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PREFACE

This monograph develops a theory of grammatical covers, normal forms aad
parsing. Covers, formally defined in 1969, describe a relation between the :étg

of parses of two context—free grammars. If this relation exists then in a formal
model of parsing it is possible to have, except for the output, for both grammars
the same parser.

Questions concerning the possibility to cover a certain grammar with grammars
that conform to some requirements on the productions or the derivations will be
raised and answered. Answers to these cover problems will be obtained by introduc-
ing algorithms that describe a transformation of an input grammar into an output
grammar which satisfies the requirements.

The main emphasis in this monograph is on transformations of context-free
grammars to context-free grammars in some normal form. However, not only transforma-
tions of this kind will be discussed, but also transformations which yield grammars

which have useful parsing properties.

Organization of the monograph

This monograph can be viewed as consisting of four parts.

The first part, Chapters 1 through 3, introduces the cover concept, the moti-
vation of our research, the problems and, moreover, it reviews previous research.

The second part, Chapters 4 through 7, provides cover results for normal form
transformations of context-free and regular grammars.

The third part, Chapters 8 through 10, is devoted to cover results for three
classes of deterministically parsable grammars, viz. LL(k), strict deterministic
and LR(k) grammars. In this part, a discussion of some syntactic aspects of compiler
writing systems is included.

The fourth and final part of this monograph consists of Chapters 11 and 12.
Chapter 1] contains a detailed discussion on simple chain grammars. Chapter 12 sur-
veys parsing strategies for context-free grammars. In this chapter cover properties
of transformations to LL(k) and some other classes of grammars are considered.

A Bibliography and an Index appear at the end of the monograph.

A few sections and notes in this monograph are marked with a star. These starred
sections and notes can be skipped without loss of continuity. Some of these starred
sections and notes deal with syntax categories and grammar functors. Others deal with
technical arguments on parsing at a moment that a reader who is not acquainted with
some less conventional ideas of parsing will not grasp their significance.

The sections and notes on syntax categories are included to give the interested
reader and the reader who is familiar with these concepts a notion of the differ-

ences and the similarities between these concepts and the grammar cover concept.



v

Moreover, it will become clear that in our grammar cover framework of Chapter 2 we
have borrowed from ideas of the grammar functor approach.

We have tried to give full and formal proofs for most of the results which ap-
pear in this monograph. Only in those cases that proofs are available in publications
elsewhere or in cases that we had the idea that a certain result should be clear
because of its simplicity or because of what has been proven in the foregoing parts

of the monograph, we have omitted a proof or formal detail.
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CHAPTER 1

INTRODUCTIONS AND PRELIMINARIES

1.1. INTRODUCTION

Two context-free grammars which generate the same language are said to be weakly
equivalent. Weak equivalence can be considered as a relation of grammatical similar-
ity of context-free grammars. If two grammars Gl and G2 are weakly equivalent, then
for each parse tree T1 of G1 there exists a parse tree T2 of G2 which has the same
frontier, and conversely. Clearly, this relation of weak equivalence does not neces-—
sarily say that the shapes of the trees are closely related. Grammatical similarity
relations have been introduced which describe relationships between the parse trees
of the two grammars.

These relations sometimes but not always presuppose weak equivalence. For example,
there exists the relation of structural equivalence. In that case we demand that,
except for a relabeling of the internal nodes, the parse trees of the two grammars
are the same.

Many other relations have been defined. Only a few will be considered here and

only one of them, the grammar cover, will be treated in detail.

In many cases of interest it is quite natural to have weak equivalence between
two grammars. For example, a grammar can be changed to an other grammar which gener-
ates the same language. Such a transformation on a grammar may be done for several
reasons.

By definition, each context-freelanguage is generated by a context-free grammar.
Instead of arbitrary context-free grammars one can consider context-free grammars
which conform to some requirements on, for example, the productions or the derivations
of the grammar. Then it is natural to ask whether each context-free language has a
context-free grammar of this form and, if so, how to transform a grammar to this
(normal) form.

One reason for conmsidering normal forms may be the inherent mathematical
interest in how to generate a family of context-free languages with a grammatical
description as simple as possible. Moreover, normal forms can simplify proofs and
descriptions in the field of formal languages and parsing. However, in 1975 it still

could be remarked (Hotz[65]):

""Resultate uber die strukturelle Verwandschaft verschiedener Sprachen existieren kaum.
Selbst bei der Herleitung von Normalformentheoremen flr Grammatiken hat man sich mit

der Feststellung der schwachen Aquivalenz begniigt".

Some normal form descriptions for context-free grammars, or for grammars belong-

ing to the various subclasses of the class of context-free grammars, can be particu-



larly amenable for parsing, and this can be a strong motivation to transform grammars.

Transforming grammars into normal forms or to grammars which have other parsing
properties can sometimes lead to faster or more compact parsers for these grammars.
However, in these cases it is desirable to have a stronger relation than weak equiv-
alence between the original grammar and the newly obtained grammar. This can be seen
as follows.

Consider a very practical situation in which we want to build a compiler for a
given programming language. We are interested in the part of the compiler which per-
forms the syntactic analysis. We can consider this analysis as a translation from a
sentence to a string which consists of procedure calls to perform the code generation.

One now can try to find a 'better' grammar (from the point of view of parsing)
such that this translation is preserved. If this is possible, then parsing can be
done with respect to the new grammar. The concept of grammar cover which is studied

in this monograph describes a preservation of this translation.

We confine ourselves to a model of parsing in which each sentence is given a
'description'of each of its parse trees by means of a string of productions of the
grammar. The correspondence of two grammars which is described by the grammar cover
is the relation between the parse tree descriptions for a given sentence. In Chapter
8 we have a short discussion on the limitations of this model.

Often a description of a parse tree of a sentence w is given by means of a left
or right parse, that is, a string of productions which are used in a derivation (left-
most or rightmost) of the sentence w. Although we will also allow other descriptions
of parse trees, it will be clear that we are interested in the relationships among
the ‘derivations of sentences of the grammars which we want to relate. This idea can

be recognized in many concepts.

In the older literature one can find ideas and examples which come close to
later formal concepts. Transformations on context-free grammars have been defined in
practically oriented situations of compiler construction. In those cases no general
definition of the relation between the grammars was presented.

Grammar covers, in the sense that we will use them here, were introduced about
1969 by Gray and Harrison [48]. Their interest in this concept was based on its ap-
plications in the field of parsing.

The product of the syntactic analysis, the parse, can be considered as the argument
of a semantic mapping. In the case that a context-free grammar G' covers a context-—
free grammar G, then each parse with respect to G' of a sentence w can be mapped by a
homomorphism on a parse with respect to G of w. Hence, we can parse with respect to
G' and use the original semantic mapping.

Other examples of grammatical similarity relations are grammar functors and
grammar forms. Grammar functors (X-functors) were introduced by Hotz [63,64] as spe-

cial functors on categories associated with (general) phrase structure grammars. These



categories originate from work on switching circuits. The objects of a syntax cate-
gory are strings over the grammar alphabet. The derivations are then considered as
morphisms. The main concern has been to find an algebraic framework for describing
general properties of phrase structure grammars. Later, functors have been considered
from a more practical point of view and topics related to parsing have been discussed
within this framework. See, for example, Bertsch [14], Benson [13] and Hotz and Ross
[681].

In the case of grammar forms (Cremers and Ginsburg [21]) the starting point is
a (master) grammar from which by means of substitutions of the nonterminal and ter-
minal symbols other grammars are obtained. Observations on the parsing properties
of the master grammar can be valid for all the grammars in the grammatical family

which is obtained by these substitutions (cf. Ginsburg, Leong, Mayer and Wotschke [44 ]).

There are other examples of grammatical similarity relations. In Hunt and Rosen-—
krantz [69] many of them are discussed from the point of view of complexity.

In this monograph we will discuss the concept of grammar cover and its usefulness
for parsing.

At this point we should mention two approaches which could have been followed
and which will not be discussed further.

Firstly, it would be possible to consider transformations on attribute grammars
(Knuth [78]). Here, attributes are associated with the nodes of a parse tree. These
attributes (which contain the necessary information for the code generation) are
obtained from attributes associated with the symbols which appear in the productions
and from attribute evaluation rules. If an attribute grammar is transformed to, for
example, some normal form attribute grammar, then we have not only the question of
language equivalence, but also, explicitly, the question of 'semantic' equivalence.
Such an equivalence is explored in Bochmann [15] and Anderson [5].

Secondly, it would have been possible to discuss translation grammars (Brosgol
[18]) and transformations on translation grammars.

There is a third remark which we want to make at this point. We consider trans-
formations of grammars. If they are applied with a view to obtain faster or compact-
er parsing methods then, instead of transforming the grammar, one can build a parser
for the grammar and then change (optimize) this parser. This is, for instance, a very
common method if an LR-parser is constructed. For example, instead of eliminating
single productions from the grammar, single reductions can be eliminated from the
parser (cf. e.g. Anderson, Eve and Horning [6]).

Answers to questions on the existence of a covering grammar can be answers to
questions whether or not a parser for a given grammar can be modified in certain ad-

vantageous ways.



1.2. OVERVIEW OF THE CONTENTS

In Chapters] to 6 of this monograph we will be concerned with transformations of
arbitrary context-free grammars to context-free grammars in some normal form repre-
sentation. The main normal forms which will be considered are the non-left-recursive
form and the Greibach normal form. Cover results for these normal forms will be pre-
sented.

Throughout this monograph we will pay much attention to what has been said before
by various authors on these transformations. However, hardly any attention will be
paid to grammar functors. Grammar covers are much more amenable than grammar functors

and we think this is shown fairly convincingly.

This section will be followed by a section in which we review some basic termi-
nology concerning formal grammars, automata and syntax categories.

In Chapter 2 grammar covers and functors are introduced. The framework for gram-
mar covers which is presented is very general. Partly this is done to obtain an ana-
logy with the grammar functor approach. The second reason, however, is that we need
this generality to include various definitions of covers which have been introduced
before and to be able to describe practical situations which appear in the field
of compiler building.

Chapter 3 shows the efforts which have been made by other authors to grasp some
of the 'structure' or 'semantic' preserving properties of transformations of context-
free grammars.

In Chapter 4 some general properties of grammar covers are shown and a few pre-
liminary transformations are introduced.

Chapter 5 contains the main transformations of this monograph. It is shown,
among others, that any context-free grammar can be covered with a context-free gram—
mar in Greibach normal form. In Chapter 6 we have collected the cover results for
normal forms of context—free grammars. Chapter 7 is devoted to some similar results
for the class of regular grammars.

In Chapter 8, 9 and 10 we will be concerned with classes of grammars for which
there exist parsing methods which can be implemented by a deterministic pushdown
transducer. Especially in these chapters we will pay attention to the usefulness of
grammar covers for compiler writing systems. Both general cover results and results
for normal forms for LL(k), strict deterministic and LR(k) grammars will be presented.

Finally, in Chapter 11 and 12 we discuss a few subclasses of LR(k) grammars in
the light of the results which were obtained in the preceeding chapters. In Chapter
11 a variety of results are shown for the class of simple chain grammars. Cover prop-
erties, parsing properties and properties of the parse trees of simple chain gram—
mars will be introduced. In Chapter 12 we consider genmeralizations of the class of

simple chain grammars.



1.3. PRELIMINARIES

We review some basic definitions and concepts of formal language theory. Most
of the notation used in this monograph is presented in this section. It is assumed
that the reader is familiar with the basic results concerning context-free grammars
and parsing, otherwise, see Aho and Ullman [3,4], Lewis, Rosenkrantz and Stearns [100]
and Harrison [58]. Notations concerning grammars and automata and notations concerning

categories follow closely those of Aho and Ullman [3] and Benson [13], respectively.

An alphabet is a finite set of symbols (equivalently, letters). The set of all
strings (or words) over an alphabet V is denoted by V'. If o € V% then |a|, the
length of a, is the number of accurrences of symbols in &. The empty string (the string
with length zero) is denoted by €. If a € V*, then aR denotes the reverse of a.

The set of non-negative integers is denoted by N. If Q is a set, then ]Q| stands
for the number of its elements. The empty set is denoted by @#. If Q and R are sets,
then Q\R or Q-R denotes the set {x | x € Q and x ¢ R}. V* is the free monoid finitely
generated by V. vt o= v*\{e}. A (monoid) homomorphism is a mapping between monoids‘
with concatenation as operation. If V" and W are two free monoids and h : V* hd W*

is a homomorphism between them, then h(g) = € and h(aB) = h(a)h(B) for all a, B € v*.

1.3.1. GRAMMARS, AUTOMATA AND TRANSDUCERS

DEFINITION 1.1. A context-free grammar G is a four-tuple G = (N,Z,P,S), where

(i) N and I are alphabets, Nn Z =@ and S € N. The elements of N are called nonter-
minals and those of I terminals. S is called the start symbol.

(ii) P is a finite set of ordered pairs (A,a) such that A € N and & is a word over
the vocabulary V = N u Z. Elements (A,a) of P are called productions and are

written A > Q.

Context—-free grammar will be abbreviated to CFG. Elements of N will generally
be denoted by the Roman capitals A, B, C,...; elements of I by the smalls a, b, c,...
from the first part of the Roman alphabet; X, Y and Z will usually stand for elements
of V; elements of £* will be denoted by u, v, w, X, y and z and Greek smalls a, B,
Ys... will usually stand for elements of v*

It will be convenient to provide the productionsin P with a label. In general
these labels will be in a set AG (or A if G is understood) and we always take
A = i | 1 <1ix< |P|}; we often identify P and -

We write i.A »> o if production A + a has label (or number) i. A is called the
lefthand side of this production; a is the righthand side of the production and o
is a rule alternative of A. If A has rule alternatives O Gpyeeen,d , we write

Axoa o] a



hence, 'l', a symbol not in V, is used to separate rule alternatives. If these pro-
ductions have labels il’iZ""'in’ then we use the notation

le .

i ig/eeidi» A allazl ..... -

1f A € N, then rhs(A) = {a | A > a is in P}.

DEFINITION 1.2. Let G = (NZX,P,S) be a CFG. For a,B € v we say that o directly
derives B, written a = B , if there exist al,az € v and A ~ vy in P such that

a = a]AuZ*and B = alyaz. .

If o, € L~ we say that o left derives B, written a 76 B. If a, € Z we say that o

right derives B, written a 36 B.

The subscript G denoting the grammar in question is omitted whenever the iden-
tity of this grammar is clear from context. The transitive-reflexive closures of

. *  x * . s . 5
these relations are denoted by =, = and K’ respectively. The transitive-irreflexive

L
+ .
closures are denoted by ;, f and 2 respectively.
A sequence Og =0 = .... =0 is called a derivation of o from Oy A sequence
ao f al ? S—— f an (ao i al i ..... ? an) is called a Ieftmost (rightmost) deriva-

tion of a_ from a_.
n 0
If we want to indicate a derivation using a specific sequence T of productions,
; mT M * * . .
we write = (i’ ?), hence, T ¢ P or m ¢ A . In some cases we will use the notation
n n n i . . . . . .
a= 8 (a ? B, a z B) to indicate that the derivation in question is such that o derives

B in n steps, that is, (o,B) € (’)n.

DEFINITION 1.3. Let G = (N,Z,P,S) be a CFG. The language of G is the set L(G) =
= fwers" | s 2 w}. For any a € V', L(@) = ez | a % w}. CFG G is said to be
unambiguous if there does not exist w € z* and m, ™' e A* such that S % w and

S gl w, where m # m'. Otherwise, G is said to be ambiguous. Let w ¢ L(G), then w

L
is called a sentence of G. L(G) is said to be a context-free language (CFL for short).

DEFINITION 1.4. Let G = (N,Z,P,S) be a CFG. Let a ¢ V.

a. k : o is the prefix of o with length k if ]al > k, otherwise k : o = a.
b. a : k is the suffix of o with lengthk if |a| > k, otherwise a : k = a.
c. FIRST (o) = &k : we £° | a3 wl.

Index k of FIRSTk will be omitted when k = 1.

NOTATION 1.1. Let I and A be disjoint alphabets. Homomorphism h
defined by
hZ(X) =X if X € A, and

hZ(X) =g if X e Z.



Homomorphism hZ will be called the I-erasing homomorphism.

The number of different leftmost derivations from S to w is called the degree
of ambiguity of w (with respect to G), written <w,G>. By convention, if w ¢ L(G),
then <w,G> = 0. We say that a ¢ V* is a sentential form, a left sentential form or

§ * .
a right sentential form, if S &3 a, S % a and S K a, respectively.

Derivations (or rather, equivalence classes of derivations) can be represented

by trees. We distinguish between derivation trees and parse trees.

DEFINITION 1.5. A derivation tree is recursively defined by

(1) A single node labeled S is a derivation tree.
(ii) For every derivation tree, let D, labeled A ¢ N, be a leaf of the tree. If

A~ XIXZ"'Xn (Xi e V, 1 £1 < n) is in P, the tree obtained by appending to D
n sons with labels XI’XZ"'
A » £ is in P, the tree obtained by appending to D one son with label € is a

.,Xn in order from the left, is a derivation tree. If

derivation tree.

The set PTR(G), the set of parse trees of G, consists of all derivation trees
where each leaf is labeled with a terminal or with €. The frontier of a derivation
tree is the string obtained by concatenating the labels of the leaves from left to right.

If T is a derivation tree, then fr(T) denotes the frontier of T.

DEFINITION 1.6.

a. Let G = (N,Z,P,S) be a CFG. Define P' = {A~+ [a] | A+ a ¢ P}, where '[' and ']’
are special brackets that are not terminal symbols of G. [G] = (N,Z v {[,]},P',S),
the parenthesized version of G, is called a parenthesis grammar (McNaughton[i(7]).

b. Let G = (N,I,P,S) be a CFG. Define P' = {A > [ al, | i.A > o ¢ P}, where "[;" and
']i' are special brackets that are notterminal symbols of G. Grammar GB =
= (N,Z v {[i | ie AG} U {]i | ie AG}, P', S), the bracketed version of G, is

called a bracketed grammar (Ginsburg and Harrison [43]).

DEFINITION 1.7.

a. CFG G and CFG H are said to be weakly equivalent if L(G) = L(H).
b. CFG G and CFG H are said to be strongly equivalent if PTR(G) = PTR(H).
c. CFG G and CFG H are said to be structurally equivalent if L([G]) = L([H]).

A symbol X € V is useless in a CFG G = (N,Z,P,S) with P # ¢, if there does not
exist a derivation S & wXy = wxy, where wxy ¢ L . There exists a simple algorithm to
remove all useless symbols from a CFG (Aho and Ullman [3]). Throughout this monograph

we assume that the grammars under consideration have no useless symbols. Any produc—
tion of the form A +oawith a € N is called a single production.



DEFINITION 1.8. A CFG G = (N,I,P,S) is

a. reduced, if it has no useless symbols or if P = @.
+
b. e-free, if P c N x V' or P e N x (W{shH)" v {s » €}.
+ % »
c. cycle-free, if, for any A € N, a derivation A = A is not possible.

d. proper, if G has no useless symbols, G is €e-free and G is cycle-free.

DEFINITION 1.9. Let G = (N,Z,P,S) be a CFG. A nonterminal A € N is said to be left
recursive if there exists o € V* such that A 2 Ao.. Grammar G is said to be left recur-
sive if there exists a left recursive nonterminal in N. Otherwise, G is said to be

non-left-recursive (NLR).

For any CFG G = (N,I,P,S) define 6N = (N,%,P%,8) with PR = {a > o® | A > a ¢ P}.
A CFG G is said to be non-right-recursive (NRR) if GR is NLR.

DEFINITION 1.10. A CFG G = (N,Z,P,S) is
a. in Greibach normal form (GNF) if
PeNxIN or PcNxzM{sH* u (s~ el
b. in quasi Greibach normal form (quasi-GNF) if
PcNxIV or et x Z(WW{SH” v {s~ e}.
c. left factored if P does not contain distinct productions of the form A — aBl and

A—>on82 with a # €.

We say that G is in GNF if grammar GR is in GNF . For each CFL one can find a
CFG which is in one of the forms defined in the Definitions 1.8 to 1.10. Greibach
normal form is also called standard form. A grammar is said to be in standard 2-form
if it is in GNF and each righthand side of a production contains at most two non-

terminals.

DEFINITION 1.11. A CFG G = (N,Z,P,S) is said to be

a. right regular, if each production in P is of the form A - aB or A - a, where
A,B € N and a € L.
b. left regular, if each production in P is of the form A - Ba or A > a, where

A,B € N and a € L.

A regular grammar is a grammar which is either left regular or right regular.

A set L is said to be regular if there exists a regular grammar G such that L = L(G).

Now we will generalize grammars to (simple) syntax directed translation schemes.



