same object. Meanwhile many concepts have been developed to find
their boundaries on grey-scale images. We mention only few earlier approaches for
clarifying the differing aspects here.

The early methods use real-valued “detectors” to check if a point belongs to the
contours or not. These criteria mostly depend on large changes of the grey values
that are reflected by their gradients. For finding the segments of the same objects,
the detected points have to be combined to boundaries, but the algorithms of each
step lose more information about the image and, errors can hardly be corrected.
For avoiding this weakness, other methods are based on approximations that are
improved in some sense while time is increasing. Active contour models (snakes)
belong to the popular examples that have been implemented efficiently (e.g. [39,
98, 185]). Restricted to two dimensions, they describe each contour as a Jordan
curve that is deformed for minimizing some energy functional. These curves are to
approximate the solution of a variational problem while time is increasing.

Many algorithms of image segmentation rely on analytical concepts that use a

priori assumptions about regularity. Snakes (in their classical form), for example, are
described as Jordan curves that are even twice continuously differentiable. There-
fore edges can be found only in some smoothed shapes. Furthermore it is impossible
to change the topological properties of the resulting segment.
Meanwhile there have been several suggestions to overcome such weaknesses.
Level set methods represent probably the most popular approach [148, 172]. Many
of these ideas follow former directions and develop abstract generalizations which
are to bridge the gaps. Level set methods, for example, use viscosity solutions of
(generalized) Hamilton-Jacobi equations as mentioned before.

On the Way to an Approach (Just) by Means of Set-Valued Analysis

Our goal here is a (hopefully rather simple) region growing method — just on the
basis of evolving compact subsets of RY, i.e. in comparison with many preceding
approaches, there are:

— no a priori restrictions on the regularity of final contours and

— no parameterization of -boundaries while expanding.

Indeed, searching for the (connected) image segment of an object, the basic graph-
ical notion is only to decide which points belong to the segment. If we omit any
additional conditions on regularity we want to detect a compact subset of RV and
so, the approximations depending on time are described as a set-valued map which
associates each time ¢ € [0, 7| with a nonempty compact subset K () C RV:

K(-): [0,T[ — H#(RV).
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For quantifying the ‘“quality” of the approximations
we need a real-valued functional of compact subsets of {
RN. We prefer regarding it as “measurement of error”
to interpreting it as “energy”. The variance of grey
values G|y (restricted to a subset M C RV with positive
Lebesgue measure), for example, gives a quantitative
impression of their oscillation in M. More generally, we
consider

®: #(RV) — R,
Mo (£ m), /Mde, /M(;2 dx)
with a function y € C?(]0,[ x R?, R). The composition
®ok: [0,T[ — R

is a usual real-valued function which ought to decrease
for improving the approximation K (z) C R" in the course
of time.

Finally, the aim of a region growing method (in a stricter
sense) can be formulated as the following mathematical
problem:

Given: || function of grey values G € CO(RV), N > 2

error functional @ : # (RV) — R
st D(M) = w(,z”v (M), / Gdx, / G? dx)
M M
with some y € C2(]0, o0 x R%, R),

initial set Ko € # (RV).

Wanted: || K(-) : [0,T[— # (RN) (T €]0,)):

(i) K(0) = Ko

(ii) K(s) C K(t) whenevers <t
(iii) K(-) continuous w.r.t. Hausdorff metric
(iv) @®oK(-): [0,T[ — R nonincreasing
(V) M := Up<, 7 K(t) is “critical” w.r.t. @

The term of a “critical” set in R" remains to be specified
precisely. Intuitively we are looking for a (not necessarily
closed) set M C RY which cannot be “improved” in
an obvious way by decreasing @ o K(-) and thus, M
is the final candidate for the wanted image segment
surrounding K.
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The ansatz for K(¢) is based on the notion of prescribing the speed of set expansion
(but not the direction of the corresponding velocity). We can easily avoid restric-
tions of regularity if this speed function is not specified just on the boundary dK (1),
but on the whole space RY. Then for a function ¢ : [0, T[ xRV — [0, e[ given, the
initial compact set Ky € % (R") is deformed to
= {x(t) eRY | 3x(-) e Wh1([0,7],RN) : x(0) € Ko,
|X'(5)| < (s, x(s)) for £'-almost every s € [0,7] }.
In other words, this is the reachable set of Ky and the differential inclusion
AJ() (S BC(.’X(A))(O) a.e.in [O,t].

Here B, (; 1(5)(0) C R denotes the closed ball with center at 0 and radius c(s, x(s)).
The key criterion for constructing ¢(-,-) is that the real-valued composition

0,T[— R, 1+ ID(K(I)):w(.ZN(K(t)),/K,)de, /K(’) G2 dx)

should be decreasing. Reynolds Transport Theorem for differential inclusions (in
§ A.6 on page 476 ft.) provides sufficient conditions on ¢(+,-) such that each time-
dependent argument

0,7[ — R, t%»/ G* dx (k=0,1,2)
K(r)
is absolutely continuous with the (weak) derivative
= / Gkadx = / Gx)* e(t,x) da#N"'x
K() IK(t)

Here ##V~! denotes the (N — 1)-dimensional Hausdorff measure in RY. Now the
chain rule for absolutely continuous functions provides the weak derivative of the
relevant composition

4 oK (1)) = /ax(,) o(x, K(1)) - c(t,x) do™

with the coefficient function
o(z,M) : 2 a,mw LN M /de / szx

The basic idea of solvmg the segmentation problem is quite easy: The composition
@ o K(-) is nonincreasing if the integrand of its (weak) derivative is nonpositive, i.e.
o(x,K(t)) - c(t,x) < 0 forall 1 € [0,T[, x€ dK(t). As aconsequence we get the
following criterion of the-construction of ¢(-,-) : forallz € [0,T[, x € dK(z),

o(x,K(t)) >0 = c(t,x)=0.

Roughly speaking, the sign of ¢(-,K(r)) ought to be locally “stable” because
Reynolds Transport Theorem (in § A.6) supposes ¢(+,-) to be continuous with re-
spect to space (at least). In this context we benefit from the assumption G € C?(RV)
for the first time:



