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INTRODUCTION

An International Seminar on Stability Problems for Stochastic Models
was held in Sukhumi (Abkhasian Autonomic Republic) from 25 September
till 1 October 1987. This seminar was the eleventh since the Steklov
Mathematical Institute USSR Acad.Sci. (SMI) launched them in 1974”) .

Traditionally other Institutes and Universities take part in
organizing of the seminars too. Thus the Institute for Systems Studies
(ISS) is a permanent co-organizer of these seminars. Essential help in
the organizing and holding of the seminars (and, particularly in
that of the Seminar-87) was received from International Research
Institute for Management Sciences.

An active role in the organizing of the seminar in Sukhumi was
played by the Abkhasian State University. The Rector of the University,
Prof. Z.Avidzba, Vice-Rector Prof. O.Damenia and our colleagues from
the University R.Absava, A.Gvaramia and L.Karba. All of them were
members of Organizing Committee and we are grateful to them for their
hospitality.

Participants of the seminar lived and worked on the Black Sea shore
in the tourist hotel "XX s'ezd VLKCM". Remembering the good conditions
which were created for us we especially thank the head of the Abkhasian
tourist office, N.Akaba, and the director of the hotel, G.Meshveliani.

There were more than 100 participants at the seminar representing
scientific centres and universities of 13 countries of Europe, Aéia,
Africa and America (both North and South). More than 60 reports were
delivered during the 5 days.

The variety of topics of these reports can be explained by a

) See LN in Math., volumes 982, 1155, 1233



tradition: the principal aim of the seminar is to publicise ideas and
methods used in stability theory of stochastic models and it does not
imply a rigid topic selection for the reports.

The reports delivered made up the basis for two volumes of
Proceedings. One of them traditionally is published by ISS Publishers
in Russian®) . The other is the present one.

The preparation of the manuscript of the Proceedings demanded a
great deal of activity. Our sincere words of gratitude are addressed
to active and permanent participants of the seminar L.B.Klebanov
from Leningrad (for it was there that the final preparation of the
manuscript took place) and I.A.Melamed from Tbilisi.

All the authors are indebted to Acad. L.D.Faddeev (adviser of the
USSR Subseries of LNM) and Dr. A.P.Oskolkov for the possibility to meet

again under the cover of a Lecture Notes volume.

V.M. Zolotarev

*
) All of these Proceedings are being translated into English in the

"Journal of Soviet Mathematics", published by Plenum Publishefs.
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THE DENSITY FUNCTION'SASYMPTOTIC

REPRESENTATION IN THE CASE OF MULTIDIMENSIONAL

STRICTLY STABLE DISTRIBUTIONS

S.V.Arkhipov

Introduction

During the last few years a continually increasing attention was
payed to a peculiar - the so called strictly stable-class of multidi-
mensional distributions, and the interest has not stopped growing up
to the present. One of the reasons may be that in a certain sense this
class forms the most part of the stable distributions.

To describe the strictly stable laws it will be advéntageous for
us to observe their characteristic functions (ch.f.) in a form not con-

sidered previously (except the case of & =1 ):

§(H) = exp(glitle), te R“, n22, v =t/

[Ma) 4% [ (~in, 0" W), we(00) U2,
g(t‘t’) = 4 .

(1)
S] (5) WA + 4, 4=t

s‘n-d

¥

\

n-1
where du is a finite measure on the unit sphere § :{g: 3:1,,
¢

se Rn] , having for d=1 the supplementary property:
Jo g -o.
sw-i

The power of a complex number in (1) is interpreted with the aid of the

principal value
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(—ig)w=hjld’eaof>( 3 si.g'ng), ﬂeR-

Except some particular cases there does not exist any clear expression
for the density function of a stable law, consequently the investigation
has to deal with different exact ot asymptotic representation of the
density. The material, presented here, may be regarded as a further de-
velopment of results, published in 12 . There was discussed the case
0<ob <R , when the spectral density Ju, belonged to the special
space Cm(sn-i)'
Further we change this requirement to a less restricting one sup-
trqmn-4
posing Ju to be chosen from the famous Liouville space ]_.a (S )
The spectral density Ju belongs to L: (S"-d), v>0, when jueLz(Sn-‘)
and in in addition it has % derivative ( % o©an be a fraction).
A fundamental problem is to get an asymptotical expression for the
o[ qM-14
density P(“) when [e] —= oo, Taking the case of JKG C (S , when
the density function P(&) has a complete asymptotical decomposition,
the situation considered now has the peculiarity that depending on the
smoothness one can get only a finite order asymptotical decomposition.
The embedding theorems enable us to transfer our results to spect-
ral densities chosen from HSlder spaces.
The method we suggest constructing the asymptotical form of the den-
sity function gives the analogous result for the derivatives of the

density without any difficulties.

2. The fundamental result
¢

Let {38‘1 (S)} be an orthonormal system of spherical harmonics
n-4
(sph.h.) in La (S ) . The linearly independent harmonics of or-
der [ are indexed by J’ J’: dei = d,(t) , where

Rl +m-2)(0 -3)
dr([)g ( (,r:‘_'_a)| e|+.n 2




can be found e.g. in [9] .

A survey of the theory of sph.h.
of the spectral mea-

THEOREM. Let us suppose that the density Ju.
n-1
), AL <09, The following asymptotical

sure belongs to Lz (S

representation holds true X #0
) e“ el )
Ju m-4 k S
where g:ac/ac and the functions Jlb(g) are given on sﬂ-i by the
following series, converging in the mean square sense
oo MO ¢ [E+ak+n)e) «
. S B 9, () for o £4,
Y zzé d’:i() [((8-ak)/2 vy
o d#) | DL+ E £y
T ——— g, 9, () for 4=1.
K= it (2 daty "ty 3
L 5 'g' + ’1 , when k is even
0 , when k is odd

and where
& k
{ S‘I\-4 4

The remainder 'Rm(a:) can be estimated in the following way

C4(m)
IR®I, 1] % (lmlg))olsﬂ e € iy
Sﬂ— lml

(3)



where ci(m) is a constant, depending on m,d and Ju(s) s further-

more on satisfies the condition

2smg(v/al+1, (4)

The upper bound for ™M  shows the maximal possible number of the num-
bers in the representation (2).
v n-4
COROLLARY 1. Assume that Ju(pe L2 (8 ), ty & +nf2. So the fun-

ctions Ju,c(;) can be regarded as elements from the H&lder space of
C q-d(k-4)-nl2 (S“'i)

the sphere. More accurately Julo(g)e * ’ (

v -a(k-2)-

if the exponent of smoothness is an integer, and )‘lk(s)€ C

-n/2 (Sﬂ-l)

otherwise. The representation (2) remains true, but the

estimation (3) must be changed as follows:

- e (m)
IR, (], = mawf IR, (elpl: e 8§ =0 |
x

where

[1-11/2]

+1
ol

s mg

n
COROLLARY 2. Let X be a strictly stable random vector in P ¥
and (G a cone with its vertex at zero such that 36 S‘H.PP!W, where

n-4
se S /l G . Denoting by

Glu(z) = {= = kely: l=lz lu®)l, 3egi

we have
-(eb+m-4)

P{XeGlalgli = @m0 [ p()luh dg+
]

-(ak+m-4)

k(eckm- 1)_4.1["/2([‘(4“1))-4 { }"k(S) (le(z)) dy +
d

m-4 o
+31 2

k=2

¥ ng(lu(plg)d;.



This representation is asymptotical in the sense that the remainder

tends to zero when

min {lu(g)l: 3¢ g}——"o

3, Some preliminary results from the theory of functional spaces

on the sphere
n-4
The system {gh.(g)} of sph.h. is complete in LE(S ) and

n-4
every function 9(})@ La(S ) c:an be expanrded into series converg-

ing the the mear square sense in the following way (see [5] o S-3%)
%) =1 0. 3‘3_(5),
t,a‘ I A

where

o = | 099 () dy.
Sﬂ-i

DEFINITION 1. The operator determined by the equation

Te(3) = Z‘.£ 9, 9y, )
is called the- multiplier operator, and its spectrum {%c} the multiplier

by spherical harmonics.
/2

Now let us turn to the mu}tiplier operator (E"g) with the
%2
(Lsm-2) }

rmultiplier {(1+ , where £ is the unit operator and

and § is the spherical part of the Laplacian, or the Laplace-Beltram
operator (cf [5]’5 ar).
v o n-4
DEFINITION 2. For 0<t< oo we call the space LE(S ) the
$

N4
sphere S ; satisfying that §

(88" olpel, (8.

We note immediately that the spaces lh(s )determined just now céin-

cide in the the sets of their elements with the well-known Sobolev-Slo.



2 n-1
detzki spaces V\Iz (S ) . For the sake of better comparability of the

he results we recall the definition used in the theory of singular in-
tegrals ( [5] , § 31), and which differs from the one given regularly
in the theory of partial differential equation.

Let © Dbe extended by constant (i.e. §(&)=9(&/lwl) ) to the sphe-
rical segment Q; 0< 3“ g 'S gi’,< oo . The space denoted by Mm(sﬁ-d')
consists of those functions extended to Q as mentioned above, they
belong to the usual Sobolev-Slobodetzki space \V;(Q) {cE. [10] 1

REMARK 1. Usually in the theory of multivariate differentiable fun-
ctions theorems are completely proved only for the classes of functions
defined on the whole Rn . With the aid of multiplication of the fun-

¥ po
ction 0(5) = V\]g (Q) by the function 90 (g)e C (R): Oo (g) =4
on [gp gz] and Oo(g) =0 outside the segment [85/2 . ng] we get
the needed extension to Rﬂ saving the class. This gives the possibi-

n
lity to extend the theorems proved for R to arbitrary domain

S c B e Tl

The the results of [1] it follows that

s acles

2
i) for > 0 the space L: (Sn—i) consists of distributions.
LEMMA 1. If 6, (p), 92(5) ¢ L: (S"'a)

o (p-g,(pel, (877

PROOF. The statement of the theorem is the obvious consequence of

) A‘>O)

n
the remark 1, the results of [11] on multipliers in P/ and i).
Now we define the HOlder spaces of Afu.nctions on the sphere.
n-4 4
DEFINITION 3. We say that 8()eC (8 ), 150 , when the
» falc
function O(a/lx)e C (R +{0]) ( [A] is the integer part of X
and in addition if & % [_ﬁ] then the derivatives of order [J;]
k
uk(i”) = (D e)m, “0 I = [\2] satisfy the following condition on the

sphere:
A-[1]

I, (1) - w, Gl C Iy, -3, L,gzesf"

i




A n-a
DEFINITION 4. We say that 83)€C (§ ), A=4,2,..., vhen
a-4 W
0 /lxl) € 5 (R \{O}) , and the derivatives of order A-1

k
ub(m) = ('D 9)(03) 5 H:l: -1 satisfy the following condition on the

sphere:

-4 n-4
lw(z) - w3z )< Cly, - 3, | th2lg,-3D , 3,33

L n-41
LEMMA 2. If the function 9(3) belongs to the space La (S ),

1>n/2 , then

t-mf2, m-4
0(3) =4 C* (S ) , when 7%- ﬂ/a is integer

t-nf2, _m-
9(}) el (S ) otherwise.
The proof is based on the embedding theorems of the spaces \Aé (R )
-n(2
into HN (R ) (see [6] 5o De229, [7] , P.67), furthermore on
the remark 1 and i).
LEMMA 3. Let {{:J be the spectrum of the multiplier operator
T+U n-4
T . T lS a continuous operator from L (S )to Lz (S ) iff
b= 08 3
PROOF. The lemmas statement directly follows from the proposition
6.1 of [1] and from ii).
The following lemma explains the connection between the order of
smoothness of the functions a('t.) and Ju(g) from A1) .
T+ 2 4"- n-4
LEMMA 4. If f‘(§)€L ( , >0 then g(ﬂéL ( ),

O<¢co < 2 and we have the summation formulae:

g(v) = x 2, Et ['((€-a)/8) (T (L +m +a)/8) Jucd (v), w#% (5

0 d@0) it
OR %UT ZZ (—4) F(E-2)XC(E - (ns0)/R) Pat, U%a(fc), axl, (6)

t=04=1



