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PREFACE

An international conference on Reliability and Quality Control
was held at the University of Missouri-Columbia, Misscuri from
June 4 - 8, 1984, The purpose of the conference was to review
recent developments in those areas and to stimulate interaction
among the leading researchers in the world.

This volume consists of refereed invited papers presented at
he conference. Here a number of distinguished workers present
important results on a broad spectrum of topics in Reliability and
Quality Control. The topics cqvered include acceptance sampling,
combining experts' opinions, control charts, distributions with
wearout, inference procedures, multivariate distributions, multi-
state reliability, reliability algorithm, reliability models,
repairable systems, software reliability and system reliability.
Because of overlap of topics within a paper, instead of classifying
according to topics, these papers have been presented in alphabet-
ical order by the first author. The volume will be of interest to
mathematical statisticians, probablists, and engineers interested
in reliability and quality control.

A list of the titles of the papers presented in the contributed
paper sessions, along with the names of the authors, is given at the
end of the volume. Many of these papers will be published in a
special 'Reliability' issue of the Journal of Statistical Planning
and Inference. This issue is currently being edited by Professor
J. N. Srivastava and me. !

I would like to thank a number of persons who cooperated
actively in organizing the conference. R. E. Barlow, B. Hoadley,

N. R. Mann, G. McDonald, F. Proschan, J. Rosenblatt and N. D.
Singpurwalla were the members of the advisory committee. Dr. M. D.
Glick, Dean of Arts and Science, University of Missouri-Columbia,
Major B. W. Woodruff of U. S. Air Force Office of Scientific
Research and Dr. R. L. Launer of U. S. Army Research Office were
kind enough to make some opening remarks. I am grateful to S. J.
Amster, H. Ascher, R. E. Barlow, S. Blumenthal, R. L. Chaddha,

J. E. Hewett, B. Hoadley, R. A, Johnson, R. L. Launer, R. W, Madsen,
N. R. Mann, W. J. Padgett, F. Proschan, N. D. Singpurwalla, R. T.
Smythe, J. N. Srivastava and B. W. Woodruff for presiding over
different sessions. Thanks are also due to the following for
serving as referees of various papers in the volume: S. J. Amster,
R. E. Barlow, S. K. Basu, M. C. Bhattacharjee, P. J. Boland,

D. Z. Du, R. L. Dykstra, N. Ebrahimi, E. El-Neweihi, J. L. Folks,
M. Ghosh, W. S. Griffith, B. Harris, B. Hoadley, J. Kadane,

S. N. U. A. Kirmani, J. P, Klein, P, W, Laud, R. W. Madsen, N.
Mukhopadhyay, S. E. Rigdon, E. M. Scheuer, J. Sethuraman, T.
Seidenfeld, P. L. Speckman, F. W. Spencer and Y. L. Tong.

I am grateful to the contributors to this volume and to Dr.
Gerard Wanrooy and other staff members at £lsevier Science Publishers
B.V. (North-liolland) for their excellent cooperation. Special thanks
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This volume is dedicated to

Frank Proschan
in recognition of his many pioneering contributions

in reliability theory
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FRANK PROSCHAN AND RELIABILITY THEORY

Richard E. Barlow
The University of California
Berkeley, Ca. 94720
U.S.A.

and

Nozer Singpurwalla
The George Washington University
Washington, D.C. 20052
U.S.A. ~

The professional growth of Frank Proschan and the technical
growth of reliability theory are closely associated. (See Esary,
Proschan, Walkup, 1967). FHe and his colleagues were responsible for
most of the key ideas in modern reliability theory:

Development of coherent structure properties.
° Classes of life distributions based on aging.

Symbiotic union of reliability theory and total
positivity (TP).

Association concept formulated and applied to
reliability theory.

Estimation and testing for life distribution classes.

Inequalities and bounds in reliability theory based
on Schur functions.

Many additional key ideas were formulated and developed by
Proschan. Viewed as a time series, the ideas occur as a convex
function of time; we can hardly wait to see what he contributes
posthumously! ,

One elegant aspect of his approach is that he is not content
simply to formulate a new idea of value solely in reliability theory.
Rather, he often shows how the new idea, concept, technique,
approach, or mathematical theory can be used also in many other
areas of statistics and mathematics. For example:

(1) Association has been used in dozens of areas of
statistics and mathematics. Hundreds of papers
have been written on this concept.

(2) Decreasing in transposition (DT) functions (or
arrangement increasing functions as termed by
Marshall and Olkin, 1979) have been used to show
monotonicity of the power function in a variety
of models in selection problems in a single short
proof, making obsolete the dozens of separate
lengthy proofs showing weaker results in the

‘ earlier literature.

(3) His use of TP in reliability theory led to new
results in TP theory applicable in many other
branches of statistics and mathematics.

As a close colleague of Proschan put it: "Frank is a cream-
skinner. He proposes a new idea, method, or theory, writes a few
papers exploiting the new approach, gets key results, and while the
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rest of the crowd of statisticians rushes in behind him, he has
disappeared through a back door only to appear in an entirely
different area with still another new idea."

In recognition of his accomplishments, he has been awarded:

(1) The ASA Wilks Award.

(2) Distinguished Professor, Florida State University.

(3) Distinguished Alumni Award, George Washington
University. .

(4) Distinguished Alumni Award, The City University
of New York.

What about Frank Proschan, the person? He is not content to
teach his students simply statistics, reliability, and other tech-
nical knowledge. Rather he shares with them his spiritual prin-
ciples of living. A young devotee said of him: "Professor Proschan
follows a 'cradle-to-grave' approach. —He guides you through your
dissertation, helps you obtain a desirable position, shares his
successful experience in grantsmanship, invites you back to his
informal summer institutes to get your research going, and serves
as godfather to your first child, but only if you are totally
positive in your request."

_Frank Proschan is a natural 'stand-up statistician'. He has
given many after-dinner talks at meetings, often incorporating a
"Dear Abby" session in which he spontaneously solves problems of
attendees concerning professional life, not treated in texts. His
instant responses are often weird, wild, wonderful and wone-up.

In summary, Frank Proschan is a population consisting of one
person, but not degenerate; large variance, large entropy - he's
practically unpredictable; totally positive; has Schur instincts in
developing new key ideas; coherent in communication; shares infor-
mation gladly; does not behave like a non-normal deviate; is so
concerned about the validity of shock models in application that he
personally has experienced them, and similarly is currently under-
going a birth and death process.

Dick Barlow: "I-have only one small criticism of Frank: everything
he has ever done is wrong - his treatment is non-Bayesian."

Nozer Singpurwalla: "His grants and contracts are small - each
Gnder half a million. How important can he or his work be?"

Frank Proschan - Rebuttal: "This article is worthless. Dick and
Nozer have omitted my most important trait: In spite of my enormous
achievements, brilliant insights, elegant proofs, incredible variety
of innovations, and professional recognition of my outstanding
contributions, I have always remained modest and self-effacing. In
fact, I am the most humble person I have ever met!"
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RELIABILITY AND QUALITY CONTROL

A.P. Basu (Editor)
© Elsevier Science Publishers B.V, (North-Holland), 1986

ON THE ASYMPTOTIC BEHAVIOR OF THE MEAN
TIME BETWEEN FAILURES FOR REPAIRABLE SYSTEMS

Lee J. Bain and Max Engelhardt

Department of Mathematics and Statistics
University of Missouri-Rolla
Rolla, Missouri
U.S.A.

For failures which occur in accordance with a -«
nonhomogeneous Poisson process, the mean time
between failures is constant. In the case of

a nonhomogeneous Poisson process, this is no
longer true, and it is not clear what concept
should take the place of the mean time between
failures as a criterion for assessing system
reliability. Two possibilities are explored

in this paper.

INTRODUCTION

An important problem in reliability is to consider stochastic models
which provide for the analysis of interfailure times of a repairable
system. Counting processes are very useful in this regard. By a
counting process we mean a nondecreasing, nonnegative integer-valued
stochastic process X(t) which counts the number of failures occur-
ring in the time interval (0,t]. We also assume that X(0) = 0.

Other characterizations of counting processes are also useful. We
will denote the successive failure times of the system by Tl’TZ""'

Tn""' and the times between failures, or interfailure times by Yl'

Y2,...,Yn,... where Yn = Tn - Tn-l

The distributional properties of the process will depend largely on
the nature of the system and the repair policy. In some situations
the distributional properties are stated in terms of the interfail-
ure times, and sometimes the properties are stated in terms of the
counting process itself. For example, consider Poisson processes.

A common approach in characterizing such a process is to specify a
set of axioms which describe the behavior of X(t). An example of
such an axiom is "independent increments" which means essentially
that the numbers of occurrences in disjoint time intervals are inde-
pendent. For a discussion of the full set of axioms see e.g. Parzen
[1] or Ross [3]. An interesting alternate characterization, which
involves the mean function

(1) m(t) = E[X(t)]

is discussed by Cinlar [3]. A counting process is called regular if
m(t) is continuous. It can be shown that a regular process 1is a
Poisson process if and only if it has independent increments and no
‘simultaneous failures.

If m(t) is also differentiable then v(t) = é%m(t)'is called the
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intensity function of the process. We will assume for the duration
of this paper that (1) is differentiable and hence the process is
regular. ;

The best known case of a Poisson process is a homogeneous Poisson
process (HPP) in which case the intensity function is constant, say
v(t) = A. It is well known that a HPP has a number of special math-
ematical properties. For example, the interfailure times are inde-
pendent and identically distributed exponential random variables.

As a result, the mean time between failures (MTBF), € = 1/)A, is
constant with respect to both time and the number of failures. This
provides a convenient criterion for assessing the reliability of the
system, and quite often the reliability specifications of a system
are based primarily-on this quantity. This is true, for example,
when MIL-STD-781C [4] is used. o
Much of the recent work on repairable systems has involved Poisson
processes with nonconstant intensity functions. Such a process is
usually called a nonhomogeneous Poisson process (NHPP). Perhaps the
best known example of an NHPP is the "Weibull process" or Weibull
Poisson process (WPP) which has intensity function of the form

(2) v(t) = (8/6) (tre)P L.

Use of the term Weibull is the result of several properties which
relate to the Weibull probability distribution. Specifically, (a)
v(t), as given by (2), is the hazard rate function of a Weibull

distribution with shape and scale parameters B and 6 respectively,
(b) the time to first failure, Tl' is Weibull distributed, and (c)

the conditional distribution of Tn given Tl = tl’ T2 = t2""'Tn—l =

-1 is a truncated Weibull distribution with truncation point

ety Yy

e B 8
(3) FTn(tnItl,tZ,...,tn_l) = l-expl=(t /0)"+(t _;/6)"]

if tn > tn-l B3 iiedeis tl’ and zero otherwise.

The WPP or, more generally, the NHPP can be used as a model for the
situation where a "minimal repair" is made whenever the system fails.
In other words, the reliability of the system is essentially un-
changed by failure and repair, although the system, while in oper-
ation, may be deteriorating with the passage of time.

Another approach is needed if the policy is to either replace the
system or to repair it to "like new" condition whenever it fails.
This situation corresponds to a renewal process. In this case, the
distributional properties are imposed directly on the interfailure
times. Specifically, the assumption is that the interfailure times
are independent identically distributed random variables. Of course,
the HPP is a special case of a renewal process, where there is no
deterioration between failures. More generally, we could have a
renewal process where there is deterioration between failures, but
the system is renewed each time it fails. An example of this would
be a Weibull renewal process (WRP) where the interfailure times are
Weibull distributed with an increasing hazard rate.

‘General renewal processes retain the property of HPP's that the MTBF
_is constant with respect to both time and the number of failures.
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However, NHPP's do not share this property, and it is not clear -
what concept should take the place of the MTBF in this case.
Several possible generalizations will be explored in the next
section.

MTBF and GENERALIZATIONS

We will discuss the MTBF and several alternatives, some of which are
also discussed by Thompson [5].

The MTBF of a general NHPP with mean function m(t) is

o e zn-l zn—2 %
(4) BT e a1 Io m (Z)[fTﬁT % TTE:TT]e dz

~u

where m-l(z) is the inverse function of m(t) and T'(a) is the gamma
£ za—l

function defined by I'(a) = J e %dz (see Appendix) .

0

For a WPP we have that m-l(z) = ezl/B so that

I(ntl/g) _ T(n-1+1/8),
T(n) T{n=1)

(5) E(T -T,_;) = ol

This has the disadvantage of depending on the number of failures
which have occurred, and is it also a rather complicated function
of n, 6 and B. If we use asymptotic approximations for the gamma
function, such as those provided by Abramowitz and Stegun [6],
Chapter 6, it is possible to show that as n+», for the WPP

1/8+-%

(6) E(T -T__;) ~ (8/8)n = 1/vm ),

which still depends on n, but is somewhat simpler. The relation ~
has the usual meaning that in the limit the ratio of the expressions
on either side of ~ approaches 1.

Another candidate for MTBF is E(Tn-Tn_llTn_1=t), which, for an NHPP
with mean function m(t), has the form

=t) .= em(t)J n LueVdu - t

(7) E(T_-T
n n m(t)

-llTn-l
(see Appendix) .

For a WPP we have that (7) becomes

oo

=t) =.§m(t)f eul/ee_udu -t

(8) E(T_-T
e m(t)

n-lITn-l
which can also be written as

op T =t = ee™ ) r(141/8,m(e)) -t

(9) E(Tn—T
where I'(a,z) = J w*"1e"%ay "ia the incomplete gamma function.
z

The conditional MTBF (7) for an NHPP has the advantage that it
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depends on time t but not on the number of failures n which have
occurred. For more general counting processes (7) may also depend
on n.

A related concept is the mean waiting time to failure from a fixed
time t. The expression Wt = Tx(t)+l_t is the waiting time from an

arbitrary fixed time t until the next failure.

For more general counting processes, E(Wt) and (7) are different,

but for a regular NHPP they turn out to be the same, and for the
duration of this paper we will use the simple notation E(wt) instead

GE 2 4T) -

One other possibility which we will consider is the reciprocal of
the intensity function, 1/v(t). 1In the case of an HPP this would
be the same as the MTBF, but for a NHPP it does not agree exactly
with any of the notions which we have discussed. The function
1/v(t) is referred to by Duane [7] as the instantaneous system mean
time between failures at cumulative test time t. It is also
referred to by Crow [8] as the achieved mean time between failures
of the system. g

The latter terminology results from the application of the WPP as a
model for a system under development. Presumably, the system is

improving under a development program until the desired reliability
goals are achieved, say at time to. After development is ceased it

is assumed that such a system will behave as a HPP with fixed
intensity X = v(to) or achieved MTBF 0 = l/v(to). In other words

the system is WPP with intensity v(t) = ((s/e)(t/e)s'1 SEE0-2E. <ot
and HPP with intensity X = v(to) if t > to. It is assumed in this

application that B < 1 since, for a developmental system, the
intensity of failure is assumed to be decreasing until to. This
approach to modeling and tracking reliability growth is discussed in
MIL-HDBK-189 [9].

ol

A result which suggests that the simpler 1/v(t) might be used
instead of E(Wt), at least after the system has been in operation

for a while, involves an asymptotic result. It can be shown that in
certain cases E(Wt) 2 1/v(h) a8 L%,

Perhaps the most important case is the WPP, where, by applying
asymptotic approximations for the incomplete gamma function in (9),

we obtain

(10) E(Wt) = 1/v(t) + o(l/v(t))

where o(l/v(t)) is an error term which is negligible relative to
1/v(t) (see Appendix). Of course, this implies that E(wt) = Ylofe).
Notice that a similar relationship holds for the exact MTBF and
1/v(m-l(n)) as demonstrated by (6).

It is possible to obtain a more explicit relationship between E(wt)
and 1/v(t) if B = 1/2. 1In particular, 1/v(t) = 20 m(t) and E(Wt) =
_ 20[1+m(t)] so that E(W,) = 20 + 1/v(t) in this special case.
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The property of asymptotic equivalence is not possessed exclusively
by WPP's. For example, an NHPP is said to have a log-linear inten-
sity if it has intensity function of the form

(11) v(t) = (B/B)exp(t/0).

This terminology is based on the fact tnat ln v(t) = 1In(B/6)+t/6 is
a linear function of t. This process could serve as a model for a
repairable system with extremely rapid deterioration while in oper-
ation, since the failure intensity is increasing at an exponential
rate with time.

It is possible to show, by means of the appropriate asymptotic
approximations that (10) is also valid for this model, and conse-
quently E(wt) ~ 1/v(t) as t - » (see Appendix). i

-
General conditions on the mean function or intensity function of an
NHPP, which will imply (10) are not known at this time, but it is
not hard to show that some conditions are required. To see this,
consider the NHPP with mean function of the form

(12) m(t) = B ln(1l+t/8)

in which case the intensity function has the form v (t)=(B/8)/(1+t/6),
which is decreasing with time. Notice that the distribution of time
to first failure is a special form of the Pareto distribution. This
would serve as a model for a system with a very slowly increasing
mean number of failures and a very slowly decreasing intensity
function.

It is possible to determine the exact relationship between E(wt) and

1/v(t) for this model. Using straightforward integration of (7)
with m(t) as given by (12), we obtain

© if <1
(13) E(Wt) = 8
(E:I)-l/v(t) i B >.1.

Thus, for B < l'E(wt) is infinite, and for B > 1 it is proportional

to 1/v(t) with proportionality constant B/(B-1) > 1. For this
model E(wt) and 1/v(t) are clearly not asymptotically equivalent.

We can conclude that NHPP's do not retain the convenient property of
HPP's that the MTBF is constant with respect to both time and the

number of failures. The MTBF will, in general depend on the number
of failures, and E(wt) will depend on time, but not on the number of

.

failures. It also appears that the criterion for reliability
assessment could reasonably be based on l/v(t), rather than on the
more complicated E(w ).
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APPENDIX

Most of the results in Section 2 are based on the fact that if Tl’
T2""’Tn"" are successive occurrence times of a regular NHPP then
Zl,Zz,...,zn,... defined by Zn = m(Tn) are distribuf®d as occurrence
times of a HPP with X = 1.

It folloﬁs, for strictly increasing m(t), that

S P
(Al) E(Tn) = JO m ~(z) m,' e “dz.
In particular, (4) is obtained from (Al). *

Equation (6) is obtained by refinements of Stirling's approximation
of T(a) for large a.

Equation (7) is based on the fact that E(Tn_llTn_l=t) = t-and

sty = -1 J
E(T,|T _;=t) = Elm ~(z))|m (2 _,)=t] D
= Bl ((z -2, )4z, ) Im ez, ) = ¢

B -l =
= Elm “(2 -2 _, + m(t))]

= J m_l(y+m(t)fe-ydy
0

= em(t)J n Y (u) e Ydu.
m(t)

Approximation (10) is obtained from (9) using the approximation

_ .a=1l -2 a=-1 1
(A2) T(a,z) = z e _[l e 8 0(;5)]
as z - », It follows that, for the WPP model,
3 1 1 B
BiW, ) =LY vier ¥ O(mitiviti) %

o ok 1
= e
since m(t) > « as t > «,

.The log linear case is basgd on (7) with m-l(u) = 0 1ln(l+u/B)..
Following substitutions z = u.+ B and m(t) + B = Ov(t) we obtain
E(W,) = Oem(t)+BJ 1n(z/B)e 2dz - t
m(t)+8
- Oeev(t)[J 1n(z)e %dz-1n(B)e
v (t)

The integral term can be aﬁalyzed using the relationship

-ev(t)] =

X

j in(z)e 2dz = ln(x)e * + T'(0,x).
x




