Lecture Notes in

Computer Science

Edited xby' G. Goos .ana J. Hartmanis

93

L _Anton Nijholt

Context-Free Grammars:
. Covers, Normal Forms
~ and Parsmg -

; pringer Verlag i - ._;
Berlin Heldelberg NewYork L

Lecture INotes In
Computer Science

’
Edited by G. Goos and J. Hartmanis

93

Anton Nijholt

Context-Free Grammars:
Covers, Normal Forms,
and Parsing

Springer-Verlag
Berlin Heidelberg New York 1980

Editorial Board

W. Brauer P. Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Author

Anton Nijholt

Vrije Universiteit
Wiskundig Seminarium
De Boelelaan 1081
Postbus 7161

1007 MC Amsterdam
The Netherlands

AMS Subject Classifications (1979): 68 F05, 68 F25
CR Subject Classifications (1974): 4.12, 5.23

ISBN 3-540-10245-0 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-10245-0 Springer-Verlag New York Heidelberg Berlin

Library of Congress Cataloging in Publication Data. Nijholt, Anton, 1946-
Context-free grammars. (Lecture notes in computer science; 93) Bibliography: p.
Includes index. 1. Formal languages. |. Title. Il. Series.

QA267.3.N54. 511.3. 80-21378

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies
are made for other than private use, a fee is payable to the publisher, the amount of
the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1980
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

Lecture Notes in Computer Science

Vol. 1: GI-Gesellschaft fiir Informatik e.V. 3. Jahrestagung, Ham-
burg, 8.-10. Oktober 1973. Herausgegeben im Auftrag der Ge-
sellschaft fir Informatik von W. Brauer. XI, 508 Seiten. 1973.

Vol. 2: Gl-Gesellschaft fiir Informatik e.V. 1. Fachtagung tber
Automatentheorie und Formale Sprachen, Bonn, 9.-12. Juli 1973.
Herausgegeben im Auftrag der Gesellschaft fiir Informatik von
K.-H. Bohling und K. Indermark. Vil, 322 Seiten. 1973. :

Vol. 3: 5th Conference on Optimization Techniques, Part |.
(Series: L.F.ILP. TC7 Optimization Conferences.) Edited by R.
Conti and A. Ruberti. X, 565 pages. 1973.

Vol. 4: 5th Conference on Optimization Techniques, Part Il
(Series: I.F.L.P. TC7 Optimization Conferences.) Edited by R.
Conti and A. Ruberti. XIlIl, 389 pages. 1973.

Vol. 5: International Symposium on Theoretical Programming.
Edited by A. Ershov and V. A. Nepomniaschy. VI, 407 pages.
1974.

Vol. 6: B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
Y.lkebe, V. C.Klema, and C. B. Moler, Matrix Eigensystem Routines -
EISPACK Guide. XI, 551 pages. 2nd Edition 1974.1976.

Vol. 7: 3. Fachtagung lber Programmiersprachen, Kiel, 5.-7.
Mérz 1974. Herausgegeben von B. Schlender und W. Frieling-
haus. VI, 225 Seiten. 1974.

Vol.. 8: GI-NTG Fachtagung iber Struktur und Betrieb von
Rechensystemen, Braunschweig, 20.-22. Marz 1974. Heraus-
gegeben im Auftrag der Gl und der NTG von H.-O. Leilich. VI,
340 Seiten. 1974.

Vol. 9: GI-BIFOA Internationale Fachtagung: Informationszen-
tren in Wirtschaft und Verwaltung. Kéin, 17./18. Sept. 1973.
Herausgegeben im Auftrag der Gl und dem BIFOA von P.
Schmitz. VI, 259 Seiten. 1974.

Vol. 10: Computing Methods in Applied Sciences and Engineer-
ing, Part 1. International Symposium, Versailles, December 17-21,
1973. Edited by R. Glowinski and J. L. Lions. X, 497 pages. 1974.

Vol. 11: Computing Methods in Applied Sciences and I;Ingmeer-
ing, Part 2. International Symposium, Versailles, December 17-21,
1973. Edited by R. Glowinski and J. L. Lions. X, 434 pages. 1974.

Vol. 12: GFK-GI-GMR Fachtagung Prozessrechner 1974. Karls-
ruhe, 10.-11. Juni 1974. Herausgegeben von G. Kriiger und
R. Friehmelt. XI, 620 Seiten. 1974.

Vol. 13: Rechnerstrukturen und Betriebsprogrémmlerung, Er-
langen, 1970. (GI-Gesellschaft fir Informatik e.V.) Herausgege-
ben von W. Handler und P. P. Spies. VI, 333 Seiten. 1974.

Vol. 14: Automata, Languages and Programming - 2nd Col-
loquium, University of Saarbriicken, July 29-August 2, 1974.
Edited by J. Loeckx. VIII, 611 pages. 1974.

Vol. 15: L Systems. Edited by A. Salomaa and G. Rozenberg.
VI, 338 pages. 1974.

Vol. 16: Operating Systems, International Symposium, Rocquen-
court 1974. Edited by E. Gelenbe and C. Kaiser. VIII, 310 pages.
1974.

Vol. 17: Rechner-Gestitzter Unterricht RGU '74, Fachtagung,
Hamburg, 12.-14. August 1974, ACU-Arbeitskreis Computer-
Unterstiitzter Unterricht. Herausgegeben im Auftrag der Gl von
K. Brunnstein, K. Haefner und W. Handler. X, 417 Seiten. 1974.

Vol. 18: K. Jensen and N. E. Wirth, PASCAL - User Manual and
Report. VII, 170 pages. Corrected Reprint of the 2nd Edition 1976.

Vol. 19: Programming Symposium. Proceedings 1974. V, 425 pages.

1974.

Vol. 20: J. Engelfriet, Simple Program Schemes and Formal
Languages. VI, 254 pages. 1974.

Vol. 21: Compiler Construction, An Advanced Course. Edited by
F. L. Bauer and J. Eickel. XIV. 621 pages. 1974.

Vol. 22: Formal Aspects of Cognitive Processes. Proceedings 1972.

Edited by T. Storer and D. Winter. V, 214 pages. 1975.

Vol. 23: Programming Methadology. 4th Informatik Symposium,
IBM Germany Wildbad, September 25-27, 1974. Edited by C. E.
Hackl. VI, 501 pages. 1975.

Vol. 24: Parallel Processing. Proceedings 1974. Edited by T. Feng.
VI, 433 pages. 1975.

Vol. 25: Category Theory Applied to Computation and Control. Pro-
ceedings 1974. Edited by E. G. Manes. X, 245 pages. 1975.

Vol. 26: GI-4. Jahrestagung, Berlin, 9.-12. Oktober 1974. Her-
ausgegeben im Auftrag der Gl von D. Siefkes. IX, 748 Seiten.
1975.

Vol. 27: Optimization Techniques. IFIP Technical Conference.
Novosibirsk, July 1-7, 1974. (Series: |.F.L.P. TC7 Optimization
Conferences.) Edited by G. I. Marchuk. VIIl, 507 pages. 1975.

Vol. 28: Mathematical Foundations of Computer Science. 3rd
Symposium at Jadwisin near Warsaw, June 17-22, 1974. Edited
by A. Blikle. VI, 484 pages. 1975.

Vol. 29: Interval Mathematics. Procedings 1975. Edited by K. Nickel-
VI, 331 pages. 1975.

Vol. 30: Software Engineering. An Advanced Course. Edited by
F. L. Bauer. (Formerly published 1973 as Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 81) XIl, 5645 pages. 1975.

Vol. 31: S. H. Fuller, Analysis of Drum and Disk Storage Units. IX,
283 pages. 1975.

Vol. 32: Mathematical Foundations of Computer Science 1975.
Proceedings 1975. Edited by J. Betvat. X, 476 pages. 1975.

Vol. 33: Automata Theory and Formal Languages, Kaiserslautern,
May 20-23, 1975. Edited by H. Brakhage on behalf of Gl. VIl
292 Seiten. 1975.

Vol. 34: Gl - 5. Jahrestagung, Dortmund 8.-10. Oktober 1975.
Herausgegeben im Auftrag der Gl von J. Miihlbacher. X, 765 Seiten.
1975.

Vol. 35: W. Everling, Exercises in Computer Systems Analysis.
(Formerly published 1972 as Lecture Notes in Economics and
Mathematical Systems, Vol. 65) VIII, 184 pages. 1975.

Vol. 36: S. A. Greibach, Theory of Program Structures: Schemes,
Semantics, Verification. XV, 364 pages. 1975.

Vol. 37: C. Bshm, A-Calculus and Computer Science Theory. Pro-
ceedings 1975. XIl, 370 pages. 1975.

Vol. 38: P. Branquart, J.-P. Cardinael, J. Lewi, J.-P. Delescaille,
M. Vanbegin. An Optimized Translation Process and lts Application
to ALGOL 68. IX, 334 pages. 1976.

Vol. 39: Data Base Systems. Proceedings 1975. Edited by H. Hassel-
meier and W. Spruth. VI, 386 pages. 1976.

Vol. 40: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 1. Proceedings 1975. Edited by J. Cea. XIV,
854 pages. 1976.

Vol. 41: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 2. Proceedings 1975. Edited by J. Cea. XIlI,
852 pages. 1976.

Vol. 42: James E. Donahue, Complementary Definitions of Pro-
gramming Language Semantics. VI, 172 pages. 1976.

Vol.43: E. Specker und V. Strassen, Komplexitit von Entscheidungs-
problemen. Ein Seminar. V, 217 Seiten. 1976.

Vol. 44: ECI Conference 1976. Proceedings 1976. Edited by K.
Samelson. VIIl, 322 pages. 1976.

Vol. 45: Mathematical Foundations of Computer Science 1976.
Proceedings 1976. Edited by A. Mazurkiewicz. XI, 801 pages. 1976.

Vol. 46: Language Hierarchies and Interfaces. Edited by F. L. Bauer
and K. Samelson. X, 428 pages. 1976.

Vol. 47: Methods of Algorithmic Language Implementation. Edited
by A. Ershov and C. H. A. Koster. VIIl, 351 pages. 1977.

Vol. 48: Theoretical Computer Science, Darmstadt, March 1977.
Edited by H. Tzschach, H. Waldschmidt and H. K.-G. Walter on
behalf of Gl. VI, 418 pages. 1977.

PREFACE

This monograph develops a theory of grammatical covers, normal forms aad
parsing. Covers, formally defined in 1969, describe a relation between the :étg

of parses of two context—free grammars. If this relation exists then in a formal
model of parsing it is possible to have, except for the output, for both grammars
the same parser.

Questions concerning the possibility to cover a certain grammar with grammars
that conform to some requirements on the productions or the derivations will be
raised and answered. Answers to these cover problems will be obtained by introduc-
ing algorithms that describe a transformation of an input grammar into an output
grammar which satisfies the requirements.

The main emphasis in this monograph is on transformations of context-free
grammars to context-free grammars in some normal form. However, not only transforma-
tions of this kind will be discussed, but also transformations which yield grammars

which have useful parsing properties.

Organization of the monograph

This monograph can be viewed as consisting of four parts.

The first part, Chapters 1 through 3, introduces the cover concept, the moti-
vation of our research, the problems and, moreover, it reviews previous research.

The second part, Chapters 4 through 7, provides cover results for normal form
transformations of context-free and regular grammars.

The third part, Chapters 8 through 10, is devoted to cover results for three
classes of deterministically parsable grammars, viz. LL(k), strict deterministic
and LR(k) grammars. In this part, a discussion of some syntactic aspects of compiler
writing systems is included.

The fourth and final part of this monograph consists of Chapters 11 and 12.
Chapter 1] contains a detailed discussion on simple chain grammars. Chapter 12 sur-
veys parsing strategies for context-free grammars. In this chapter cover properties
of transformations to LL(k) and some other classes of grammars are considered.

A Bibliography and an Index appear at the end of the monograph.

A few sections and notes in this monograph are marked with a star. These starred
sections and notes can be skipped without loss of continuity. Some of these starred
sections and notes deal with syntax categories and grammar functors. Others deal with
technical arguments on parsing at a moment that a reader who is not acquainted with
some less conventional ideas of parsing will not grasp their significance.

The sections and notes on syntax categories are included to give the interested
reader and the reader who is familiar with these concepts a notion of the differ-

ences and the similarities between these concepts and the grammar cover concept.

v

Moreover, it will become clear that in our grammar cover framework of Chapter 2 we
have borrowed from ideas of the grammar functor approach.

We have tried to give full and formal proofs for most of the results which ap-
pear in this monograph. Only in those cases that proofs are available in publications
elsewhere or in cases that we had the idea that a certain result should be clear
because of its simplicity or because of what has been proven in the foregoing parts

of the monograph, we have omitted a proof or formal detail.

Acknowledgements

Several people have helped me prepare this monograph. I should like to mention
particularly Michael A. Harrison of the University of California at Berkeley and
Jaco W. de Bakker of the Vrije Universiteit and the Mathematical Centre in Amster-
dam for providing time, confidence and for their comments on a first handwritten
version of the manuscript. Although not all their suggestions have been incorporated
many improvements are due to their comments.

Other people, maybe sometimes unknowingly, did encourage me. Especially I want

to mention Derick Wood of McMaster's University at Hamilton.

This monograph was prepared during my stay with the Vakgroep Informatica of the
Department of Mathematics of the Vrije Universiteit in Amsterdam. I want to express
my gratitude to Marja H., Marja V., Betty and Carla for being there and helping me.

Carla Reuvecamp did an excellent job of typing the lengthy manuscript.

Anton Nijholt
April 1980.

CONTENTS

1. INTRODUCTION AND PRELIMINARIES

1.1. Introduction
1.2. Overview of the contents
1.3. Preliminaries
1.3.1. Grammars, automata and transducers

l.3.2f Syntax categories

2. GRAMMAR COVERS AND RELATED CONCEPTS

2.1. Grammar covers

2.2. Restrictions on parse relations
2.2.1% Some notes on parsing
2.2.2. Production directed parses

2.3f Grammar functors

2.4. Related concepts

3. COVERS, PARSING AND NORMAL FORMS

3.1. Covers and parsing
3.2. Covers and normal forms: Historical notes

3.3. Covers and normal forms: An introduction

14
20
22
24
28
29

32

32

34
35

4.

4.1.
4.2,

5.

8.

8.1.
8.2.

9.1.
92

\i

PROPERTIES OF COVERS AND PRELIMINARY TRANSFORMATIONS

Properties of covers

Preliminary transformations

NORMAL FORM COVERS FOR CONTEXT-FREE GRAMMARS

From proper grammars to non-left-recursive grammars
From non-left-recursive to Greibach normal form grammars
5.2.1. The 'substitution' transformation

5.2.2. The left part transformation

Transformations on Greibach normal form grammars

THE COVER-TABLE FOR CONTEXT-FREE GRAMMARS

NORMAL FORM COVERS FOR REGULAR GRAMMARS

DETERMINISTICALLY PARSABLE GRAMMARS

Introduction

Preliminaries

COVERS AND DETERMINISTICALLY PARSABLE GRAMMARS

Deterministically parsable grammars

On the covering of deterministically parsable grammars

10. NORMAL FORM COVERS FOR DETERMINISTICALLY PARSABLE GRAMMARS

10.1. Normal form covers for LL(k) grammars

10.2. Normal form covers for strict deterministic grammars

10.3. Normal form covers for LR(k) grammars

38

38

41

48

48

51

51

55
76

80

85

98

98
105

127

127
141
164

Vil
11. COVER PROPERTIES OF SIMPLE CHAIN GRAMMARS 171

11.1. Simple chain grammars 172

11.2. Relationships between simple chain grammars and other classes

of grammars 180
11.3. Simple chain languages 184
11.4. A left part theorem for simple chain grammars 189
11.5. Left part parsing and covering of simple chain grammars 196
12. TRANSFORMATIONS AND PARSING STRATEGIES: A CONCRETE APPROACH 205
12.1. Introduction 205
12.2. From LL(k) to LR(k) grammars: Parsing strategies 207
12.3. Transformations to LL(k) grammars 210
12.4. Parsing strategies revisited: A survey of recent research 230
BIBLIOGRAPHY 239

INDEX 248

CHAPTER 1

INTRODUCTIONS AND PRELIMINARIES

1.1. INTRODUCTION

Two context-free grammars which generate the same language are said to be weakly
equivalent. Weak equivalence can be considered as a relation of grammatical similar-
ity of context-free grammars. If two grammars Gl and G2 are weakly equivalent, then
for each parse tree T1 of G1 there exists a parse tree T2 of G2 which has the same
frontier, and conversely. Clearly, this relation of weak equivalence does not neces-—
sarily say that the shapes of the trees are closely related. Grammatical similarity
relations have been introduced which describe relationships between the parse trees
of the two grammars.

These relations sometimes but not always presuppose weak equivalence. For example,
there exists the relation of structural equivalence. In that case we demand that,
except for a relabeling of the internal nodes, the parse trees of the two grammars
are the same.

Many other relations have been defined. Only a few will be considered here and

only one of them, the grammar cover, will be treated in detail.

In many cases of interest it is quite natural to have weak equivalence between
two grammars. For example, a grammar can be changed to an other grammar which gener-
ates the same language. Such a transformation on a grammar may be done for several
reasons.

By definition, each context-freelanguage is generated by a context-free grammar.
Instead of arbitrary context-free grammars one can consider context-free grammars
which conform to some requirements on, for example, the productions or the derivations
of the grammar. Then it is natural to ask whether each context-free language has a
context-free grammar of this form and, if so, how to transform a grammar to this
(normal) form.

One reason for conmsidering normal forms may be the inherent mathematical
interest in how to generate a family of context-free languages with a grammatical
description as simple as possible. Moreover, normal forms can simplify proofs and
descriptions in the field of formal languages and parsing. However, in 1975 it still

could be remarked (Hotz[65]):

""Resultate uber die strukturelle Verwandschaft verschiedener Sprachen existieren kaum.
Selbst bei der Herleitung von Normalformentheoremen flr Grammatiken hat man sich mit

der Feststellung der schwachen Aquivalenz begniigt".

Some normal form descriptions for context-free grammars, or for grammars belong-

ing to the various subclasses of the class of context-free grammars, can be particu-

larly amenable for parsing, and this can be a strong motivation to transform grammars.

Transforming grammars into normal forms or to grammars which have other parsing
properties can sometimes lead to faster or more compact parsers for these grammars.
However, in these cases it is desirable to have a stronger relation than weak equiv-
alence between the original grammar and the newly obtained grammar. This can be seen
as follows.

Consider a very practical situation in which we want to build a compiler for a
given programming language. We are interested in the part of the compiler which per-
forms the syntactic analysis. We can consider this analysis as a translation from a
sentence to a string which consists of procedure calls to perform the code generation.

One now can try to find a 'better' grammar (from the point of view of parsing)
such that this translation is preserved. If this is possible, then parsing can be
done with respect to the new grammar. The concept of grammar cover which is studied

in this monograph describes a preservation of this translation.

We confine ourselves to a model of parsing in which each sentence is given a
'description'of each of its parse trees by means of a string of productions of the
grammar. The correspondence of two grammars which is described by the grammar cover
is the relation between the parse tree descriptions for a given sentence. In Chapter
8 we have a short discussion on the limitations of this model.

Often a description of a parse tree of a sentence w is given by means of a left
or right parse, that is, a string of productions which are used in a derivation (left-
most or rightmost) of the sentence w. Although we will also allow other descriptions
of parse trees, it will be clear that we are interested in the relationships among
the ‘derivations of sentences of the grammars which we want to relate. This idea can

be recognized in many concepts.

In the older literature one can find ideas and examples which come close to
later formal concepts. Transformations on context-free grammars have been defined in
practically oriented situations of compiler construction. In those cases no general
definition of the relation between the grammars was presented.

Grammar covers, in the sense that we will use them here, were introduced about
1969 by Gray and Harrison [48]. Their interest in this concept was based on its ap-
plications in the field of parsing.

The product of the syntactic analysis, the parse, can be considered as the argument
of a semantic mapping. In the case that a context-free grammar G' covers a context-—
free grammar G, then each parse with respect to G' of a sentence w can be mapped by a
homomorphism on a parse with respect to G of w. Hence, we can parse with respect to
G' and use the original semantic mapping.

Other examples of grammatical similarity relations are grammar functors and
grammar forms. Grammar functors (X-functors) were introduced by Hotz [63,64] as spe-

cial functors on categories associated with (general) phrase structure grammars. These

categories originate from work on switching circuits. The objects of a syntax cate-
gory are strings over the grammar alphabet. The derivations are then considered as
morphisms. The main concern has been to find an algebraic framework for describing
general properties of phrase structure grammars. Later, functors have been considered
from a more practical point of view and topics related to parsing have been discussed
within this framework. See, for example, Bertsch [14], Benson [13] and Hotz and Ross
[681].

In the case of grammar forms (Cremers and Ginsburg [21]) the starting point is
a (master) grammar from which by means of substitutions of the nonterminal and ter-
minal symbols other grammars are obtained. Observations on the parsing properties
of the master grammar can be valid for all the grammars in the grammatical family

which is obtained by these substitutions (cf. Ginsburg, Leong, Mayer and Wotschke [44]).

There are other examples of grammatical similarity relations. In Hunt and Rosen-—
krantz [69] many of them are discussed from the point of view of complexity.

In this monograph we will discuss the concept of grammar cover and its usefulness
for parsing.

At this point we should mention two approaches which could have been followed
and which will not be discussed further.

Firstly, it would be possible to consider transformations on attribute grammars
(Knuth [78]). Here, attributes are associated with the nodes of a parse tree. These
attributes (which contain the necessary information for the code generation) are
obtained from attributes associated with the symbols which appear in the productions
and from attribute evaluation rules. If an attribute grammar is transformed to, for
example, some normal form attribute grammar, then we have not only the question of
language equivalence, but also, explicitly, the question of 'semantic' equivalence.
Such an equivalence is explored in Bochmann [15] and Anderson [5].

Secondly, it would have been possible to discuss translation grammars (Brosgol
[18]) and transformations on translation grammars.

There is a third remark which we want to make at this point. We consider trans-
formations of grammars. If they are applied with a view to obtain faster or compact-
er parsing methods then, instead of transforming the grammar, one can build a parser
for the grammar and then change (optimize) this parser. This is, for instance, a very
common method if an LR-parser is constructed. For example, instead of eliminating
single productions from the grammar, single reductions can be eliminated from the
parser (cf. e.g. Anderson, Eve and Horning [6]).

Answers to questions on the existence of a covering grammar can be answers to
questions whether or not a parser for a given grammar can be modified in certain ad-

vantageous ways.

1.2. OVERVIEW OF THE CONTENTS

In Chapters] to 6 of this monograph we will be concerned with transformations of
arbitrary context-free grammars to context-free grammars in some normal form repre-
sentation. The main normal forms which will be considered are the non-left-recursive
form and the Greibach normal form. Cover results for these normal forms will be pre-
sented.

Throughout this monograph we will pay much attention to what has been said before
by various authors on these transformations. However, hardly any attention will be
paid to grammar functors. Grammar covers are much more amenable than grammar functors

and we think this is shown fairly convincingly.

This section will be followed by a section in which we review some basic termi-
nology concerning formal grammars, automata and syntax categories.

In Chapter 2 grammar covers and functors are introduced. The framework for gram-
mar covers which is presented is very general. Partly this is done to obtain an ana-
logy with the grammar functor approach. The second reason, however, is that we need
this generality to include various definitions of covers which have been introduced
before and to be able to describe practical situations which appear in the field
of compiler building.

Chapter 3 shows the efforts which have been made by other authors to grasp some
of the 'structure' or 'semantic' preserving properties of transformations of context-
free grammars.

In Chapter 4 some general properties of grammar covers are shown and a few pre-
liminary transformations are introduced.

Chapter 5 contains the main transformations of this monograph. It is shown,
among others, that any context-free grammar can be covered with a context-free gram—
mar in Greibach normal form. In Chapter 6 we have collected the cover results for
normal forms of context—free grammars. Chapter 7 is devoted to some similar results
for the class of regular grammars.

In Chapter 8, 9 and 10 we will be concerned with classes of grammars for which
there exist parsing methods which can be implemented by a deterministic pushdown
transducer. Especially in these chapters we will pay attention to the usefulness of
grammar covers for compiler writing systems. Both general cover results and results
for normal forms for LL(k), strict deterministic and LR(k) grammars will be presented.

Finally, in Chapter 11 and 12 we discuss a few subclasses of LR(k) grammars in
the light of the results which were obtained in the preceeding chapters. In Chapter
11 a variety of results are shown for the class of simple chain grammars. Cover prop-
erties, parsing properties and properties of the parse trees of simple chain gram—
mars will be introduced. In Chapter 12 we consider genmeralizations of the class of

simple chain grammars.

1.3. PRELIMINARIES

We review some basic definitions and concepts of formal language theory. Most
of the notation used in this monograph is presented in this section. It is assumed
that the reader is familiar with the basic results concerning context-free grammars
and parsing, otherwise, see Aho and Ullman [3,4], Lewis, Rosenkrantz and Stearns [100]
and Harrison [58]. Notations concerning grammars and automata and notations concerning

categories follow closely those of Aho and Ullman [3] and Benson [13], respectively.

An alphabet is a finite set of symbols (equivalently, letters). The set of all
strings (or words) over an alphabet V is denoted by V'. If o € V% then |a|, the
length of a, is the number of accurrences of symbols in &. The empty string (the string
with length zero) is denoted by €. If a € V*, then aR denotes the reverse of a.

The set of non-negative integers is denoted by N. If Q is a set, then]Q| stands
for the number of its elements. The empty set is denoted by @#. If Q and R are sets,
then Q\R or Q-R denotes the set {x | x € Q and x ¢ R}. V* is the free monoid finitely
generated by V. vt o= v*\{e}. A (monoid) homomorphism is a mapping between monoids‘
with concatenation as operation. If V" and W are two free monoids and h : V* hd W*

is a homomorphism between them, then h(g) = € and h(aB) = h(a)h(B) for all a, B € v*.

1.3.1. GRAMMARS, AUTOMATA AND TRANSDUCERS

DEFINITION 1.1. A context-free grammar G is a four-tuple G = (N,Z,P,S), where

(i) N and I are alphabets, Nn Z =@ and S € N. The elements of N are called nonter-
minals and those of I terminals. S is called the start symbol.

(ii) P is a finite set of ordered pairs (A,a) such that A € N and & is a word over
the vocabulary V = N u Z. Elements (A,a) of P are called productions and are

written A > Q.

Context—-free grammar will be abbreviated to CFG. Elements of N will generally
be denoted by the Roman capitals A, B, C,...; elements of I by the smalls a, b, c,...
from the first part of the Roman alphabet; X, Y and Z will usually stand for elements
of V; elements of £* will be denoted by u, v, w, X, y and z and Greek smalls a, B,
Ys... will usually stand for elements of v*

It will be convenient to provide the productionsin P with a label. In general
these labels will be in a set AG (or A if G is understood) and we always take
A = i | 1 <1ix< |P|}; we often identify P and -

We write i.A »> o if production A + a has label (or number) i. A is called the
lefthand side of this production; a is the righthand side of the production and o
is a rule alternative of A. If A has rule alternatives O Gpyeeen,d , we write

Axoa o] a

hence, 'l', a symbol not in V, is used to separate rule alternatives. If these pro-
ductions have labels il’iZ""'in’ then we use the notation

le .

i ig/eeidi» A allazl -

1f A € N, then rhs(A) = {a | A > a is in P}.

DEFINITION 1.2. Let G = (NZX,P,S) be a CFG. For a,B € v we say that o directly
derives B, written a = B , if there exist al,az € v and A ~ vy in P such that

a = a]AuZ*and B = alyaz. .

If o, € L~ we say that o left derives B, written a 76 B. If a, € Z we say that o

right derives B, written a 36 B.

The subscript G denoting the grammar in question is omitted whenever the iden-
tity of this grammar is clear from context. The transitive-reflexive closures of

. * x * . s . 5
these relations are denoted by =, = and K’ respectively. The transitive-irreflexive

L
+ .
closures are denoted by ;, f and 2 respectively.
A sequence Og =0 = =0 is called a derivation of o from Oy A sequence
ao f al ? S—— f an (ao i al i ? an) is called a Ieftmost (rightmost) deriva-

tion of a_ from a_.
n 0
If we want to indicate a derivation using a specific sequence T of productions,
; mT M * * . .
we write = (i’ ?), hence, T ¢ P or m ¢ A . In some cases we will use the notation
n n n i
a= 8 (a ? B, a z B) to indicate that the derivation in question is such that o derives

B in n steps, that is, (o,B) € (’)n.

DEFINITION 1.3. Let G = (N,Z,P,S) be a CFG. The language of G is the set L(G) =
= fwers" | s 2 w}. For any a € V', L(@) = ez | a % w}. CFG G is said to be
unambiguous if there does not exist w € z* and m, ™' e A* such that S % w and

S gl w, where m # m'. Otherwise, G is said to be ambiguous. Let w ¢ L(G), then w

L
is called a sentence of G. L(G) is said to be a context-free language (CFL for short).

DEFINITION 1.4. Let G = (N,Z,P,S) be a CFG. Let a ¢ V.

a. k : o is the prefix of o with length k if]al > k, otherwise k : o = a.
b. a : k is the suffix of o with lengthk if |a| > k, otherwise a : k = a.
c. FIRST (o) = &k : we £° | a3 wl.

Index k of FIRSTk will be omitted when k = 1.

NOTATION 1.1. Let I and A be disjoint alphabets. Homomorphism h
defined by
hZ(X) =X if X € A, and

hZ(X) =g if X e Z.

Homomorphism hZ will be called the I-erasing homomorphism.

The number of different leftmost derivations from S to w is called the degree
of ambiguity of w (with respect to G), written <w,G>. By convention, if w ¢ L(G),
then <w,G> = 0. We say that a ¢ V* is a sentential form, a left sentential form or

§ * .
a right sentential form, if S &3 a, S % a and S K a, respectively.

Derivations (or rather, equivalence classes of derivations) can be represented

by trees. We distinguish between derivation trees and parse trees.

DEFINITION 1.5. A derivation tree is recursively defined by

(1) A single node labeled S is a derivation tree.
(ii) For every derivation tree, let D, labeled A ¢ N, be a leaf of the tree. If

A~ XIXZ"'Xn (Xi e V, 1 £1 < n) is in P, the tree obtained by appending to D
n sons with labels XI’XZ"'
A » £ is in P, the tree obtained by appending to D one son with label € is a

.,Xn in order from the left, is a derivation tree. If

derivation tree.

The set PTR(G), the set of parse trees of G, consists of all derivation trees
where each leaf is labeled with a terminal or with €. The frontier of a derivation
tree is the string obtained by concatenating the labels of the leaves from left to right.

If T is a derivation tree, then fr(T) denotes the frontier of T.

DEFINITION 1.6.

a. Let G = (N,Z,P,S) be a CFG. Define P' = {A~+ [a] | A+ a ¢ P}, where '[' and ']’
are special brackets that are not terminal symbols of G. [G] = (N,Z v {[,]},P',S),
the parenthesized version of G, is called a parenthesis grammar (McNaughton[i(7]).

b. Let G = (N,I,P,S) be a CFG. Define P' = {A > [al, | i.A > o ¢ P}, where "[;" and
']i' are special brackets that are notterminal symbols of G. Grammar GB =
= (N,Z v {[i | ie AG} U {]i | ie AG}, P', S), the bracketed version of G, is

called a bracketed grammar (Ginsburg and Harrison [43]).

DEFINITION 1.7.

a. CFG G and CFG H are said to be weakly equivalent if L(G) = L(H).
b. CFG G and CFG H are said to be strongly equivalent if PTR(G) = PTR(H).
c. CFG G and CFG H are said to be structurally equivalent if L([G]) = L([H]).

A symbol X € V is useless in a CFG G = (N,Z,P,S) with P # ¢, if there does not
exist a derivation S & wXy = wxy, where wxy ¢ L . There exists a simple algorithm to
remove all useless symbols from a CFG (Aho and Ullman [3]). Throughout this monograph

we assume that the grammars under consideration have no useless symbols. Any produc—
tion of the form A +oawith a € N is called a single production.

DEFINITION 1.8. A CFG G = (N,I,P,S) is

a. reduced, if it has no useless symbols or if P = @.
+
b. e-free, if P c N x V' or P e N x (W{shH)" v {s » €}.
+ % »
c. cycle-free, if, for any A € N, a derivation A = A is not possible.

d. proper, if G has no useless symbols, G is €e-free and G is cycle-free.

DEFINITION 1.9. Let G = (N,Z,P,S) be a CFG. A nonterminal A € N is said to be left
recursive if there exists o € V* such that A 2 Ao.. Grammar G is said to be left recur-
sive if there exists a left recursive nonterminal in N. Otherwise, G is said to be

non-left-recursive (NLR).

For any CFG G = (N,I,P,S) define 6N = (N,%,P%,8) with PR = {a > o® | A > a ¢ P}.
A CFG G is said to be non-right-recursive (NRR) if GR is NLR.

DEFINITION 1.10. A CFG G = (N,Z,P,S) is
a. in Greibach normal form (GNF) if
PeNxIN or PcNxzM{sH* u (s~ el
b. in quasi Greibach normal form (quasi-GNF) if
PcNxIV or et x Z(WW{SH” v {s~ e}.
c. left factored if P does not contain distinct productions of the form A — aBl and

A—>on82 with a # €.

We say that G is in GNF if grammar GR is in GNF . For each CFL one can find a
CFG which is in one of the forms defined in the Definitions 1.8 to 1.10. Greibach
normal form is also called standard form. A grammar is said to be in standard 2-form
if it is in GNF and each righthand side of a production contains at most two non-

terminals.

DEFINITION 1.11. A CFG G = (N,Z,P,S) is said to be

a. right regular, if each production in P is of the form A - aB or A - a, where
A,B € N and a € L.
b. left regular, if each production in P is of the form A - Ba or A > a, where

A,B € N and a € L.

A regular grammar is a grammar which is either left regular or right regular.

A set L is said to be regular if there exists a regular grammar G such that L = L(G).

Now we will generalize grammars to (simple) syntax directed translation schemes.

