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1

Introduction

In here the key words in the title of the book, namely
nanostructured matter and magnetic anisotropies, are crit-
ically examined and defined.

Nanosystems and nanostructured matter are terms that presently are very
much en vogue, although at best semi-qualitative definitions of these expres-
sions seem to exist. The prefix nano only makes sense when used in connection
with physical units such as meters or seconds, usually then abbreviated by
nm (nanometer) or ns (nanosecond):

1 A= 10"8¢cm= 0.1 nm
1nm = 10"%m

Quite clearly the macroscopic pre-Columbian statue in Fig. 1.1 made from
pure gold nobody would call a nanostructured system because in "bulk" gold
the atoms are separated only by few tenths of a nanometer. Therefore, in

Nano-scales: 1 nm =10 m

Gold atoms

Golden Pre-Columbian  ahoyut (0.5 nm
statue

FIGURE 1.1: Left: macroscopic golden artifact, right: microscopic structure
of fec Au.




2 Magnetic Anisotropies in Nanostructured Matter

order to define nanosystems somehow satisfactorily the concept of functional
units or functional parts of a solid system has to be introduced. Functional in
this context means that particular physical properties of the total system are
mostly determined by such a unit or part. In principle two kinds of nanosys-
tems can be defined, namely solid systems in which the functional part is
confined in one dimension by less than about 100 nm and those where the
confinement is two-dimensional and restricted by about 10 - 20 nm. For mat-
ters of simplicity in the following, nanosystems confined in one dimension will
be termed Id-nanosystems, those confined in two dimensions 2d-nanosystems.
Confinement in three dimensions by some length in a few nm does not make
sense, because this is the realm of molecules (in the gas phase). In soft matter
physics qualitative definitions of nanosystems can be quite different: so-called
nanosized pharmaceutical drugs usually contain functional parts confined in
length in all three directions, which in turn are part of some much larger car-
rier molecule. Since soft matter physics is not dealt with in this book, in the
following a distinction between 1d- and 2d-nanosystems will be sufficient.

A diagram of a typical 1d-nanosystem is displayed in Fig. 1.2 reflecting the
situation, for example, of a magnetically coated metal substrate such as a few
monolayers of Co on Cu(111). Systems of this kind are presently very much
studied in the context of perpendicular magnetism. Very prominent examples

(optional) cap

{1 <100nm

substrate > 500 nm

FIGURE 1.2: Solid system, nanostructured in one dimension.

of 1d-nanosystems are magnetoresistive spin-valve systems, see Fig. 1.3, that
consist essentially of two magnetic layers separated by a non-magnetic spacer.
As can be seen from this figure the functional part refers to a set of buried slabs
of different thicknesses. It should be noted that in principle any interdiffused
interface between two different materials is also a 1d-nanosystem, since usually
the interdiffusion profile extends only over a few monolayers, i.e., is confined
to about 10 nm or even less.

Fig. 1.4 shows a sketch of a 2d-nanosystem in terms of (separated) clusters
of atoms on top of or embedded in a substrate. These clusters can be either
small islands, (nano-) pillars or (nano-) wires. "Separated" was put cau-
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FIGURE 1.3: Transition electron micrograph of a giant magnetoresistive spin-
valve read head. By courtesy of the MRS Bulletin, Ref. [1].

atoms | _ege <1000
D)
e o /
e®e® V/ <10nm

substrate: > 500 nm L‘

FIGURE 1.4: Solid system, nanostructured in two dimension.

tiously in parentheses since although such clusters appear as distinct features
in Scanning Tunnelling Microscopy (STM) pictures, see Fig. 1.5, in the case
of magnetic atoms forming these clusters they are connected to each other,
e.g., by long range magnetic interactions.

It was already said that a classification of nanosystems can be made only in
a kind of semi-qualitative manner using typical length scales in one or two di-
mensions. There are of course cases in which the usual scales seemingly don’t
apply. Quantum corrals for example, see Fig. 1.5, can have diameters exceed-
ing the usual confinement length of 2d-nanosystems. Another, very prominent
case is that of magnetic domain walls, which usually in bulk systems have a
thickness of several hundred nanometers. However, since in nanowires domain
walls are thought to be considerably shorter, but also because domain walls
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FIGURE 1.5: Three-dimensional view of a STM image of one-monolayer-
high islands with a Pt core and an approximately 3-atom-wide Co shell. By
courtesy of the authors of Ref. [2].

FIGURE 1.6: Theoretical image of a quantum corral consisting of 48 Fe atoms
on top of Cu(111). From Ref. [3].

are a kind of upper limit for nanostructures, in here they will be considered
as such.

Theoretically 7d- and 2d-nanosystems require different types of description.
While 1d-nanosystems can be considered as two-dimensional translational in-
variant layered systems, 2d-nanosystems have to be viewed in "real space",
i.e., with the exception of infinite one-dimensional wires (one dimensional
translational invariance) no kind of translational symmetry any longer ap-
plies.

It should be very clear right from the beginning that without the concept of
nano-sized "functional parts" of a system one cannot speak about nanoscience,
since — as the name implies — they are part of a system that of course is not
nano-sized. In the case of GMR devices, e.g., there are "macro-sized" leads,
while for 2d-nanosystems the substrate or carrier material is large as compared



