


RASIC
for
BUSINESS

Douglos Hergert




CREDITS
Cover illustration by Daniel Le Noury
Layout and technical illustrations by Jeanne E. Tennant

Apple Il is a registeréd trademark of Apple Computer, Inc.
TRS-80 is a registered trademark of Tandy Corporation.
SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, Sybex assumes no
responsibility for its use, nor for any infringements of patents or other rights of third parties which would result.

Copyright © 1982 SYBEX Inc. World Rights reserved. No part of this publication may be stored in a retrieval
system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph,
magnetic or other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 81-85955
ISBN 0-89588-080-6

First Edition 1982

Printed in the United States of America
1098765432



Acknowledgements

Several people contributed significantly to this book by reading the
manuscript and making thoughtful suggestions. These include James
Compton, whose editorial sense of style and clarity exerted a positive
influence throughout this book; Mark Evanoff, Richard Hergert,
Rudolph Langer, and X.T. Bui, who carefully reviewed the technical
content of the manuscript; and Elaine Foster and Valerie Brewster,
whose questions and comments helped me see the manuscript from
the reader’s point of view.

Thanks are also due to Bret Rohmer and his fine production staff.
Jeanne Tennant produced the layout and the technical drawings;
Judy Wohlfrom was responsible for the pasteup; Mati Sikk performed
his usual miracles at the phototypesetting equipment; and Hilda
van Genderen and Cheryl Wilcox painstakingly proofread the book
through each stage of production. The imaginative cover art is by
Daniel Le Noury.

"9



INfroduction

COMPUTER LITERACY is fast becoming an essential qual-
ification for anyone working in the business world. As more and
more business tasks are aided or directed by computers—from word
processing to decision making—business professionals at every level
are learning more about the powers and limitations of this “‘new
machine’’ in our midst.

One way to find out what a computer can dois to learn to program.
This book is a business-oriented introduction to computer pro-
gramming in BASIC, which continues to be the most popular language
available for microcomputers. In this simple, yet surprisingly powerful
language, beginning programmers can quickly learn to write signifi-
cant application programs.

The goal of this book, then, is to train business professionals to
read, write, and “debug’’ BASIC programs for business applications;
that is, to help them become literate in business computing. Each
chapter focuses on one syntactical feature of BASIC and presents at
least one significant program to illustrate how that feature is used.

The program examples are all presented for their instructional value.
This book is not a collection of ready-made, ‘‘black box’’ programs
offered without explanation, but rather a guide to writing usable
programs. Many programs are accompanied by brief descriptions of
the business tasks they are designed to perform. These familiar ac-
counting tasks are summarized to help explain what the programs
do, and to demonstrate the importance of defining a problem before
writing a program to solve it.

Chapter 1—A First Look at BASIC—provides an introductory over-
view of the programming concepts and vocabulary covered in this
book. A first program is presented (the cost-of-goods-sold program),
though emphasis at this pointis on understanding the general organi-
zation rather than the specific details of the program.

Xiii



Xiv

Chapter 2—Beginning Concepts—introduces input and output in
BASIC. Special features such as TAB and PRINT USING are discussed
in detail; these features aid the programmer in producing attractive
and readable reports. (We also discuss how to get along without
these features in a version of BASIC that does not have them.) Addi-
tional topics of this chapter are variables, assignment statements,
operations, decisions, and transfer of control. All this new material is
brought together in the comparative income statement program,
presented and discussed in detail in this chapter.

Chapter 3—FOR Loops—describes iteration in BASIC; that is, how
toinstruct the computer to perform the same command many times.
A monthly sales report program is presented in two formes, first to
produce asimple report, and then to produce a bar graph of monthly
sales.

Chapter 4—Arrays—explains how to organize groups of related
data conveniently in BASIC. An array is a data structure that requires
precise syntax and a certain conceptual background, which is pro-
vided in this chapter. The power of arrays is illustrated in the present
value program.

Chapter 5—Subroutines and Program Structure—moves step by step
through a simplified general ledger program to teach the important
concepts of top-down, modular programming. This chapter shows
how to write programs that are readable and easily debugged.

Chapter 6—Arithmetic Functions—begins with a description of
built-in functions and how they might be used in business applica-
tions. Following this is an introduction to user-defined functions,
which allow the programmer to create arithmetic functions that are
not included in the language itself. Among the several programs in
this chapter is one that produces a break-even point graph for cost-
volume-profit analysis.

Chapter 7—Strings—presents a number of functions that operate
on, or return information about, strings of characters in BASIC. Two
programs are developed for exploring the ASCII code. Sorting (i.e.,
arranging information in a given order) is also introduced, and the
personnel list program illustrates the concepts presented in this
chapter.



XV

The programs in this book were written and developed on TRS- 80
and Apple Il computers. Many minor differences between “‘versions”’
of BASIC are noted, and you are often directed to see how your
BASIC handles a particular feature. The best place to read this book is
in front of your own computer, so you can try out each program as it
is presented in the book.

Exercises at the end of each chapter will guide you in further explor-
ing the characteristics of BASIC and in approaching new applications.
Appendix A contains suggested answers to some of these exercises,
including several new programs.

An additional feature of this book will help you place your new
understanding of BASIC in the broader context of business program-
ming. Short optional sections appear near the end of every chapter,
comparing the features of BASIC with other languages that are
familiar to the business world—COBOL, Pascal, and FORTRAN. The
goal is to clarify some of the relative advantages of each of these
languages and to point out what they have in common with each
other and with BASIC. To complement these chapter-by-chapter
descriptions, Appendix B presents one complete program in each of
these languages. While none of this is meant to replace formal intro-
ductions to COBOL, Pascal, and FORTRAN, this material may help
you decide what language to study after mastering BASIC.

The reserved words of all four of the languages discussed in this
book have been set in boldface type.

All in all, this book is designed to demystify programming for the
business professional, and to serve as a guide to beginning business
programming in BASIC.



Taple of Contents

Acknowledgements
Introduction

A First Look at BASIC

xi
xiii

First BASIC Program: Cost of Goods Sold 2

REM: Documenting a BASIC Program 4

BASIC Input/Output 6

Versions of BASIC 7

Running the COGS Program 8

Algorithms, Flowcharts, and Control Structures 9
Formatting 14

Other Languages: COBOL, Pascal, and FORTRAN
Summary 16

Exercises 17

Beginning Concepts

15

19

Assignment Statements 20

Variable Types 21

Arithmetic Operations 22

The INPUT Statement 23

The PRINT Statement 25

Decisions, Logic, and Transfer of Control 28
The Comparative Income Statement Program 37
Other Languages 45

Summary 48

Exercises 50

Vii



viii

FOR Loops

53

A Known Number of Repetitions 54
Producing a Sales Report 56

Nested Loops 58

Creating a Bar Graph 60

Loops in Other Languages 64
Summary 65

Exercises 66

Arrays

69

The Present Value Tables 70

A BASIC Program for Discount Factors 73
Arrays 75

The Improved Annuity Program 77

A First Look at the Depreciation Program 80
More Array Examples 81

The Present Value of a Depreciation 86
Multidimensional Arrays 93

Arrays in Other Languages 96

Summary 97

Exercises 98

Subroutines and Program Structure

101

General Ledger Entries 102

Subroutine Syntax in BASIC 114

Program Structure 115

The Program, Step by Step 118
Debugging a Well-Structured Program 135
Other Languages 137

Summary 140

Exercises 142

Arithmetic Functions

145

Built-In Functions 146
Statistical Analysis of Random Numbers 148



User-Defined Functions 151
Cost-Volume-Profit Analysis 155

The Break-Even Point Program with Graph 158
Other Languages 165

Summary 167

Exercises 168

Strings

171

The ASCll Code 172

Two Programs for Exploring ASCIl 172
Other String Functions 176

Other Languages 183

Summary 183

Exercises 184

Appendix A Answers to Selected Exercises

187

AppendixB Complete Programs in COBOL,
Pascal, and FORTRAN

195

COBOL 196
Pascal 205
FORTRAN 210

Bibliography

217

Index

219




CHAPTER |

A Hrst Look ot
RASIC

APPROACHING A FIRST COMPUTER LANGUAGE, we are
faced with learning two new sets of vocabulary. One set involves the
programming language itself, which has not only its own vocabulary,
but also its own syntax and structure. The second set of vocabulary
comprises all the terms that computer programmers use when they
talk about the details of their work. In Chapter 1 we will begin learning
some of these terms, even as we take a first broad look at BASIC. Our
aim will be to prepare for a more detailed investigation of BASIC pro-
gramming in later chapters of this book.



2

BASIC FOR BUSINESS

First BASIC Program: Cost of Goods Sold

The program we will be studying in this chapter performs three
main tasks:

® It prompts the user to type in the inventory and sales data that
the program requires as input.

® It calculates two new values—the cost of goods sold (which we
will refer to as COGS), and the gross margin on sales—from the
input data.

* Finally, itdisplays a well-organized report of both the inputdata
and the calculated values.

Although this program is simple, it will serve to illustrate a number
of important concepts; examining it, we will begin to understand
how programs are written and organized in BASIC. An accompanying
flowchart will help us conceptualize the control structures of the
language. An examination of the output from this program will lead
us to our first discussion of one of the continuing themes of this book:
the importance of planning clear, well-organized and attractive output
formats when programming for business applications.

The program listing appears in Figure 1.1. (A listing is simply a
display of the lines of a program.) The first thing to notice is that all
the lines of a BASIC program are numbered. The lines of code, as we
sometimes call them, are always numbered in ascending order,
although the numbering need not be in uniform multiples. In the
COGS program the numbers are all multiples of 10, but this is an
arbitrary choice. They could just as well have been in multiples of 5
or 50 or 100, or in uneven (ascending) intervals. It is good program-
ming practice, however, to leave ““room’’ between lines for insertion
of new lines of code. This is because we often find ourselves adding
lines to programs for one purpose or another. Ifthe lines of the COGS
program had been numbered sequentially from 1 to 65, it would be
impossible to insert lines anywhere inside the program.

Another fact that we notice right away about this program is that
most of the lines begin with the words REM, INPUT, or PRINT. All
three of these words are part of the BASIC vocabulary, or what might
be called the reserved words of the language. The prevalence of



A FIRST LOOK AT BASIC

INPUT and PRINT lines indicates what we have already mentioned
about this program—that it mainly performs input/output operations.
The REM lines are remarks, or comments, about the program; this
feature of BASIC merits some discussion.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

REM COGS PROGRAM

REM D. HERGERT \ 8 AUGUST 1981

REM

REM VARIABLE NAMES

REM | INCOME ON SALES

REM B BEGINNING INVENTORY
REM P PURCHASES DURING PERIOD
REM E ENDING INVENTORY

REM C COST OF GOODS SOLD
REM G GROSS MARGIN ON SALES
REM A$ ANSWER STRING

REM

REM INPUT SECTION

REM

INPUT “INCOME ON SALES”; |

INPUT “BEGINNING INVENTORY"’; B

INPUT “PURCHASES DURING PERIOD”’; P

INPUT ““ENDING INVENTORY"’; E

REM

REM CALCULATION OF COGS AND GROSS MARGIN
REM

C=B+P—E
G=1—-C

REM

REM OUTPUT SECTION
REM

F$ = ""SS##, #EHHAH AR
PRINT : PRINT
PRINT TAB(30); “COGS” : PRINT : PRINT

Figure 1.1: The Cost of Goods Sold (COGS) Program —




4

BASIC FOR BUSINESS

300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
600
610
620
630
640
650

L Figure 1.1: The Cost of Goods Sold (COGS) Program (cont.)

PRINT ~“INCOME ON SALES"’; TAB(42);

PRINT USING F$; |

GOSUB 600

PRINT ~“BEGINNING INVENTORY”’; TAB(30);
PRINT USING F$; B

PRINT ““PURCHASES DURING PERIOD”’; TAB(30);
PRINT USING F$; P

GOSUB 600

PRINT ““GOODS AVAILABLE FOR SALE”; TAB(30);
PRINT USING F$; B + P

PRINT “ENDING INVENTORY"’; TAB(30);

PRINT USING F$; E

GOSUB 600

PRINT ~“COST OF GOODS SOLD”; TAB(42);
PRINT USING F$; C

PRINT ““GROSS MARGIN ON SALES”; TAB(42);
PRINT USING F$; G

GOSUB 630

INPUT “ANOTHER SET OF DATA”; A$

IF (A$=""Y"") OR (A$=""YES"") GOTO 150

STOP

PRINT TAB(30); “/— — - — = = =~ ——m—————m— o — = = — = = — o
PRINT

RETURN

PRINTTAB(30); “=========================="
PRINT

RETURN

REM: Documenting a BASIC Program

The lines that begin with REM are not part of the programmer’s
instructions to the computer. Rather, they are an aid to anyone
who might someday want to understand the program (including



A FIRST LOOK AT BASIC

5

the original programmer six or eight months after the program is
written). Anything at all can be written on the REM lines, and there is
no ‘‘standard’’ way of writing comments for a program. Although
BASIC programs are not especially hard to read, some features of the
language can cause confusion and complicate the task of figuring out
what the program does. A good BASIC programmer will recognize
these difficult features and document them—in the form of REM
comments—for the benefit of anyone who might, in the future, need
to understand how the program is organized.

In the COGS program we see several groups of REM lines. The first
lines identify the program, the author, and the date the program was
written. The date can be an important piece of information if the
program is ever revised and distributed in several different versions.
Anyone who has a copy of the program should be able to tell what
version it is.

The next group of REM lines identifies the variables that are used
in this program. We will have more to say about variables later in
this chapter; for now we only need to know that variables are used
to store values used in the program. Every variable has a name;
however, in most versions of BASIC, variable names are restricted to
two or three characters. Other computer languages allow us to write
meaningful variable names such as these:

NET-INC
NET _ INCOME
NINCOME

In BASIC, we are more likely to be restricted to a single letter:
N

or a single letter followed by a digit:
N1

Since this is the case, it is often extremely valuable to provide a list
of the variables used in a program, and brief explanations of what
they are used for. This is the purpose of the REM lines under the
heading VARIABLE NAMES.

Finally, we see three REM comments that identify sections of the
program—INPUT SECTION, CALCULATION OF COGS AND GROSS



6

BASIC FOR BUSINESS

MARGIN, and OUTPUT SECTION. The words section, routine, and
block, which often have specific meanings in other programming
languages, are used somewhat informally in descriptions of BASIC to
refer to a group of lines designed to perform a particular task. The
REM comments of the COGS program thus divide the program into
three different sections, making its organization immediately evident.

In summary, REM lines may be used (or not used) according to the
immediate needs of the programmer and the anticipated needs of
those who will later be reading the program. Each programmer must
judge how much documentation is appropriate and necessary. We
should note that REM comments do take up some space in the
memory of the computer. This may be a disadvantage in a particularly
long program if memory space is limited. Nevertheless, REM com-
ments are strongly recommended as an important part of any BASIC
program.

BASIC Input/Output

BASIC is an interactive programming language, which means that
we can type information into the computer from the keyboard while
the program is being executed. Another way of saying this is that a pro-
gram run involves a dialogue between the user and the computer,
guided by the program instructions. A programming language that is
not interactive, that requires all data to be input before the beginning
of the program run, is said to run in batch mode. FORTRAN and
COBOL, two languages that we will periodically examine in this book,
were originally designed as batch-mode languages.

The word in a BASIC program that creates dialogue is INPUT. We
will be studying the details of this instruction in Chapter 2. For now,
notice that the COGS program has four INPUT lines: lines 150 to 180.
As we will see, each of these lines produces a prompt that tells the user
what data to type into the computer. For example:

BEGINNING INVENTORY?

The phrase “BEGINNING INVENTORY" lets the user know exactly
what data to input at this point in the dialogue. The question mark is
supplied by many versions of BASIC so that the user knows that the
program is waiting for input.



A FIRST LOOK AT BASIC

7

The PRINT statement, another instruction we will be mastering in
Chapter 2, produces output from BASIC. Depending on what kind of
output device the computer is connected to, the PRINT statement
might produce a line of text on a screen or an actual line of print
on a printer.

The PRINT statement can appear as the only word of a line of code.
It then produces a blank line in the output. Notice line 280 of the
COGS program:

280 PRINT : PRINT

The colon in BASIC separates two instructions in a single line of code.
(Some versions of BASIC use the backslash (\) instead of the colon.)
Line 280 thus produces two blank lines in the output.

When we run our COGS program to examine a sample dialogue
and the resulting output, we will see the actual results of the PRINT
and INPUT statements. Before we do, however, we must master a
few more programming terms.

Versions of BASIC

We have referred several times to different versions of BASIC.
Since we are aboutto run our first program, thisisa good opportunity
to discuss the meaning of that expression. The explanation will divert
us from our program for a moment.

BASIC, like FORTRAN, COBOL, and Pascal, is a high-level lan-
guage. The instructions of these languages are in English, making
programming relatively ‘“natural’’ for human beings. However, the
machine code, representing the instructions that the computer
actually carries out, is not in English or any other human language,
but rather in strings of Os and 1s called binary code. The link between
a high-level language and machine language is a program itself; this
program is called either a compiler or an interpreter, depending on
how it ultimately supplies the machine code instructions that the
computer will perform.

A compiler translates the entire program in one pass and, as long
as there are no bugs (mistakes) in the program, creates a set of binary
instructions that can be executed directly by the computer. An inter-
preter, on the other hand, works on one line of the program atatime,



