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Preface to the English Edition

The present textbook comprises a course in theoretical mechanics
together with some elements of analytical mechanics.

The first part of the book is devoted to statics of a rigid body. The
study of the equilibrium of a body under the action of an arbitrary
system of forces is preceded by a separate presentation of the case
of a plane system of forces. For the latter system the equilibrium
involving friction forces and the determination of internal forces
in the bars of trusses are considered in detail (Chap. 4).

In the second part of the book (Kinematics) the major role is
played by Chap. 9 (General Case of Motion of a Free Rigid Body).
This chapter is based on Fuler’s theorem on instantaneous motion
characterized by the velocity field of the particles of a body at
each given instant. However, since this general approach may seem
too complicated, in Chap. 10 where the plane motion is studied,
besides references to Euler’s theorem, the proofs independent of that
theorem are also given.

In the third part of the book (Dynamics) Chap. 19 (General Prin-
ciples of Dynamics of a System of Particles) is the central one. In
this chapter we employ the teaching methods of the university courses
by N. E. Joukowski, S. A. Chaplygin and N. G. Chetayev. Their
approach based on the D’Alembert-Lagrange general equation of
dynamics makes it possible not to introduce the reactions of ideal
constraints and provides a general method of solving problems: the
determination of virtual displacements and the first integrals cor-
responding to them. However, in the Appendix a more traditional
derivation of the general principles is also given.

The book includes some optional material: stability of equilib-
rium and small vibrations (Chap. 20), advanced topics in dynamics
of a rigid body (Chap. 22), the theory of impact and the theory of
motion of a body with variable mass (Chap. 23), the motion of a
particle in a field of central force and the trajectories of the Earth’s
artificial satellites (Chap. 24), and a detailed representation of mechan-
ics of a flexible inextensible thread (Chap. 25) concluding the book.



14 Preface to the English Edition

The book contains more than 200 problems; for 120 of them detailed
solutions and for the rest hints and answers are given. This enables
the reader to use the book both for studying the theory and for

problem-solving practice.
The textbook is intended for engineering students and can be

used for studying under the guidance of a teacher as well as for self-
instruction.

V. M. Starzhinskii



Introduction

1. Subject of Theoretical Mechanies. 7licorciical mechanics is
a science treating of the simplest form of motion of substance,
namely the general laws of mechanical motion and of equilibrium of
material bodies or their parts.

In the broad sense motion of substance is understood as any change
of the state of a material body or bodies in thermal, chemical, elec-
tromagnetic, intratomic and other processes. Theoretical mechanics
is confined to the simplest form of motion—mechanical motion.

By mechanical motion is meant variation with time of the posi-
tion of material bodies relative to one another. Since the state of
equilibrium is a special case of mechanical motion, theoretical
mechanics also includes the study of equilibrivm of bodies.

The observation of various natural phenomena shows that not
all properties of the bodies involved in the phenomenon in question
equally affect the course of the phenomenon or its final result. For
instance, experiments show that the forces with which a beam hav-
ing two supports acts on them are essentially dependent on the
position of the supports and are practically independent of the de-
flection of the beam (provided that the deflection is small). Therefore
when determining these forces we may conditionally replace the
real beam by a nondeformable (perfectly rigid) one. In the investi-
gation of other phenomena analogous arguments lead us to the no-
tions of models of bodies such as a material point (a particle), a point
charge, etc. An attempt to solve even the simplest problems without
introducing such simplified models would fail. However, one should
bear in mind that in nature there are no perfectly rigid bodies,
particles, point charges, ete. and that all these are ahstractions which
enable us to consider theoretically the phenomena in question and
to solve the required problems.

The present course is devoted to the study of classical mechanics
based on the laws which were first stated exactly by G. Galileo
(1564-1642) and I. Newton (1642-1727). At the end of the 19th cen-
tury and the beginning of the 20th century it was found that the
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laws of classical mechanics do not apply to motion of microparticles
and to bodies moving with velocities close to that of light. At the
beginning of the 20th century relativistic mechanics was created;
relativistic mechanics is based on the relativity theory of A. Ein-
stein (1879-1955). The relativity theory establishes the general laws
concerning the relationship between space, time, mass and energy.
Relativistic mechanics is applicable to the study of motion with
velocity close to the speed of light and indicates the limits within
which the laws of classical mechanics remain valid. This however
does not diminish the role of classical mechanics as a practical
method for studying motion of macroscopic bodies whose velocities
are small compared with that of light, that is the motion usually
dealt with in engineering.

2. Methods of Theoretical Mechanies. Theoretical mechanics, like
other natural sciences, widely uses the method of abstraction. The
application of this method and the generalization of the results of
human experience, technological practice and experiment made it
possible to establish some general laws playing the role of axioms.
All the further propositions of classical mechanics can be derived
from these axioms using logical argument and mathematical calcu-
lations. Since theoretical mechanics mostly deals with quantitative
relationships it is clear that mathematical analysis must play a very
important role in it. However, although the course of theoretical
mechanics is saturated with mathematics and contains few refer-
ences to experimental studies, this does not at all mean that theoreti-
cal mechanics can do without experimental verification of its
laws and conjectures. On the contrary, as in all other branches of
knowledge, the final proof of the propositions of theoretical mechan-
ics lies in experiment and practice. The history of the development
of science and, particularly, of theoretical mechanics confirms that
only experiment and practice can decide whether or not a hypothesis
or a theory is correct.

3. Historical Notes. Theoretical mechanics is closely connected
with practice and is one of the most ancient sciences. Although the
earliest manuscripts on mechanics known to us belong to the 4th
century B.C. the remnants of ancient structures show that even
much earlier the ancients were familiar with some elements of
mechanics.

The beginning of the development of mechanics was primarily
connected with statics—the science treating of the equilibrinm of
material bodies. As early as the 3rd century B.C. the scientific basis
of statics was founded, mainly in the works of the great Greek scien-
tist Archimedes (circa 287-212 B.C.). He elaborated the exact solu-
tion of the problem of equilibrium of the lever, introduced the con-
cept of the centre of gravity, discovered the well-known law of
hydrostatics named after him, etc.



