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Preface

This volume is the first of two volumes containing the lectures given at the
School “Quantum Independent Increment Processes: Structure and Applica-
tions to Physics”. This school was held at the Alfried Krupp Wissenschafts}-
kolleg in Greifswald during the period March 9 — 22, 2003. We thank the
lecturers for all the hard work they accomplished. Their lectures give an in-
troduction to current research in their domains that is accessible to Ph. D.
students. We hope that the two volumes will help to bring researchers from
the areas of classical and quantum probability, operator algebras and mathe-
matical physics together and contribute to developing the subject of quantum
independent increment processes.

We are greatly indebted to the Volkswagen Foundation for their financial
support, without which the school would not have been possible.

Special thanks go to Mrs. Zeidler who helped with the preparation and
organisation of the school and who took care of the logistics.

Finally, we would like to thank the students for coming to Greifswald and
helping to make the school a success.

Greifswald, Michael Schiirmann
February 2005 Uwe Franz



Contents of Volume II
Structure of Quantum Lévy Processes,
Classical Probability and Physics

Random Walks on Finite Quantum Groups

Uwe Franz, Rolf Gohm . ... .. ... .. . . . . . . . . ...
1 Markov chains and random walks in classical probability ..........
2 Quantum Markov chains ........... ... .. ... ... .
3 Random walks on comodule algebras............................
4 Random walks on finite quantum groups ........................
5 Extensions .......... ...
6 Classical versions..............oviiiiiniii i
7 Asymptotic behavior....... ... ... ... .
A Finite quantum groups .. ...
B The eight-dimensional Kac-Paljutkin quantum group..............
References . ... ...

Quantum Markov Processes and Applications in Physics
Burkhard Kidmmerer .......... ... . .. ...

1 Quantum Mechanics . ............. .. .. .. .. .
2 Unified Description of Classical and Quantum Systems ............
3 Towards Markov Processes ............. .. .. .. ... ... .. ........
4 Scattering for Markov Processes . ............ ... ... .. ... ... ...
5  Markov Processes in the Physical Literature ................... ..
6 AnExampleon My ... ...
7 The Micro-Maser as a Quantum Markov Process .................
8  Completely Positive Operators .................................
9  Semigroups of Completely Positive Operators and Lindblad
GeNETAtOTS . ..ottt
10 Repeated Measurement and its Ergodic Theory ............... ...
RETETENCES: 55 cmims smsvmins smems saasimsis 65555 305,06 405 a0iEans $iis

Classical and Free Infinite Divisibility and Lévy Processes
Ole E. Barndorff-Nielsen, Steen Thorbjornsen .......................
1 IBtPOAUCHION. s ws vwems casmssmenmeins sasmp s@smuERe Y005 SHiRs s048



XII Contents

2 Classical Infinite Divisibility .......... ... ...
3 Upsilon-mappings ... ...
4 Free Infinite Divisibility and Lévy Processes .....................
5 Connections between Free and Classical Infinity Divisibility . .......
6  The Lévy-1t6 Decomposition in Free Probability..................
A Unbounded Operators Affiliated with a W*-Probability Space. .. ...
References swu:wsssins smsonimiseiss 5993 s8saus@samess inicssmsms s

Lévy Processes on Quantum Groups and Dual Groups
Uwe Franz . ... ... ..o e

1 Lévy Processes on Quantum Groups ...............c.coouiinon...
2 Lévy Processes and Dilations of Completely Positive semigroups. . . .
3  The Five Universal Independences ..............................
4  Lévy Processes on Dual Groups . ........ .. ... . ... . ...
REICEEHEES :mx nwsme smu e mssmsimesssmesms s 6E GHEmEEL0sHEE05E DI 0E B



List of Contributors

David Applebaum
Probability and Statistics Dept.
University of Sheffield

Hicks Building

Hounsfield Road

Sheffield, S3 TRH, UK
D.Applebaum@sheffield.ac.uk

Ole E. Barndorff-Nielsen
Dept. of Mathematical Sciences
University of Aarhus

Ny Munkegade

DK-8000 Arhus, Denmark
oebn@imf .au.dk

B. V. Rajarama Bhat
Indian Statistical Institute
Bangalore, India
bhat@isibang.ac.in

Uwe Franz

Universitat Greifswald
Friedrich-Ludwig-Jahnstrasse 15 A
D-17487 Greifswald, Germany
franz@uni-greifswald.de

Rolf Gohm

Universitat Greifswald
Friedrich-Ludwig-Jahnstrasse 15 A
D-17487 Greifswald, Germany
gohm@uni-greifswald.de

Burkhard Kiimmerer
Fachbereich Mathematik
Technische Universitat Darmstadt
Schlo3gartenstrafle 7

64289 Darmstadt, Germany
kuemmerer@mathematik.
tu-darmstadt.de

Johan Kustermans

KU Leuven

Departement Wiskunde
Celestijnenlaan 200B

3001 Heverlee, Belgium
johan.kustermans@wis.kuleuven.
ac.be

J. Martin Lindsay

School of Mathematical Sciences
University of Nottingham
University Park

Nottingham, NG7 2RD, UK
martin.lindsay@nottingham.ac.
uk

Steen Thorbjsrnsen

Dept. of Mathematics & Computer
Science

University of Southern Denmark
Campusvej 55

DK-5230 Odense, Denmark
steenth@imada.sdu.dk



Introduction

Random variables and stochastic processes are used to describe the behaviour
of systems in a vast range of areas including statistics, finance, actuarial math-
ematics and computer science, as well as engineering, biology and physics. Due
to an unavoidable lack of information about the state of the system concerned
at a given moment in time, it is often impossible to predict these fluctuations
with certainty — think of meteorology, for example. The unpredictable be-
haviour may be due to more fundamental reasons, as is the case in quantum
mechanics. Here Heisenberg uncertainty limits the accuracy of simultaneous
predictions of so-called complementary observables such as the position and
momentum of a particle.

If the random fluctuations do not depend on time or position, then they
should be described by stochastic processes which are homogeneous in space
and time. In Euclidean space this leads to the important class of stochastic
processes called Lévy processes, which have independent and stationary incre-
ments ([Lév65]). These processes have been attracting increasing interest over
the last decade or so (see [Sko91], [Ber96], [Sat99], [BNMRO1] and [App04]).

In quantum mechanics complete knowledge of the state is still insufficient
to predict with certainty the outcomes of all possible measurements. Therefore
its statistical interpretation has to be an essential part of the theory. Quantum
probability starts from von Neumann’s formulation of quantum mechanics
([vN96]) and studies quantum theory from a probabilistic point of view. Two
key papers in the field are [AFL82] and [HP84].

A typical situation where quantum noise plays a role is in the description of
a ‘small’ quantum system interacting with its ‘large’ environment. The state
of the environment, also called heat bath or reservoir, cannot be measured
or controlled completely. However it is reasonable to assume, at least as a
first approximation, that it is homogeneous in time and space, and that the
influence of the system on the heat bath can be neglected.

In concrete models the heat bath is generally described by a Fock space.
The Hilbert space for the joint ‘system plus heat bath’ is then the tensor prod-
uct of the Hilbert space representing the system with this Fock space. The
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separate time evolutions of the heat bath and system are coupled through
their interaction to yield a unitary evolution of the system plus heat bath
which is a cocycle with respect to the free evolution of the heat bath. Thus,
through interaction (in other words, considered as an open system), the evo-
lution of the system becomes non-unitary. In the Heisenberg picture this is
given by a quantum dynamical semigroup, that is a one-parameter semigroup
of completely positive maps (rather than *-automorphisms) on the system
observables, see Quantum Markov processes and applications to physics, by
Burkhard Kiimmerer, in volume two of these notes. In the physics literature
the dual Schrédinger picture is usually preferred; this is adopted in the influ-
ential monograph [Dav76].

Fock spaces arose in quantum field theory and in representation theory as
continuous tensor products. The close connection between independent incre-
ment processes on the one hand, and current representations and Fock space
on the other, was realised in the late sixties and early seventies ([Ara70],
[PS72] and [GuiT2], see also the survey article [Str00]). The development of
a quantum stochastic calculus was a natural sequel to this discovery. This
calculus involves the integration of operator ‘processes’, that is time-indexed
families of operators adapted to a Fock-space filtration, with respect to the so-
called creation, preservation and annihilation processes. It is modelled on the
Ito6 integral, but in fact may be based on the nonadapted stochastic calculus
of Hitsuda and Skorohod, see part three of this volume, Quantum stochas-
tic analysis — an introduction, by Martin Lindsay. The relationship between
classical and quantum stochastic calculus is also the subject of the final lec-
ture of part one, Lévy processes in Fuclidean spaces and groups, by David
Applebaum.

Part four of this volume, Dilations, cocycles and product systems by Ra-
jarama Bhat, concerns the relation between the unitary evolution of the closed
system plus heat bath and the quantum dynamical semigroup which is the
evolution of the open system itself. It addresses the question of which unitary
evolutions correspond to a given quantum dynamical semigroup.

Formally, quantum groups arise from groups in a similar way to how quan-
tum probability arises from classical probability, and to how C*-algebra theory
is now commonly viewed as noncommutative topology. Namely, one casts the
axioms for a group (or probability space, or topological space) in terms of the
appropriate class of functions on the group (respectively, probability, or topo-
logical space). This yields a commutative algebra with extra structure, and the
quantum object is then defined by dropping the commutativity axiom. This
procedure has been successfully applied to differential geometry ([Con94]).

For example taking the algebra of representative functions on a group (i.e.
those functions which can be written as matrix elements of a finite-dimensional
representation of the group), one obtains the axioms of a commutative Hopf
algebra ([Swe69]). Dropping commutativity, one arrives at one definition of
a Hopf algebra. At least in finite dimension, the Hopf algebra axioms give a
satisfactory definition of a (finite) quantum group.



Introduction XVII

Similarly the essentially bounded measurable functions on a probability
space, with functions equal almost everywhere identified, form a commutative
von Neumann algebra on which the expectation functional yields a state which
is faithful and normal. Conversely, every commutative von Neumann algebra
with faithful normal state is isomorphic to such an algebra of (measure equiv-
alence classes of ) random variables on a probability space with state given by
the expectation functional.

Thus the axioms depend on the choice of functions. For example all func-
tions on a group form a Hopf algebra only if the group is finite. The guiding
principle for finding the ‘right’ set of axioms is that it should yield a rich
theory which incorporates a good measure of the classical theory. In the case
of quantum probability there is a straightforward choice. A unital *-algebra
with a state is called an algebraic noncommutative probability space, and sim-
ply a noncommutative probability space when the algebra is a von Neumann
algebra and the state is normal. In the latter case the state is often, but not
always, assumed to be faithful. In fact recent progress in the understanding
of noncommutative stochastic independence has benefitted from a loosening
of the axioms to allow noninvolutive algebras, see Lévy processes on quantum
groups and dual groups, by Uwe Franz in volume two of these notes.

In what is now known as topological quantum group theory, the search
for the ‘right’ foundations has a long history. Only recently have Kustermans
and Vaes obtained a relatively simple set of axioms that is both rich enough
to contain all the examples one would want to consider as quantum groups
whilst still having a satisfactory duality theory, see part two of this volume,
Locally compact quantum groups, by Johan Kustermans.
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1 Introduction

“Probability theory has always generated its problems by its contact with other
areas. There are very few problems that are generated by its own internal
structure. This is partly because, once stripped of everything else, a probability
space is essentially the unit interval with Lebesgue measure.”

S.R.S.Varadhan, AMS Bulletin January (2003)

One of the most beautiful and fruitful ideas in probability theory is that of
infinite divisibility. For a random variable to be infinitely divisible, we re-
quire that it can be decomposed as the sum of n independent, identically
distributed random variables, for any natural number n. Many distributions
of importance for both pure and applied probability have been shown to be
infinitely divisible and some of the best known in a very long list are the nor-
mal law, the Poisson and compound Poisson laws, the t-distribution, the y?
distribution, the log-normal distribution, the stable laws, the normal inverse
Gaussian and the hyperbolic distributions. The basic ideas of infinite divisi-
bility chrystallised during the heroic age of classical probability in the 1920s
and 1930s - the key result is the beautiful Lévy-Khintchine formula which
gives the general form of the characteristic function for an infinitely divisible
probability distribution. Another important discovery from this era is that



Lévy Processes in Euclidean Spaces and Groups 3

such distributions are precisely those which arise as limit laws for row sums of
asymptotically negligible triangular arrays of independent random variables.
Gnedenko and Kolmogorov [40] is a classic text for these results - for a more
modern viewpoint, see Jacod and Shiryaev [51].

When we pass from single random variables to stochastic processes, the ana-
logue of infinite divisibility is the requirement that the process has stationary
and independent increments. Such processes were first investigated system-
atically by Paul Lévy (see e.g. Chapter 5 of [56]) and now bear his name in
honour of his groundbreaking contributions.

Many important stochastic processes are Lévy processes - these include
Brownian motion, Poisson and compound Poisson processes, stable processes
and subordinators. Note that any infinitely divisible probability distribution
can be embedded as the law of X (1) in some Lévy process (X(t),t > 0). A
key structural result, which gives great insight into sample path behaviour,
is the Lévy-Ito decomposition which asserts that any Lévy process can be
decomposed as the sum of four terms - a deterministic (drift) which increases
linearly with time, a diffusion term which is controlled by Brownian motion, a
compensated sum of small jumps and a (finite) sum of large jumps. In partic-
ular, this shows that Lévy processes are a natural subclass of semimartingales
with jumps (see e.g. [66], [51]).

Lévy processes are also Markov (in fact Feller) processes and their infinitesimal
generators are represented as integral perturbations of a second order elliptic
differential operator, in a structure which mirrors the Lévy-Khintchine form.
Alternatively, the generator is represented as a pseudo-differential operator
with a symbol determined by the Lévy-Khintchine formula. This latter struc-
ture is paradigmatic of a wide class of Feller processes, wherein the symbol has
the same form but an additional spatial dependence. This is a major theme
of Niels Jacob’s books ([48, 49, 50]).

The last decade has seen Lévy processes come to the forefront of activity in
probability theory and there have been several major developments from both
theoretical and applied perspectives. These include fluctuation theory ([19]),
codification of the genealogical structure of continuous branching processes
([55]), investigations of turbulence via Burger’s equation ([20]), the study of
stochastic differential equations with jumps and associated stochastic flows
[54], construction of Euclidean random fields [2], properties of linearly visco-
elastic materials [23], new examples of times series [24] and a host of applica-
tions to option pricing in “incomplete” financial markets (see e.g. [75], chapter
5 of [13], and references therein). In addition, two important monographs have
appeared which are devoted to the subject ([19], [74]) and a third is to appear
shortly ([13]). Since 1998, conferences to review and discuss new developments
have taken place on an annual basis - the proceedings of the first of these are
collected in [15].

The first four sections of these notes aim to give an overview of the key struc-
tural properties of Lévy processes taking values in Euclidean space, and of
the associated stochastic calculus. They are based very closely on parts of



