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FOREWORD

This symposium is an outgrowth of a conference on Combinatorics
and Invariant Theory held at West Chester University in the Summer of
1985. We felt at that time that a collection of well placed expository
papers leading directly to the heart of current research in Invariant
Theory would serve an useful purpose. We hope that the present volume

has, in some measure, achieved that aim.

We would like to thank Dr. Frank Grosshans for his informative
INTRODUCTION which unifies the individual papers into an organized

whole.

Editor
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INTRODUCTION

Invariant theory was developed in the nineteenth century by Boole,
Cayley, Clebsch, Gordan, Hilbert, Sylvester, and others. It has been studied
intermittently ever since. In recent times, newly developed techniques from
algebraic geometry and combinatorics have been applied with great success to
some of its outstanding problems. This has moved invariant theory, once
again, to the forefront of mathematical research.

In this introduction, we shall introduce the main problems of invariant
theory and show how the papers in this collection are related to them. We
begin with the necessary definitions.

Let K be an infinite field. Let V be a finite-dimensional vector space

over K and let {e,,...,e,} be any basis for V. Let K [xl,...,xn] be the

polynomial algebra in n variables over K. A function f:V—K is called a

polynomial function on V if there is a polynomial p in K [x,,...,x,] such that

for every v in V, v = }i a,e; , we have f(v) = p(al,...,an). We shall denote
=

the algebra of all polynomial functions on V by K[V].

Next, let G be a group and suppose that G acts on V via some
representation. We say that a polynomial function f on V is invariant with
respect to G if f(g-v) = f(v) for all g in G and v in V. The set of all such
invariant polynomials forms an algebra which we shall denote by K[V]G.

Invariant theory covers a wide range of highly specialized problems and
techniques. One way to impose some unity on this study is to use the notion
of an orbit. Let v be any point in V; the orbit of v with respect to the
action of G consists of all the points g-v where g is any element of G. We
shall denote this orbit by G:-v. By definition, a polynomial f in k[V]G is
constant on any orbit. The orbit G-v is called separated if G.-v = {ve V:
f(v') = f(v ) for all fe K[V]6}. In general, not all orbits are separated but

the separated orbits often form a large subset of V, e.g., one that is



Zariski-open and dense in V. We may take the beginning point of invariant
theory to be the study of these separated orbits. There are three closely

connected questions which we may state (somewhat vaguely) as follows:

(A) What is the structure of the algebra K[V]6? This question starts with

finite generation: are there elements f,,...,fm in K[V]G so that each element
in K[V]6 is a polynomial in f|""’fm? If so, the gquestion as to whether an
orbit G-v is separated looks easier, at least, since {v'e€ V: f(v') = f(v) for
all fe K[V]G} = {v'eV: fl(v’) = f;(v) for i = 1,...,m}.

(B) How may the elements in K[V]G be used to define canonical forms on V?

This question may be taken as a type of the same question encountered in
matrix algebra or as one involving structure on the class of orbits. As an
example of the latter, we might ask whether the separated orbits constitute an

algebraic variety?

(C) How can invariant polynomial be constructed? In a sense, this question
goes beyond the existence questicns raised in Problems (A) and (B) and asks
whether the generators of K[V]G can be written down explicitly or if canonical

forms can be defined by certain explicitly determined invariant polynomials.

Example 1. Let Mn(K) be the vector space consisting of all nxn matrices over
K. The group GL,(K) acts on M, (K) via g-X = gXg-1. Given any matrix X in

M, (K), we may determine its characteristic polynomial. The coefficients of the
characteristic polynomial may be considered to be polynomial functions on
M,(K). As such, they are invariant with respect to the action of GL, (K) and,
indeed, may be shown to generate the algebra of invariant polynomials.
Furthermore, these coefficients are algebraically independent, so the algebra
of invariant polynomials is a polynomial algebra in n variables. The

separated orbits are precisely the orbits of those X in Mn(K) which have n



distinct eigen-values.

Example 2. Let us fix a non-negative integer d and let V; be the vector space
over € consisting of all binary forms of degree d in the variables x and y.
The space V; has a basis (?) xd-i yi for i = 0,1,...,d. The group G = SL, (C)
acts (via multiplication on the left) on the vector space €2 consisting of all
2x1 column matrices. This gives an action of G on C[x,y]. In particular, we
have

e i = - v ) e S = + .
(aq) x a . x a.y and (aq) y a x ay

l
Relative to this action, we have an action of G on %i and, so, an algebra of
invariant polynomials C[W!]G. Hilbert showed that the separated orbits in V4
are those of forms f in Vd which have no factor of multiplicity > d/2. He
achieved this result without ever writing down the generators of C[!J]G; this
theme was taken up in recent times by Mumford and has developed into modern
geometric invariant theory. The study of canonical forms in C[VJ]G is
somewhat different and we postpone our discussion of it.

The group G also acts on the product V'dXC2 via g.(f,v) = (g-f, g-v). The
invariants of this action were called covariants in the nineteenth century.
Covariants were of interest in themselves and also for their applications to
the study of C€[Vy ]6 and canonical forms in Vj . For example, Gordon proved in

1868 that C[YA]G is a finitely generated algebra over € by using a

constructive argument involving covariants called transvectants.

Question (A): structure of K[V]G

We mentioned that Gordan proved that C[%{]G is finitely generated. For
arbitrary groups G and rational representations V, much more is known now,
mainly due to the work of Hilbert, Weyl, Schiffer, Mumford, Nagata, and
Haboush. 1Indeed, if G is a semi-simple algebraic group, then K[V]G is always

finitely generated. Furthermore, if K has characteristic O, then Hochster and



Roberts proved that K[V]é is Cohen-Macaulay, i.e., a free module over a
polynomial subalgebra. (More is known; K[V]G is actually a Gorenstein ring
but not, in general, a complete intersection.)

If G is not semi-simple (or reductive), then K[V]G may or may not be
finitely generated. K. Pommerening ("Invariants of unipotent groups")
summarizes the current state of our knowledge, here. Interestingly enough,
one critical idea in this question comes from an interpretation of covariants
in the study of binary forms. (In this setting, it is due to M. Roberts and
dates to 1861.) Let U = {(au) € SLJ(C) P = 0, a = a.-= 1}. The algebras
C[VA]U and C[Vyx €2]G are isomorphic. Thus, polynomials fixed by U (called
semi-invariants) were used to construct covariants and, conversely, the
"leading term" of any covariant gave a semi-invariant. With this isomorphism
at hand, the finite generation (and Cohen-Macaulay property) of the algebra
C[Vd]U now follow from the analogous facts for SL, (C).

In Example 1, above, we considered the action of GL,(K) on M“(K) given by
g-X = gXg-1. Let D,(K) consist of all the diagonal matrices in M,(K). The
permutation group on n letters acts on D, (K) in the natural way. Furthermore,
the invariants of GL,(K) on M"(K) are isomorphic to the invariants of the
permutation group acting on Dn(K). E. Formanek ("The invariants of nxn
matrices"”) considers the action of GLn(K) on Mn(K)XMn(K)X...X~Mn(K) given by
g-(Xl, Xgo.o0h X)) = (gX,g-l, gX, g71,...,gX.g1). The generators for the
algebra of invariant polynomials may be given explicitly using the trace
function, but now there are relations among the generators. These relations
give information about nilalgebras and, more generally, algebras satisfying
polynomial identities. As would be expected, permutation groups play an

important role in this study.
uestion (B): canonical forms

We mentioned earlier that for the action of G = SLJ(C) on !l’ the



separated orbits in Vj are those of forms having no linear factor of
multiplicity > d/2. For such forms, a good structure (in the algebraic-
geometric sense) can be placed on the class of orbits. The canonical form
problem for binary forms is concerned with writing an f¢ V] as éi (aix+biy)d.
This was studied with great success by Sylvester but there are ;till some
unresolved questions. A. Lascoux ("Forme canonique d’une forme binaire")
discusses the case where d is odd and J.P.S. Kung ("Canonical forms for binary
forms of even degree") the case where d is even. The information coming from
the invariant polynomials in €[V; ]J¢ is not sufficient to address the questions
surrounding these canonical forms. Rather, the key to unlocking the questions
comes from the use of certain explicitly given covariants, such as the
catalecticant, the canonizant, and certain covariants discovered by
Gundelfinger.

Much the same situation arises for the action of SL(V) on the spaces
A¥(V). Let us illustrate this in the case where dim V = 6 and SL,(C) acts
onlA3(V). In this case, Schouten discovered four canonical forms, namely:

(I) bed, (II) bed + bef, (III) bed + bfg + cef, (IV) bed + efg. (Here, the
symbols b,c,d,e,f,g denote linearly independent vectors in V and the "wedge
product"” is denoted by juxtaposition.) The separated orbits correspond to
form (IV) and there is (essentially) only one invariant polynomial. The other
forms may be defined through the use of covariants, where the definition of
covariant is now extended to mean the invariants of SL(V) acting on

Ak(V)XVx ... XV, where V appears up to 6 times. These facts - covariants
define all canonical forms on A¥(V) but invariants do not - may be shown to
hold quite generally. (The extended definition of covariant given above has
its roots in a classical theorem of nineteenth century invariant theory known
as Gram’s theorem.)

A. Nijenhuisl("The equivalence problem for tensor fields") considers a
similar classification problem which arises in the study of differentiable

manifolds. The objects to be classified are tensor fields (rather than skew -

1 Added in print: This paper is not included in this volume as it is due to appear elsewhere.



symmetric tensors) and equivalence is defined with respect to diffeomorphisms
(rather than SL(V)). Differential invariants play the role of invariant
polynomials. Some examples of differential invariants are known but, as yet,

there is no systematic procedure available for constructing them.

uestion (C) : constructing invariants

Ideally, we would like (in some way) to explicitly describe some or all
invariant polynomials. This is possible, for example, in Example 1 above.
However, even in the case of binary forms, there are major difficulties.
Mathematicians in the nineteenth century devised a symbolic technique for
generating such invariants. Cayley’s symbolism has its roots in the use of
differential operators to produce invariants. The German symbolic technique,
as developed by Aronhold, Clebsch, and Gordan, is algebraic and begins with
the "symbolic" representation of an element f in V4§ as (ax + by)d.
Eventually, it was shown that the basic invariants for binary forms are
determinants symbolically. This has been extended now to arbitrary symmetric
and skew-symmetric tensors.

P. Olver ("Invariant theory and differential equations") shows that
several questions in differential equations can be attacked by a transform
technique which changes differential operations into algebraic ones. This
transform approach is closely related to the symbolic method. Furthermore,
the notion of transvectant (as arising in the study of binary forms) can be
generalized and becomes important in questions involving the divergence.

We noted earlier that K[V]G is always finitely generated when G is semi-
simple; we now ask whether it is possible to explicitly display the generators
of K[V]G. In the case of binary forms, Hilbert attacked this problem in a
totally unexpected way. Let Nj = {ve %’: f(v) = 0 for every homogenecus, non-

constant, polynomial f e C[Vd]G}. A form in Nd is called a non-stable form.

Hilbert showed that there are finitely many invariant polynomials f',...,fm



so that Nj = {ve VH: fi(v) =0 for i = 1,...,m}. Furthermore, for such a set
of invariant polynomials, €[V4]6 is integral over C[fl""‘fm]' Hence, the
construction of generators for C[VA]G is closely related to the geometric
study of Nd

These concepts may be extended to the actions of arbitrary semi-simple
groups on finite-dimensional vector spaces. G. Kempf ("Constructing
invariants") explains the basic ideas and shows how they lead to explicit
(though, huge) bounds on the degrees of the generators for K[V]G.

The invariants in K[V]G may be constructed, once an explicit expression
for a basis of V is known, through the technique of protomorphs ("Constructing
invariants via Tschirnhaus transformations”). This technique comes from the
classical theory of binary forms and gives information on K[V]¢ and, also,

algebras of invariant polynomials for certain subgroups of G.



INVARIANTS OF UNIPOTENT GROUPS

A survev

Klaus Pommerening

Fachbereich Mathematik
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Federal Republic of Germany

I1°11 give a survey on the known results on finite generation of inva-
riants for nonreductive groups, and some conjectures.

You know that Hilbert’s 14th problem 1is solved for the invariants of
reductive groups; see [l12] for a survey. So the general case reduces
to the case of unipotent groups. But in this case there are only a few
results, some negative and some positive. I assume that k is an infi-
nite field, say the complex numbers, but in most instances an arbitra-
ry ring would do it.

1. BASIC RESULTS

a) Nagata’s counterexample (1958): Let U be a subgroup of the n-fold

product Ga™ of the additive group, canonically embedded in GL=.,

1*
01
Us . £ GLzn
*
01
such that U is given by 3 “general’” linear relations. Then k[X]VY 1is
not finitely generated, where X = (Xi,...X=2.), 1f n is a square = r= >
16 (at least if k contains enough transcendental elements), cf. [14].

All known counterexamples derive from this one!

Chudnovsky claims, but apparently never published a proof, that n > 10
suffices. The argument in [1] is not convincing, but there 1is more
evidence in [2] and [15]. For the prcof (with n > 10) one needs the
following result:

» There is a set § of n points in the affine plane A® with the prop-
erty: Each nonzero polynomial f « kK[Y1,Y=] that vanishes of order

at least t in each p « S has degree d > t-ym (t any integer > 1),

Let we(8) be the minimum of the degrees of such polynomials; then the



assertion is we.(S) > t-4m. Now the quotient w.(S)/t decreases to a
limit Q(S) when t goes to infinity; Q(S) is called the singular
degree of S. In general Q(S) < n. Chudnovsky’s claim is:

» If S is generic, then Q(S) = n.
This gives we¢ (S) > t-4m. However, if n is not a square, we have the
desired strict inequality because w.(S) is an integer. And in the case

where n is a square, we can take Nagata’'s argument.

b) Popov’s theorem (1979) is the converse of the invariant theorem for
reductive groups. So for an affine algebraic group G the following

statements are equivalent:

(i) G 1is reductive.
(ii) Whenever G acts rationally on a finitely generated algebra A,
then the invariant algebra A® is finitely generated.

See [l9]. This means that for a nonreductive group there can't be a
general positive answer.

c) A positive result goes back to Zariski (1954): If a group G acts on
a finitely generated algebra A such that the invariant algebra A® has
transcendence degree at most 2, then A® |is finitely generated, cf.
[14] . A useful geometric version is:

COROLLARY 1. 1If an affine algebraic group G acts on an affine variety
X and there is an orbit of codimension ¢ 2, then k[X]®™ is finitely ge-
nerated.

Proof. Assume (without loss of generality) that X is normal. Then
trdeg k[X]®™ < dim X - max{dim G-x | x « X} < 2.
COROLLARY 2. If trdeg A < 3, then A®™ is finitely generated.

Proof. Assume that G acts effectively. If G is finite, we are done.
Else trdeg A®™ ¢ 2. ’

For linear actions we can do one more step:

COROLLARY 3. If G acts linearly on the polynomial algebra kI[X] =
k[X1,X=2,Xs,Xa]l, then k[X]™ is finitely generated.

Proof. Assume that G acts effectively. HWithout changing k[X]® we may
assume that G is Zariski-closed in GLa. If G is finite, we are done.
Else dim G > 1 and G is reductive or has a l-dimensional unipotent
normal subgroup N. The algebra A = K[X]™ 1is finitely generated by
Weitzenbock” s theorem (see below 2.1b), trdeg A < 3, k([X]® = A®,



d) Some other positive results derive from Grosshans’s principle
[6]: Let an algebraic group G act rationally on a k-algebra A, and H
be a closed subgroup of G. Then

AH 2 (K[GI"® A)=,

For the proof let G X H act on k([G] ® A as follows: G acts diagonally
by left translation and H acts on k[G] by right translation. Then take
the invariants in the two possible different ways (using an obvious
isomorphism) .

If G is reductive and A finitely generated, this reduces the question,

whether A™ is finitely generated, to the one algebra k[G]™ that is
also the global coordinate algebra of the homogeneous space G/H.

2. APPLICATIONS OF THE GROSSHANS PRINCIPLE

For ring theoretic properties of A" it may be useful to look at the
isomorphism of 1.d. For example an unpublished result of Boutot 1is:

» Let char k = 0 and G reductive, acting on a finitely generated k-
algebra B with only rational singularities. Then B® also only has
rational singularities; in particular B® is Cohen-Macaulay.

The question whether Kk([G]"™ has rational singularities, seems to be
rather difficult, and I don"t dare making a conjecture; but there are
some known examples. If that holds, and A only has rational singulari-
ties, then also k[G]"® A and hence A™ only have rational singulari-
ties.

The Grosshans principle has several important special cases that were
known earlier, but derived with more pains:

l1.) Let G = SL= and H be the maximal unipotent subgroup consisting of
upper triangular matrices. Then kK[G]™ is the coordinate algebra k([V]
of the affine plane V = A=, because H 1is the stabilizer G, of the
point x = (1,0) whose orbit G-x = A® - {0} is dense and isomorphic to
G/H and has a boundary of codimension 2. Here are two interesting ap-
plications of this situation:

a) Let A be the coordinate algebra KI[Ra]l] of the vector space Rgs of
binary forms cf degree d. Then we get the isomorphism

k[V ® Ral™ == k[Raq]"™

between ‘covariants” and “seminvariants’, given by evaluating a covar-
iant F at the point x,
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F wmeeed F((1,0), - )

where the image is the ~“Leitglied” (leading term) of the covariant.
This result goes back to Roberts (around 1870).

b) Let char k = 0 and A be the coordinate alge- U

bra k[W] of an arbitrary rational (finite dim- Ga = GL (W)
ensional) Ga-module W. Then the representation -3 ,,"‘

of Ga extends to SLz via the embedding by the H € SLZ

Jordan normal form. Therefore the invariant al-

gebra k([W]*™ = K[V ® Wl™ is finitely generated. This 1is Seshadri’s
proof [20] of Weitzenbocks theorem (1932). Fauntleroy recently found a
proof of this theorem in positive characteristic, see these conference
proceedings or (5]. The proof 1s a skillful elaboration of the given
one in characteristic 0 but, strictly speeking, doesn’t depend on
Grosshans’s principle.

2.) Somewhat more generally we can take G reductive and H, a maximal
unipotent subgroup of G. The principle for this case was observed by
several people., for the first time (in characteristic 0) by Hadfiev
[10], see also [6] and ([21].

3.) Now let G = GLn act on the polynomial ring kI[X] = k{Xis} 1<i,j<n]
in a matrix of indeterminates by left translation. Let H be a subgroup
of SLn such that k([X]"™ is finitely generated. Then for any affine al-
gebra A on which GLn. (or a reductive group G between H and GL,) acts
rationally, the invariant algebra A" is finitely generated. This is a
qualitative version of the old principle: “If you know the invariants
of n vectors, you know all invariants.” (Capelli 1887) - The n vectors
are the columns of the n-by-n matrix X.

The proof is two lines:
A" = (k[GLn]™ @ A)CLn,

(I interchanged 1left and right translation, but that doesn’t matter)
and

K[GLnl™ = k[X] [1/det]™ = k([X]*™([1l/det]
because H < SL. and det is SLn-invariant.
Note that we need an action of a bigger reductive group G containing

H - of course this is a disadvantage, but in view of Nagata’s counter-
example it even looks surprisingly good.
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3. GROSSHANS SUBGROUPS

The following seems to be a good substitute of Hilbert’s 14th problem:

Find the Grosshans subgroups of GLn.
or more generally of a reductive group G.

The formal definition of a Grosshans subgroup H of an affine algebraic
group is: H is closed, G/H is quasiaffine, k[G/H] is finitely generat-
ed. The technical condition “G/H quasiaffine” 1is automatic if H is
unipotent. Let me give 3 examples:

a) By HadfZievs result the maximal unipotent subgroups are Grosshans,
even if G is not reductive.

b) The existence of non-Grosshans subgroups follows from Nagata’s
counterexample: There must be a situation

GLn > U > Vv, U and V unipotent with dim U/V = 1,
such that U is Grosshans and V is not.
c) Generic stabilizers often are Grosshans subgroups. The following
theorem generalizes a result by Grosshans [7]. Since some people rec-
ently were interested in it, I give the proof here. I would be happy

to see a substantial application.

THEOREM. Let X be a factorial affine variety and G, an affine alge-

braic group acting on X. Then X has a dense open subset U esuch that
the stabilizer G. is a Grosshans subgroup of & for all x € U.

Remark. Instead of “factorial’ the following condition suffices: X is
normal and each G-invariant divisor on X has finite order in the div-
isor class group Cl(X), <f. [18].

Proof. I may assume G connected. There is a function f € k[X] such
that the principal open subset X, is CG-stable and k(X)® is the quoti-
ent field of KkI[Xe]™; this is well-known, cf. [13]. Choose functions
fa, ...y fn € k[X¢]= that generate the field k(X)®. Let R ba the al-
gebra generated by fi, ..., f,, and Y be an affine model of R. Then
k(¥) = k(X)®, and the induced mcrphism mw: X¢ ==e=ep Y is dominant.

Now let m = max{dim G-x | x € Xy be the maximal orbit dimension. The
set Z = {x & X¢ | dim G-x = m} 1is G-stable and open dense in X, and
dim ¥ = dim X - m. Since X¢ is factorial, Xe = 2 =V(h)u A for a
function h « k[Xs] with dim A ¢ dim X - 2. Clearly Xen is G-stable.
Restricting w gives a dominant morphism o: Xen =+ Y. The fibers of
o are G-stable, and



o lox = (07%ax N 2) U (e *ex A A) for all x € Z.

There is a dense open part W € Z such that e~*y has pure dimension m
for all y € W. Shrinking W we may assume that

dim(e~™*y n A) < m-2 for all y « W.

Now U = Z n o *W is G-stable and open dense in X. Let x « U. Then the

closure G-x%x in Xrn is an irreducible component of e~ex - compare the
dimensions. In G:x -~ G+Xx there 1s no z € Z since there is no room for
the m—-dimensional orbit G-z. Thus G-x - G:x € e~ 'ex n A, and

aim(GX - G'x) < dim(e *ex N A) < m - 2 < dim G+X - 2.
Therefore G. is a Grosshans subgroup of G. &
There ara soms natural conjactures:
Conjecture m; Each m-dimensional unipotent subgroup i1s Grosshans.

This conjecture is false when m = r2 - 3 and r > 4, and probably false
when m > 7. Conjecture 1 is true by Weiltzenbdck s theorem, and I guess
this is the only positive case! Since nobody seems to have an approach
to this problem, I make another conjecture:

Conjecture A: Each regular unipotent subgroup of a reductive group 1is
Grosshans.

“Regular” means ‘normalized by a maximal torus”, or, more concretely,
given by a closed subset of the root system. For GL, it means that the
subgroup is defined by relations of the type X;ij; = 0. The following
example shows what this means:

—
HO *

| a, b € k arbitrary}.

How
OO o

O *»O

Such a pattern of zeroes and stars above the diagonal gives a subgroup
of GLn, if and only if it is the incidence matrix of a strict ordering
of the set {l1,...,n}.

Conjecture A is true for the unipotent radicals H = Ru.(P) of the para-
bolic subgroups P. This was shown by Hochschild and Mostow 1973 (for
characteristic 0) [11], and by Grosshans 1983 (for the general case)
[8]. Grosshans recently extended this result in several ways [9].



