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PREFACE

Traditionally, the first undergraduate course in engineering electromag-
netics has been based upon developing static fields in a historical manner,
and culminating in Maxwell’s equations, with perhaps a brief discussion
of uniform plane waves. This is then followed by one or more courses dealing
with transmission lines and wave propagation. Due to the pressure of increas-
ing areas of interest and fewer required courses, there has been in recent years
a growing trend in electrical engineering curricula toward limiting the require-
ment in electromagnetics to a one-semester course or its eguivalent. Con-
sequently, and in view of the student’s earlier exposure in engineering physics
to static fields and Maxwell’s equations, it has become increasingly‘expedient
to deviate from the historical approach and to base the first course in electro-
magnetics upon dynamic fields and their engineering applications.

There are many texts, including one by the author, which fulfill the require-
ments of the traditional approach. There are also several books devoted to
wave propagation and related topics; these, however, rely upon a first course
of the traditional type or a variation of it to provide the required background.
Thus a need has arisen for a one-semester text in which the basic material
is built up on time-varying fields and their engineering applications so as to
enhance its utility for the one-semester student of engineering electromag-
netics, while enabling the student who will continue to take f_‘gther (elective)
courses in electromagnetics to learn many of the same field, concepts and
mathematical tools and techniques provided by the traditional treatment.
This book represents an attempt to satisfy this need.

xi



xii PREFACE

The thread of development of the material is evident from a reading of the
table of contents. Some of the salient features of the first nine chapters
consist of introducing:

1. the bulk of the material through the use of the Cartesian coordinate
system to keep the geometry simple and yet sufficient to learn the
physical concepts and mathematical tools, while employing the other
coordinate systems where necessary;

2. Maxwell’s equations for time-varying fields first in integral form and
then in differential form very early in the book;

3. uniform plane wave propagation by obtaining the field solution to the
infinite plane current sheet of uniform sinusoidally time-varying den-
sity;

4. material media by considering their interaction with uniform plane
wave fields;

5. transmission lines by first considering uniform plane waves guided by
two parallel, plane perfect conductors and then extending to a line of
arbitrary cross section through graphical field mapping;

6. waveguides by considering the superposition of two obliquely propa-
gating uniform plane waves and then placing perfect conductors in
appropriate planes so as to satisfy the boundary conditions;

7. antennas by obtaining the complete field solution to the Hertzian
dipole through a successive extension of the quasistatic field solution
so as to satisfy simultaneously the two Maxwell’s curl equations; and

8.  Maxwell’s equations for static fields as specializations of Maxwell’s
equations for time-varying fields and then proceeding with the discus-
sion of the more important topics of static and quasistatic fields.

The final chapter is devoted to seven independent special topics, each based
upon one or more of the previous six chapters. It is intended that the instruc-
tor will choose one (or more) of these topics for discussion following the
corresponding previous chapter(s). Material on cylindrical and spherical
coordinate systems is presented as appendices so that it can be studied either
immediately following the discussion of the corresponding material on the
Cartesian coordinate system or only when necessary.

From considerations of varying degrees of background preparation at
different schools, a greater amount of material than can be covered in an
average class of three semester-hour credits is included in the book. Since it
has been found that nearly eight chapters can be completed during the
semester, the first six chapters plus an equivalent of about two chapters from
the remaining four is suggested to be typical of coverage. When the back-
ground preparation permits an accelerated discussion of the first three chap-
ters, it is possible to cover a greater amount of material. Worked-out examples



PREFACE xiii

are distributed throughout the text to illustrate and, in some cases, extend the
various concepts. Summary of the material and a number of questions are
included for each chapter to facilitate review of the chapters. Problems are
arranged in the same order as the text material, and answers are provided
for the odd-numbered problems. '

This text is based primarily on lecture notes for classes taught by the
author at the University of Illinois at Urbana-Champaign. The author wishes
to express his appreciation to Patricia Sammann for the excellent typing work.
Finally, although great care has been exercised, some errors are inevitable.
‘The author earnestly requests readers to inform him of any errors that they
may find and to contribute suggestions for improvement.

Urbana, Illinois N. NARAYANA Rao
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1e VECTORS
AND
FIELDS

——

13

Electromagnetics deals with the study of electric and magnetic “fields.
It is at once apparent that we need to familiarize ourselves with the concept
of a “field,” and in particular with “electric” and “magnetic” fields. These
fields are vector quantities and their behavior is governed by a set of laws
known as “Maxwell’s equations.” The mathematical formulation of Max-
well's equations and their subsequent application in our study of the elements
of engineering electromagnetics require that we first learn the basic rules
pertinent to mathematical manipulations involving vector quantities. With
this goal in mind, we shall devote this.chapter to vectors and fields.

We shall first study certain simple rules of vector algebra without the im-
plication of a cqordinate system and then intrcduce the Cartesian coordinate
system, which is the coordinate system employed for the most part of our
study in this book. After learning the vector algebraic rules, we shall turn
our attention to a discussion of scalar and vector fields, static as well as time-
varying, by means of some familiar examples. We shall devote particular
attention to sinusoidally time-varying fields, scalar as well as vector, and to
the phasor technique of dealing with sinusoidally time-varying quantities.
With this general introduction to vectors and fields, we shall then devote
the remainder of the chapter to an introduction of the electric and magnetic
field concepts, from considerations of the experimental laws of Coulomb
dnd Ampere. '



1.1 VECTOR ALGEBRA

In the study of elementary physics we come across several quantities
such as mass, temperature, velocity, acceleration, force, and charge. Some
of these quantities have associated with them not only a magnitude but also
a direction in space whereas others are characterized by magnitude only.
The former class of quantities are known as “vectors” and the latter class of
quantities are known as “scalars.” Mass, teniperature, and charge are scalars
whereas velocity, acceleration, and force are vectors. Other examples are
voltage and current for scalars'and electric and magnetic fields for vectors.

Vector quantities are represented by boldface roman type symbols, e.g.,
A, in order to distinguish them from scalar quantities which are represented
by lightface italic type symbols, e.g., A. Graphically, a vector, say A, is
represented by a straight line with an arrowhead pointing in the direction of
A and having a length proportional to the magnitude of A, denoted |A| or
simply A. Figures 1.1(a)~(d) show four vectors drawn to the same scale. If

2= prgai

A B

— —_—
(a) (b)
C D

(c) (d)

Figure 1.1. Graphical representation of vectors.

the top of the page represents north, then vectors A and B are directed east-
ward with the magnitude of B being twice that of A. Vector C is directed
toward the northeast and has a magnitude three times that of A. Vector D is
directed toward the southwest and has a magnitude equal to that of C. Since
C and D are equal in magnitude but opposite in direction, one is the negative
of the other.

Since a vector may have in general an arbitrary orientation in three dimen-
sions, we need to define a set of three reference directions at each and every
point in space in terms of which we can describe vectors drawn at that point.
It is convenient to choose these three reference directions to be mutually

2



SEC. 1.1 VECTOR ALGEBRA 3

orthogonal as, for example, east, north and upward or the three contiguous
edges of a rectangular room. Thus let us consider three mutually orthogonal
reference directions and direct “unit vectors” along the three directions as
shown, for example, in Fig. 1.2(a). A unit vector has magnitude unity. We
shall represent a unit vector by the symbol i and use a subscript to denote
its direction. We shall denote the three directions by subscripts 1, 2, and 3.
We note that for a fixed orientation of i,, two combinations are possible
for the orientations of i, and i,, as shown in Figs: 1.2(a) and (b). If we
take a right-hand screw and turn it from i, to i, through the 90°-angle, it
progresses in the direction of i, in Fig. 1.2(a) but opposite to the direction of
iy in Fig. 1.2(b): Alternatively, a left-hand screw when turned from i, to i,
in Fig. 1.2(b) will progress in the direction of i;. Hence the set of unit vectors
in Fig. 1.2(a) corresponds to a right-handed system whereas the set in Fig.
1.2(b) corresponds to a left-handed system. We shall work consxstently with
the right-handed system.

1 .
&.

Figure 1.2. (a) Set of three orthogonal unit vectors in a right-handed
system. (b) Set of three orthogonal unit vectors in a left-handed system.

. A vector of magnitude different from unity along any of the reference
directions can be represented in terms of the unit vector along that direction.
Thus 4i, represents a vector of magnitude 4 units in the direction of i;, 6i,
represents a vector of magnitude 6 units in the direction of i,, and —2i,
represents a vector of magnitude 2 units in the direction opposite to that of
i;, as shown in Fig. 1.3. Two vectors are added by placing the beginning of
the second vector at the tip of the first vector and then drawing the sum vec-
tor from the beginning of the first vector to the tip of the second vector. Thus
to add 4i, and 6i,, we simply slide 6i, without changing its direction until
its beginning coincides with the tip of 4i, and then draw the vector 4i, + 6i,
from the beginning of 4i, to the tip of 6i,, as shown in Fig. 1.3. By adding
—2i, to this vector 4i, + 6, in a similar manner, we obtain the vector
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4i +()’i2 - 2i, —a

Figure 1.3. Graphical addition of vectors.

(4i, + 6i, — 2i,), as shown in Fig. 1.3. We note that the magnitude of
(4i, + 6i,) is /4> + 6% or 7.211 and that the magnitude of (4i, + 6i, — 2i,)
is ./4% 4+ 6% + 22 or 7.483. Conversely to the foregoing discussion, a vector
A at a given point is simply the superposition of three vectors 4,i;, A,i,,
.and A,i, which are the projections of A onto the reference directions at that
point. A, A,, and A4, are known asithe components of A along the 1, 2, and
3 directions, respectively. Thus

A=A, + Ai, + 4,i; (1.1)

We now consider three vectors A, B, and C given by

A = Aji, + Ay, + Aji, (1.22)
B = B,i, + B,i, + Bi, (1.2b)
C = Cii, + Gy, + Cii, (1.2¢)

at a point and discuss several algebraic operations involving vectors as fol-
lows. g

VECTOR ADDITION AND SUBTRACTION: Since a given pair of like com-
ponents of two vectors are parallel, addition of two vectors consists simply
of adding the three pairs of like components of the vectors. Thus

A+B= (A1i1 == Aziz 4 Asia) + (Blil =+ Bziz + Bais)
S (Al + By)i; + (Az + Byi, + (45 + B:)js (1.3)

Vector subtraction is a special case of addition. Thus

B — C=B + (—C) = (Bii, + By, + Biy) + (—Cii, — Gy, — Gsiy)
= (Bl — Cx)ix + (Bz - Cz)iz -+ (Bs - C:)is (1-4)
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MULTIPLICATION AND DIvISION BY A SCALAR: Multiplication of a vector
A by a scalar m is the same as repeated addition of the vector. Thus

mA = m(A,i, + Ai, + Aji;) = mA,i, + mA,i, + mA,i; (1.5

Division by a scalar is a special case of multiplication by a scalar. Thus

B lm =i 4 By 1 By, (1.6)
n n

MAGNITUDE OF A VECTOR: From the construction of Fig. 1.3 and the
associated discussion, we have ‘

[Al=[4,i, + 4, + Ayiy| = /AT + 4] + 4] (L.7)

UNIT VECTOR ALONG A: The unit vector i, has a magnitude equal to
unity but its direction is the same as that of A. Hence

A _ A + A,i, -+- A,l,

IA=_'

1 VAT A T 4

- 4 i, + 4, i, (1.8)
JA2+A2+A2 JA2+A2+A§ WAV A} 4 AL

ScaLAR OR Dot ProbucT oF Two VECTORs: The scalar or dot product
of two vectors A and B is a scalar quantity equal to the product of the magni-
tudes of A and B and the cosine of the angle between A and B. It is represented
by a dot between A and B. Thus if & is the angle between A and B, then

A+B=|A||B|cosa = ABcosa (1.9)

For the unit vectors i,, i,, i;, we have

fpeiy =1 d,siy=0 i,i,=0 (1.10a)
ei, =0 dyeip=1 iei,=0 (1.10b)
ei, =0 iyei,=0 iyeij=1 (1.10¢c)

By noting that A « B = A(B cos a) = B(A cosa), we observe that the dot
product operation consists of multiplying the magnitude of one vector by
the scalar obtained by projecting the second vector onto the first vector as
shown in Figs. 1.4(a) and (b). The dot product operation is commutative
since

B+ A=BAcosa = ABcosa = A B (1.11)
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(e

B cos a .
(a) (b) (c)

Figure 1.4. (a) and (b) For showing’that the dot product of two vectors
A and B is the product of the magnitude of one vector and the projection
of the second vector onto the first vector. (c) For proving the distributive
property of the dot product operation.

The distributive property also holds for the dot product as can be seen from
the construction of Fig. 1.4(c), which illustrates that the projection of B + C
onto A is equal to the sum of the projections of B and C onto A. Thus

A B+C)=A-B+A.C (1.12)
Using this property, and the relationships (1.10a)—(1.10c), we havé

A - B = (4,i; + A,i, + A;i;) « (B,i, + B,i, + Bsiy)
= A,i, » Bji; + Ai, » B,i, + Ai, * Bii,
+ A, « Bii, + Aji, o By, + Aji, ¢ Biiy
+ A,i, » Bji, + A4iy « By, + A4l + B,
= A,B, + A,B, + A,B, _ (1.13)

Thus the dot product of two vectors is the sum of the products of the like
components of the two vectors.

VEcTOR OR CRrOss PropucTt oF Two VECTORS: The vector or cross
product of two vectors A and B is a vector quantity whose magnitude is
equal to the product of the magnitudes of A and B and the sine of the angle
o between A and B and whose direction is the direction of advance of a right-
hand screw as it is turned from A to B through the angle a, as shown in Fig.
1.5. It is rgpresented by a cross between A and B. Thus if iy is the unit vector
in the direction of advance of the right-hand screw, then

AxB=|A||B|sinaiy= ABsinaiy (1.19)
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4
w

'

Figure 1.5. The cross product operation A X B.

For the unit vectors i, i,, i;, we have

i, xi, =0 i, x i, =i, i, x i, = —i, (1.15a)
i, xi,=—i, i,xi,=0 i, x iy =1, (1.15b)
i, x i, =i, iy xiy=—i, iyxi;=0 (1.15¢c)

Note that the cross product of identical vectors is zero. If we arrange the

of any two successive unit vectors is equal to the following unit vector, but
if we go backward, the cross product of any two successive unit vectors is
the negative of the following unit vector.

The cross product operation is not commutative since

BxA=|B||A|sina (—iy) = —ABsinaiy=—AxB (L16)

The distributive property holds for the cross product (we shall prove this
later in this section) so that

AxB+C=AxB+AxC (1.17)
Using this property and the relationships (1.15a)—(1.15c), we obtain

A x B = (4,i, + A,i, + Asi;) x (B,i, + B,i, + Biis)

= Ai, x B,i, + A,i, x B,i, + A,i; x Bii,
+ A,i, X Bji, + A,i, X B,i, + A,i, x Bii;
+ Asiy X Bii, + A;i; x B,i, + Aji; % Bii,

= AB,i; — A,B;i, — 4,B,i; + A,Bii,
+ A;Byi, — A;Bii,

= (4,B; — A3B))i; + (438, — A,By)i,
+ (4,8, — 4,8))i, (1.18)



