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Preface

Nonlinear acoustics is the branch of science that deals with finite-
amplitude traveling and standing waves in gases, liquids, and solids, és
well as problems relating to cavitation.' This includes general mathemati-
cal tools, experiments, and applications. It involves waves propagating
in homogeneous as well as nonhomogeneous deterministic or Stochastic
media. |

It should be noted that practicaliy all problems arising iﬁ nature are
nonlinéar at the outset and that linearization is an approximating device.
Although many useful conclusions about the behavior of physical systems
can be drawn from the lineanized equations, there are many other behaviors
which cannot Be explained by USinQ 1inearization. For example, the occu-
rance and propagation of steep gradient regions (discontinuities and shock
waves) cannot be predicted and analyzed from linearized equations. Other
phenomena that cannot be explained by using linearized models are genera-
tion of harmonic, subharmonic, superharmonic, and combination tones; tuning;
saturation phenomena; and the existence of self-relaxation oscillations.

The large grdwth in the number of works in this area necessitated

the organization of the international symposia for the timely exchange of
| technical information which might appear later in journals. We hope that
these symposia will serve to continue the progress in this important branch

of science.

A. H. NAYFEH AND J. E. KAISER
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NONCLASSICAL ACOUSTICS

Czeslaw P. Kentzer

School of Aeronautics and Astronautics
Purdue University, Lafayette, IN 47907

ABSTRACT

The paper considers a statistical approach to sound propagation
in situations where, due to the presence of large gradients of pro-
perties of the medium, the classical (deterministic) treatment of"
wave motion is inadequate. A classical approach is valid only 1if
|VA|<<1, where A = wavelength. Acoustics of inhomogeneous moving
fluids concerns itself usually with the zero-wavelength approximation,
VA = 0, An extension of the classical approach in the spirit of the
WKB (Wentzel—Kramers-Brillodin) approximation, Kentzer (1975a), re~
sulted in a dispersion relation valid for small but not necessarily
negligible wavelength. However, situations where |[VA| = 0(1l) are
not uncommon in studies of broad spectrum of sound in high speed
flows, Thus the motivation behind this paper is te discuss the use
of mathematical methods for wave motions not restricted to small
wavelengths. Such methods form the basis of quantum mechanics énd
have been used recently, Kentzer (1975b), to formulate a wave theory
of sound in turbulent media.

The objectives of this paper are to formulate a quantum-like
stoéhastic theory of sound of arbitrary incensity under the assump-
tion that the energy of the sound field remains negligible as com-
pared to the thermal energy of the gaseous medium. Of necéssi;y,

the theory is statistical in nature.

The arguments of Nee & Kovasznay (1969) show that sound has
a nepligible effect on the mean flow and on the peneraticn of vor-
ticity. Thus the flow may be assumed irrotational and presumed
known. The sound field is then considered to be the oscillatory



v .

motion of the compressitiie medium relative to the average or mean
flow. The averages are decfined with respect to.a probability dis-
tribution (enaemble averages) rather than space or time averages.

Separating the flow 1afo the mean flow and the fluctuations,
one separates the governing equations of gasdynamics into those
satisfied by the mean flow and those that determine the fluctuations.
The latter are nonlinear in the fluctuations. Neglecting the pro-
ducts of the fluctuations would lead to previously obtained results
valid for |VA| < 1 only. Thus the nonlinearity manifests itself
in the present theory in the nonlingar wave interaction terms.
Following the approach of Kentzer (1975b), the linear pért of the
differentisl equations is used to determine a complete set of ortho-
normal modes ( complex exponentials as basis vectors). The fluctu-
ations are then expanded in terms of the orthonormal modes. 1In
order to account for the nonlinear terms, the frequency of the
normal modes is modified by an addition of a random function. The
random function is modeled using wave-particle analogy and is deter-
mined from the condition that the so modified normal modes satisfy
the nonlinear wave interaction terms in the average. This represen-
tation separates the effects of sound waves interacting with mean
flow gradients from the effects of direct wave interactions through

three and four wave resonances.

A cquplex characteristic function is introduced which, in the
case of small amplitude sound in uniform flow, reduces to the Fourier.
transform of the wave amplitudes. The temporal and spatial deriva-
tives of the characteristic function are simply related to the
moments of the frequency and wavenumber with respect to the spectral
distribution of the amplitudes, respeétively. A partial differential
equation for the characteristic fumection is fhen derived by taking
the moment of the dispersion relation (the characteristic determi-

- nant). Since the dispersion relation is quadratic in frequency, one
obtains either a single differential equation of second order in time

or two equations of first order analogous to or in the general form



of the Klein-Gordon and Schrodinger equations, respectively. It

is then argued that one should consider two separate and distinct
modes of the acoustic field corresponding to plane waves propagating
in the direction of and opposite to that pf the wavenumber vector thus
preserving the radiation condition at the microscopic level, These
modes satisfy a convective eﬁuation‘of Schrodinger type. The square
of the absolute value of the characteristic function is interpreted
as the probability density in space, P, and the spatial gradient of
its argument as the average of the wavenumber vector, V. Transport
equations for P and V are derived by separating real and imaginary
parts of the Schrodinger equation. It is shown‘that the spatial
derivatives of P and V determine the moments of the wavenumber with
régpect to the wavenumber probability distribution function. The
knowledge of the moments of the distribution determines the distri-
bution function. Thus the theory is closed and may be used to pro-
vide the expectation values (averages with respect to the probabi-
11:? distribution) of spatial and spectral properti:zs of an acoustic
field.

Initial and/or boundary value problems may be formulated in

‘terms of P and V., Only statistical properties of the sound field

may be determined from the initial and boundary values. The pro-
posed theory may be found useful in apnlications where no assuwntion

as to the rélative magnitude of the wavelength of sound i~ opropr -~*e.

Kentzer C. P, (1975a) "Amplification, Attenuation, and Dispersiun of
Sound in Inhomogeneous Flows", the 82th Meeting
of ASA, U. of Texas, Austin, Texas, April 7-11,
1975, available as Report No. 75-1, School of
Aeronautics and Astronautics, Purdue U.

Kentzer C. P. (1975b) "Wave Theory of Turbulence in Compressible
Media', Report No. 75-2, School of Aeronautics
and Astronautics, Purdue U., available also as
NACA CR 116143, 1975,

Nee V. W. and L.S.G. Kovasznay (1969) "Simple Phenomenological Theory
' of Turbulent Shear Flows", Phvs. Fluids, Vol. 12,
p. 473,



NONLINEAR SOUND NOISE: SHOCK WAVES, ABSORPTION
AND BOUNDED BEAMS
E.B.Cherepetskaja, A.S.Chirkin, 0.V.Rudenko
Moscow 8State University

Some results are reported sbout statistical nonline-
ar wave theory in homogeneous media. This theory has been
developed by the authors for the random Rieniimf waves.
Here more real cases taking into account demped shocks
and limited cross~section of sound beams are considered.
Bome appi:!.cations of the theory are also discussed.

1. Primary randomemodulated waves of finite aﬁplit‘u-
de propagating through nonlinear medium transform to ran—
dom discontinuous ones. This process is accompanied by
spectrum distortion and wave statistics change at the
same time, For the large Reynolds mimber (Re—+°°) and
primary narrow=band Geussian random waves V » the
evolution of the distribution funstion \W ( V; Z )
(here Z is the distance) was studied in [1] « Having

W (V;Z ) we can calculate some characteristics of the
process taking into account nonlinear absorption o_{_ the
waves. On fig.1 curves for the average intensity \/2/6" 2
(curve 1) and disp_ersion<(\/2 — (V2>)2>/2 6% (curve 2)
are presented as the function of normalized distance

z=ec*cwx |2 _ , where W 1is the signal
frequency, 62 primary intensity, € is nonlinear pa-
rameter. After shock formation, at distances Z>Z =\2



0 i ) 5 !
wave fluctuations are strongly smoothed. On fig.1 inten-
sity damping for the harmonic signal (dotted line) is
also shown. The comparison shows that tramnsmission of
regular signal at large distances is more advantageous
energetically.

2, For the correlation function R(Q.'ac) of the pro-
cess wich is described dy Burgers equation we abtained
the equation for arbitrary values of Reynolds number.

At distances X >%x,= ( Swe')—L (here Sw’ is gound
absorbtion coefficient) this equation has the simple-

form

I & _F __3F °

—_— - ""-228_ 3 ,oc=g < x\ d¢ -
5="5 38 TR CAS OR(L, ydo (0
It follows from (1) that one conservation law F(0o,x)=M,
takes place as well as stationary form of correlation
function R(E) s X~ ) (analogous to corresponding solu~
tions for regular waves). One can establish from (1)

some peculiarties of the noise behaviour at distances



X>X,

3. We have also considered effects of the space mo-~
dulation of bounded beams in noniinear medium. Essenti-
‘aily we made the genefggfzn of the results [2] on the
case of simultaneous time and space modulations. In the
case of the primary beam having only the space modulation
which discribed by random Gaussian function ¥(r) y for

normalized harmonic intensities one can obtained

' n- i
~ (nar.)a( ) r(n*'i) F { A
n=g‘.\/2 zn-t 2 ‘el2 n+? » N+ 35 (2)
[ (n+d) |

Red , 2n+4 —-(n'ae)z]

/ -~ ,2
where X = ew?O’x /Co?o ’ In=1u(“w‘)/?o I e i, 2,...
C(n) is gamma function, 2Pz is hypergeometric

>

function.

It follows from (2) that in the example considered
the space modulation influence differs from influence
of the random temporal modulation (confs (2] ). The har-
monic intensities of the space modulation signal are

less than for the plane waves.

References

1 0.V.Rudenko, A.S.Chirkin., Dokladi AN USSR, 1975,
225, 520.

2 0.V,Rudenko, A.S.Chirkin, Dokladi AN USSR, 1974,
214, 1045,



ASYMPTOTIC SOLUTIONS OF NONLINEAR WAVE EQUATIONS

“R. W. Lardner, Simon Fraser University

~ The method of averaging and the two-time method are techniques
which wefe developed originally for the purpose of providing approxi-
éaéévsolutions to ordinary differential equations containing small
nonlinear terms, especially as related to problems of nonlinear vibra-
.tion. The equivalence of these two methods for certain classes of
ordinary differentiél equations was established by Morrison [1], a
result which is significant because of the rigorous foundation of the
averaging method by means of a theorem of Bogoliubov's [2], which
therefore indirectly provides a justification of the two-time procedure.

In recent years, both of these methods have been used by a number
of authors to find solutions of nonlinear partial d%fferential equations,
of which work we refer to two examples. Keller and Kogelman [3] used
the Eﬂgfxgriable technique to investigate the Klein-Gordon equation with
“Van der Pol type of nonlinearity and Lardmer [4] h;s investigated the
formation of plane shock-~waves in a nonlihear viscoelastic medium using
the method of averaging. 1In both of these papers the solution function
is expanded in terms of the spatial eigenfunctions of the linearized
eqﬁation, and the partial differential equation replaced effectively
b§.anrinfinite system of ordinary differential equations.

It has been pointed out by Nayfeh [5] that a direct use of a
two-variable éxpansion, without expansion in terms of spatial eigen-
functions, can in certain céses enable the solution of a partial
differential equation té be obtained more straightforwardly than

through any of the above-mentioned methods. A similar direct



two-variable expansion has also been used by Chikwendu and Kevorkian [6].
The purpose of the present paper is to investigate tﬁis type of method in
the context of a wide class of hyperbolic parti;1 differential equation;,
and in particular to compare it with the method of averaging. We shall
show that in the lowest approximation, the two methods are formally
equivalent for the whole class of equations considered and that for a
certain sub-class of nonlinear wave equations, the direct two-time method
offers considerable computational advantagé.

We shall consider a partial differential equation for the function

u(x,t) of the following type:

p(x)ﬁtt - [k(x)ux]x + q(x)u = EE(x,t,u,ux,ut, A D)

Here subscripts of x and t denote the corresponding partial
derivatives, p(x) > 0, k(x) > O and q(x) are‘giyen functions of_

X, € 1is a small parameter and E a general, but suitably differenti-
able, function of the indicated arguments. The dots indiéate that E
may depend on higher-order derivatives of u than those shown
explicitly, except that derivatives of order ﬁo higher than the second
should occur. Eqn. (1) is assumed to hold for t > 0 , with the

. associated initial conditions that u(x,0) and ut(x,O) are prescribed.
It will be supposed that the variable x 1is restricted to the interval
(0,2) with u satisfying a pair of linear boundary conditions which

'we write in the symbolic form Bi{u} = Bz{u} = 0 , where
Bi{u} = a,u(0,t) + B,u_(0,t) + y,u(,t) + §.u (L,t) (d=1,2)

}.

for certain given values of the eight constants {ul, e o o 0



