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PREFACE

In giving an introductory lecture on mathematical topics one can usually
start with the phrase: “It was the Greek civilization which first developed
the elements of ...”. All classical topics suggest this way of presentation,
but even most of the “modern” ones were developed from classical
nuclei, with a continually increasing level of abstraction. Although the
first significant paper — Euler’s — was written in 1736, graph theory is
fairly new having been mentioned in mathematics only in about the
last hundred years, following Kirchhoff’s results on electrical networks.
On the other hand, it has become an independent branch of mathematics
in the last two decades owing to its rapid development. It should not be
called modern, however, in this sense since it is still near to original think-
ing, still full of clarity, and its “charm” recalls the Greek civilization.
It is a branch of combinatorics, it offers a great variety of natural prob-
lems and possible applications, it does not require advanced mathematical
tools — but sometimes deep consideration. For this reason graph theory
is an excellent research field for young people interested in mathematics.
This has let to problems and results of graph theory becoming part of
up-to-date school curricula. Extensive lecturing having made me aware
of the interest at all levels, I wrote the Hungarian version of the present
book in 1969, since no Hungarian book on the subject existed. (The first
scientific monograph on graph theory was, in fact, written by the Hun-
garian professor Dénes K&nig in 1936, but it was in German.) However,
a large number of different books on graph theory have been published
in the last 15 years (see References).

I have tried to give the exact proof of almost all the statements in the
book — the easy theorems as well as the more difficult ones. The results
are presented in statu nascendi, following the procedure of discovery,
solution of sub-statements, definition of new concepts which prove to
be useful, and determination of the possibilities of generalization from
the solution of practical problems. Exercises, problems and their
solutions are given throughout, with suggestions of new problems,
simplification of complicated statements, and, above all, stimulation of
readers.



The exercises are easy: a little drawing and calculation leads the reader
to the solution of problems. A number of problems preceded by an asterisk
(*) appear at the end of each chapter. The purpose of these is to develop
the reader’s ability to solve problems on topics treated in the chapter -
itself. Their solutions are presented in Chapter 7, but individual work
on them is strongly recommended. This kind of activity is suggested
throughout with the reader drawing graphs to illustrate the statements
in the text. Even the wealth of illustrations in the book will not replace
individual drawing, as this alone enables one to see the evolution of the
figure. In this way, becoming familiar with the content of the book
leads to the reader’s own discovery of the results.

To avoid confusion the source of the statements is not indicated in
the text but in the source-index. Chapters are not formally divided into
sections, but the grouping of exercises and/or problems usually indicates
a division; subjects covered are summarized in the Contents. In addition,
to emphasize the various important methods of graph theory, they are
not only mentioned in the subject index, but set in bold-faced type in the
text. All the exercises, problems and statements are numbered as a whole,
within each chapter, including those at the end of the chapter. Numbering
recommences at the beginning of each chapter.

The first chapter deals with basic concepts; the following five con-
sider five areas of graph theory, including some of the more modern
results. Certain topics of interest are not discussed here, e.g. the relation
of graphs to surfaces, matrices, and probability theory; map-colouring
problems, detailed topological description of electrical networks and
the solution of transportation problems. Most of these problems will
be contained in the second volume of this book, which is in preparation.
The reference list contains suggestions for further reading.

Those involved in mathematics at any level should find this book most
useful; in fact, this is true for all whose work involves problem-solving
since the development of the ability to solve problems by thinking in
terms of graph theory is of benefit in any field.

I am especially grateful to the referees of the Hungarian version of
the book, Professors R. Péter and T. Gallai, for their criticism, valuable
suggestions and their comments on the mathematics as well as the
presentation. Particular thanks are due to Professor P. Erd8s, who
suggested and fostered the idea of the English edition. I should like to
thank A. Recski for his translation and constructive remarks and the
staff of Akadémiai Kiadé for their helpfulness.

Béla Andrasfai
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CHAPTER 1

INTRODUCTION TO GRAPHS

A tournament between several teams is first considered. A certain num-
ber of matches has already been played and a clear picture is required
to show which these are. This could take the form of a figure in which
each team corresponds to a point; since all matches are between two
teams, any match can be represented by a line joining the two corre-
sponding points. Let us indicate all the completed matches in this way.
A symbol corresponding to the particular team, should be written beside
each point, otherwise some misunderstanding might arise because lines
corresponding to matches could intersect each other and the points of
intersection might appear to represent teams as well. Therefore, instead
of points, small circles are used to denote the teams. Figure 1 illustrates
the following situation: There are five teams: a, b, ¢, d, e, and the fol-
lowing matches have already been played:

a—d, a—e, b—c,

b—d, c—d, c—e,

Figure 1 is called the graph of the situation. (The word originated from
the possibility of graphical demonstration.) The circles and the lines are
called the vertices and edges of the graph, respectively.

The words point, node, junction are also used instead of vertex. The
edge corresponding to the match a—d is sometimes denoted by {a, d}.
Obviously {a,d} and {d, a} denote the same edge. Similarly {a, e}
is the same as {e, a}, etc. The vertices
a and d are also called the endpoints b
of the edge {a, d}; the edge {a, d} ,

Joins the vertices a and d, or it is
incident to a and d, a is a neighbour
of d, a is adjacent to d, or a and d
are adjacent vertices. Figure 1 is the
graph G;, containing the vertices a,
b,c,d and e and the edges {a, d},
{a, e}, {b,c}, {b,d}, {c,d} and {c, e}. .

It is possible that a given team d

has not yet played a match; and Fig. 1



0d in certain competitions there may be

a o several matches between the same two

teams. The graph G, of Fig. 2 shows

situations corresponding to both these

G, cases. The vertices without incident

edges are called isolated vertices. If two

( or more edges join the same pair of

d P F vertices, the graph is said to contain

multiple edges. b and e are therefore

isolated vertices of G,. The edges con-

necting ¢ and f can be distinguished

by subscripts, for example {c,f}:, {¢,f}2 {¢,f}s. Similarly the edges
corresponding to matches between a and d are {a, d}; and {a, d},.

Acquaintance between certain people can be represented by similar
figures if the acquaintance is assumed to be mutual. Each person cor-
responds to a vertex and an edge joins two vertices if the two people
know each other. The fact that a person a knows himself can be illustrated
by an edge incident to vertex a only (see Fig. 3). Edges like this are usually
called loops.

In what follows a figure is called a graph if it contains points and
lines (vertices and edges), and each line joins two — not necessarily
distinct — vertices. The number of the ends of the edges incident to the
vertex p is called the degree or the'valency of p and is denoted by ¢(p).
A vertex of degree n is sometimes called n-valent.

Figure 3 contains a single vertex, a single edge, and @(a) = 2. The
graph G, of Fig. 4 contains 8 vertices and 10 edges, two of the edges
being loops; in this graph ¢(as) =0, @(a) = ¢(a5) = 1, @(as) = 2,
p(a;) = 3, p(ar) = p(ax) = 4 and @(a;) = 5.

Fig. 2

a, s

a, a,

a a,

Fig. 3 Fig. 4
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