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PREFACE

This volume contains the proceedings of the Seminar on Approximation
and Optimization, which took place in January 12-16, 1987 at the
University of Havana, Havana, Cuba. The seminar was jointly organized
by the University of Havana, the Cuban Academy of Science and the
Cuban Mathematical Society to promote scientific contacts between
specialists of two very closely related branches of mathematics,
namely approximation theory and optimization theory.

We wish to thank the International Mathematical Union and the
International Council of Scientific Unions for sponsoring the
seminar: their financial support was decisive in obtaining a
considerable participation from mathematicians of Western Europe,
North America and Latin America. The Third World Academy of Sciences
also made a financial support.

The contributions to this volume include original research papers as
well as a few survey articles. All these papers were refereed. We
have divided the contents into three sections: the first one contains
the papers submitted by some of the invited speakers; in the last
two, the rest of the papers are classified according to their

contents.

Alfredo Gomez ICIMAF, Academia de Ciencias de Cuba, 0 #8, Habana
4, Cuba

Francisco Guerra Fac. de Mat. y Cib., Univ. de La Habana, Habana 4,
Cuba

Miguel Jiménez Sociedad Cubana de Matemé&ticas, Habana 4, Cuba

Guillermo Lépez Fac. de Mat. y Cib., Univ. de La Habana, Habana 4,
Cuba
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Nonparametric Polynomial Densgity Estimation in the L Norm

Z.CIESIELSKI

Abstract. A simple construction of polynomial estimators for densities and distri-
butions on the unit interval is presented. For densities from certain Lipschits classes the
error for the mean L? deviation is characterised. The Casteljeau algorithm for calculating
the values of the estimators is applied.

1. Introduction. The space of all real polynomials of degree not exceeding m is
denoted by Il,,. In Il,,, we have the Bernstein basis i.e.

M = span[N; 1 =0,...,m],
where
Nim(z) = (':‘) F(1-z)™  i=0,...,m.
The Casteljeau algorithm is based on the identity

(1.1) Nim(z) = (1 — 2)Nim-1(2) + z2Ni—1,m-1(2).
For given w € I,

1.2 sy iNim(2),

(1.2) w(z) ;w (z)

where the coefficients w; are unique. Using (1.1) we find that for 0 < k< m
m—k "

(13) w(z) = E w{*)(2) Ni m—k(2),
1=0

where w,(k) € Il, and for 0 < k < m we have

(1.4) wi*)(z) = (1 - 2)w®(z) + 20f¥(z), $=0,...,m—k-1.

In particular, w(z) = w{™ (z) = const.



Some more properties of the Bernstein polynomials will be needed. Our attention will
be restricted to the interval I = [0, 1] and the following notation will be used

(f,9) = /, f(2)9(z) dz,
11l = ( /, 1£19)?.

It is convenient to use gimultaneously with N;,, the polynomials
M,m = (m + l)No',m-

The following elementary properties of the polynomials N; ,, and M; ., will be used:
1°. Nim(z) 20forzel;i=0,...,m.
2°.

3. (Mim,1)=1,fori=0,...,m.
4°. For w as in (1.2) we have

m—1
Dw=m AwiN; m—1
m-1
= E AwiM.m—h
1=0

where Aw; = wi4; — w; and Dw = dw/dz.
5°. Fori=0,...,m
DNi‘m = M—l,m—l - Ali,m——l

with M; ,, = 0 whenever § <0 or j > m.

2. Polynomial operators. A linear operator in a function space with range con-
tained in II,, for some m is called a polynomsal operator . The space of all real functions of
bounded variation on I which are left continuous is denoted by BV(I) and it is equipped

with the norm
\Fllav(ry = |F(0)] + var(F).

Moreover, define
D(I) = {F € BV(I) : F i3 nondecreasing on I, F(0) =0, F(1) =1}
The polynomial operator Ty, is now defined for F' € BV (I) by the formula

(2.1) TouF(z) = z: ﬁ Mim dF A " Nim(y) dy.



It then follows that

(2.2) Tm : BV(I) > M4,
and
(2.3) T : D(I) = Mpny1 0 D(D).

The polynomial operators corresponding to the densities are going to be defined nat-
urally by means of the kernel

m
(2.4) Ro(z,9) = ) Mim(z)Nim(y)-
1=0
It follows by the definitions and properties of M; , and N; ,, that
(2.5) Rm(z,9) = Bm(y,%), 0< Rm(z,9) <m+1 for z,yel.

Define
Rnf(3) = /[ Rm(2,9)(y) dy

Clearly, Ry, : L? — Il and since by (2.4)

(26) Bnf =Y (Mim, )Nin,

=0

it takes by 2° and 3° densities into densities.
It is worth to notice that for F' being absolutely continuous (2.1) gives

(2.7) DTnF = Ry, DF.
PROPOSITION 2.8. For F in BV(I) we have
TmF(z) = F(0)(1 — z)™*! + F(1)z™+!
+ i(F, M1 ;1) Nimt1(2)-

=1
PROOF: Direct computation gives

ﬁ M;m dF = (m + 1{8imF(1) = 8,0F (0) + (F, Mim—1) — (F, Mi—1,m—1)},



and therefore by 5°

Fz):F(0)+Z/M,,,.dF/ Nipm(z

= F(0)(1 - z)™*! + F(1+)z™*!

m—1

+ 3 (F,Mimy) / (m -+ 1) (Nom(y) - Nis1,m(v)) dy
— F(O)( _z)m+1 +F(l+)z’"+l

bS: Fth— DN: m+1

‘Z;( / +1,m+1(y) dy

8. Approximation properties of the polynomial operators. In this section we
state the necessary results on approximation by the operators T,, and R,,. The following
is a consequence of Proposition 2.8

COROLLARY 3.1. Form=0,1,..., and F € BV(I) we have

(3:2) 1T Flloo < 3{|FYlco,

and for F,G € D(I)

(33) [T F — TmGlloo < |IF ~ Gl|co-
PROPOSITION 3.4. For f € LP(I) we have

(3.5) B fllp < Ifllpy m=0,1,...,
and if f € LP(I), then

(3.6) Ilf — Bmfllp = 0 as m — co.

For the proof we refer to [1].
PROPOSITION 3.7. Let F € C(I). Then ||F — Ty F|laoc — 0 as m — o0.

PROOF: Since (3.2) takes place it is sufficient to check the statement for absolutely con-
tinuous F. However, in this case (2.6) implies for f = DF

|F(z) — Tm F(z)| < ||DF = DT Fl|y = ||f — R fll1,
and the last term by (3.6) tends to 0 as m — 0.
In order to define the proper Lipschitz classes following [6] we need the step-weight

function
#(z)=+\2(1-1), z€l

and the symmetric difference of the second order
AL f(z) = f(z + k) - 2f(z) + f(z - h).

Now, the modulus of smoothness with step-weight ¢ is given as follows
wa,6,0(f;6) = sup ”A ¢(z)f( z)||2,

where A%, is zero whenever either z + h¢( z) or £ — h¢(z) is not in I. Now, we can
formulate the important for us auxiliary result (see (5], Theorm 3.4).



PROPOSITION 3.8. Let , and f be given such that 0 < a <1, f € LP(I), 1 <p < .
Then

If = Bmfllp =0 (#) 68 m—00 <= wgp(f;6)=0(67) as 6—0,4.

4. The estimators.Let us start with a simple sample of sise n : Xj,... X,,. It is
assumed that the common distribution function F of these i.i.d. random variables has its
support in I. For the given sample let us introduce

l n

n
=0

(4'1) fm,n(z) = Rm(Xj, z), z€I

Clearly fm n is a polynomial of degree m which, by (2.6), is a density on I. Let now F,
be the empirical distribution i.e. F, = |{i : X; < z}|/n and let

(4-2) Fm‘n = Tan-
It follows by (2.1) that
(4-3) DFm'n = fm'n.

PROPOSITION 4.4. Let F and X, X, ... be given as above. Then
P{Fpn=>F as mn— 0} =1,

where =—> means the weak convergence of probability distribution functions.
PROOF: Let us start with following identity

(4.5) F—Fpp=(F—TnF) 4+ Tn(F - Fy).

It will be shown at first that Ty, F' converges weakly to F' as m — oo for each F € D(I).
For ¢ continuous on (—00,00) and with compact support according to (2.1) and (3.6) we
obtain

/” ¢dT,,.F=/Ol R,,.(¢|,)dF—./°° $dF, s m— oo,
For the second p::t of (4.5) we obtain by (3.3) thatoo
1T (F = Fa)lloo < IF = Fallo,
but by Glivenko’s theorem (see [8])
P{|F — Foll|o =0 as n—o00}=1.

Thus, with probability one Tpn(F — Fy,) tends uniformly on I to 0 as m,n — 0. Since
F(z) — T F(z) tends to zero as m — oo at each continuity point of F it follows by (4.5)
that with probability one Fy, n(z) — F(z) with at all such points.



PROPOSITION 4.6. Let F € D(I)NnC(I). Then

P{||F - Fnnl|lcc = 0 a8 myn — 00} = 1.

This follows from the proof of Proposition 4.4 and by Proposition 3.7. We need the
following inequality from [7].

LEMMA 4.7. For continuous probability distribution F' on (—00,00) there are constants
C, 7such that 0 <7< 2, 0< C < o0, and

A
T

Pr{|F = Fallo > ==} <Ce™™  for A>0,n=1.2,...

For later convenience let us introduce the set of all densities on I
P ={fe L) [ =1, 120}
I
LEMMA 4.8. Let f € LP(I)nP(I) for some p, 1 < p < 0o. Then

LIS = fmnlls = 11f = B fllp| < [|1Bmf = fm,nllp < 2(m + 1)||F = Falleo
Moreover, for each finite p there is finite C such that
m+1

Jn
PROOF: The (2.1), 2° and 5° of Section 1 give for fixed z € I
|Bmf(2) = fmn(2)| = |DTm(F — Fp)(z)]

(ClBmf - fm.n“ﬁ)% <C for nym+1=12,...

=13 [ Mimd(F ~F2) Bin(2) =1 Y [ (F = FaY@)DMin(s)dy Nin(2)

m
<|IF = Falloo 3 IDMinlls Niim(2) < 2(m + 1)||F = Falloo,

1=0

whence ||Rnf — fmnllp < 2(m + 1)||F — Fy||oo, and this completes the first part of the
proof, which in combination with Lemma 4.7 gives the second part.



THEOREM 4.9. Let either f € LP(I)NP(I) for some p, 1 < p < o0, or f € C(I)nP(I),
and let m = [n?)] for some f > 0. Then, for 0 < f < }

Pr{“f— fm,n“p = 0(1) a n-— OO} =1.

Moreover, if 0 < @ < 1,0 < § < } 11, then the following conditions are equivalent:

(i) wigp(fi6)=0(6%) as  §—0y4,

(i) Pr{lf ~ fmalls = Ol55) a8 n— oo} =1,

PROOF: We know from [1] that ||f — Rm fl|, = 0(1). On the other hand Lemma 4.7 gives
fore> 0

3,1-38

(4.10) Pr{(m+1)||F — Fpllec > €} < C e T <C e 1ern
This implies
Pr{(m +1)||F — Fplloo =0(1) a8 n— o0} =1.
To complete the first part of the proof it is sufficient now to apply Lemma 4.8. Substituting
in (4.10) e = ;&5 we get
c _ 1-
(4.11) Pr{(m+ DIIF - fallo > =5} < C e71™»™,

which implies
Pr{(m +1)||F - Fyljoo = 0(”—13) as n—oo}=1

Now the equivalence of (i) and (ii) follows by Lemma 4.8.

Next Theorem concerns the order of the mean L? deviations for the estimators fp, ,.
To this end we need the following auxiliary inequalities. The first is elementary and it is
well known.

PROPOSITION 4.12. Let J =< —a,a >, a >0, R = (—00,00). Then,
0L |z+h|P+|z— AP - 2|z| < p(p—1)a*?|h|? for p>2 z+hz—-heJ

To formulate the second inequality we recall the definition of the customary second
order modulus of smoothness i.e for g € C(J) define

(4.13) w3 c0(g;6)s = - FrEL I 9(21)+9(z2)|, 0<s< k.
21,83€J,|21—23| <326 2 2 2

The following useful estimate we find in [9].



PROPOSITIOPN 4.14. Let X be a random variable with values in J, J being finite or
infinite interval, EX? < oo and let g € C(J). Then

10(EX) — Eg(X)] < 16 wg.e0 (g; L VEX-EX ) .
J

LEMMA 4.15. Let f € LP(I)NnP(I), 1 < p < oo. Then, for the sample X;,...,Xn
corresponding to the density f we have

+1)7
(BWRmf - fmalf)? < € E)T,

where L +1 =1, a Vb= maz(a,b), a Ab=min(a,b).

PROOF: The case 1 < p <2 is easy. As in [2] we have

" . )
(ElRnf = fmalB)? < (BB S — frnlB)? < ("‘ + ‘)

n
Let now p > 2 and let for1 =0,...,m,

l n

XU = =% " (Mim(X;) — EMim(X;)).

=1

It follows that the values of X(¥) are in J = (~m—1,m+1). Since EX(¥) = 0, Proposition
4.14 applied to X(*) and to g(z) = |z gives

|Eg(X®)| < 16 a0 (9;% l/M?:mf :
J

nJjI
whence by Proposition 4.12
E|XO)P < CP(m + l)”"%ﬁMsz < C’M/;N;,mf.
Now, by Jensen’s inequality

E||Bmf  fmll8 = /, S XON; m(y)[? dy

= ; 1 & ; m+ 1)1
< £2E|X(')|PN.-,,,.(y) dy=— ;Ep((-)pv < cp(_n)__

=0



To formulate the last result we introduce for0 < a<land 1<p< oo
sarp  H1Sp<yy
Yo, p) = jagpmr H2<p<2+ gy
arm P22+ g

THEOREM 4.16. Let 1 < p < oo and let f € LP(I)NP(I). Let o, 0 < o < 1, and
B, 0< ﬁ < (a,p) be given. Moreover, let m = [nf|. Then the fo)lowmg conditions are

equivalen
(i) wagp(fi6) =0(87%) as 504,

(ii) (E“f fm n” )p = 0 7) as n — 00.

For the proof we apply Lemmas 4.15, 4.8 and Proposition 3.8.
COROLLARY 4.17. Under the assumptions of Theorem 4.16 the best choice of § with
respect to (ii) is given by formula § = y(a, p).
EXAMPLE: Using the examples on page 228 of [6] we find that for 1 < p < 2 the arcsin
law density i.e. for 1

)= 2 =y

wagp(fo;6) ~6%1  as 50y

Thus, for this density « = 1 — 1 and the optimal choice for § is § = §.
6. Algorithm for computing the density and distribution estimators.Let
Xi,..., X, be given as in the previous section. Since

ze<0,1>

we have

fmal2) = =3 Rm(X5,3),
1=1

to compute fp m(z) for fixed z we need to compute R (Xj,z) for j = 1,...,n. However,

m

B (X;y2) =) Mim(X;)Nism(2)

1=0

and therefore we use the Casteljeau algorithm for the first time to compute M; m(X;) and
for the second time to calculate Rp,(X;,z). Now, the density fp, . has also the following

representation
m

fmn(2) = ) ailNim(z),

1=



where

1 & .
a¢=;;M,m(Xj), 1=0,...,m.

Thus, at almost no cost the following coefficients

+...+a;-
b0=0, b1=l, b1‘=&—?’__11—1)

i=L...,m+1
can be computed. To compute Fy,, »(z) one applies once more the Casteljeau algorithm to
the following formula

T m+1
Fra(®)= [ fmals)dy='Y biMimen(s)
0 =1
6. Comments. This note is related to [3] and [2] but the tools used here are differ-
ent. This made it possible to extend the results from [2]. The author is indebted to G.
Kreykowski who has brought to our attention Lemma 4.7.
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Local Spline Interpolation Schemes in One and Several Variables

W. Dahmen *

Universitédt Bielefeld
Fakultat fir Mathematik
48 Bielefeld, West Germany

T. N. T. Goodman
Department of Mathematics
University of Dundee
Dundee, Scotland

Charles A. Micchelli *

Mathematical Sciences Department

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598
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1. Introduction

The importance of splines for the numerical solution of interpolation problems is a
well-established fact. Nevertheless, computationally spline interpolation requires the
solution of large sparse linear systems whose order is roughly equal to the number of
data being interpolated. This is reflected in the fact that generally the interpolant at any
point depends on all the data. Equivalently, if we let {I,},, be the fundamental
Lagrange splines for interpolation on the sequence {x}, ,, that is,

(11) I’i (XJ) = 6ij, l,j e”Z

then each L, is supported on all of R. It seems desirable to have fundamental functions
of compact support. This can prove useful when updating of the interpolant is desired
as new data are available or when solving several smaller linear systems to determine the
Lagrange splines is preferred over solving one large set of equations. The use of
compactly supported fundamental functions has already proved useful in numerical grid
generation [7] as well as in computer aided design, [1].

An efficient method for constructing Lagrange splines of compact support is the
addition of knots beyond those chosen at the data locations. The problem then is how
to use these degrees of freedom in such a way that cither shape control and/or high ac-
curacy is achieved. Various such questions have been systematically analyzed in [6].
Some of these results are briefly reviewed in Section 2. In Section 3 we propose several
extensions of these results to multivariate interpolation problems. Due to the wider
variety of possibilities in the multivariate case, these results only provide an initial in-
vestigation into a problem that has important applications for practical data fitting in
several variables.

2. Univariate Compactly Supported Fundamental Functions

Let X = {x;};.z be a strictly increasing sequence of rcal numbers. As usual, the B-
splines of order k on X are defined by

Nikx ) = (Xigx — ) [Xj, - X (@ — X)]:L_I

where [x,, ..., x;,, ] f denotes the k-th order divided difference of f and

< = x(, x>0,
+70, x<0.

For any fixed integer 1 < q <k — 1 the function

k—1

X = Xig
2.0 Liyq(®) = | I P vy Nijex (RINj e x (Xigq)
=1
i7a

is a piecewise polynomial of degree 2k — 3 having k — 2 continuous derivatives. More-
over, as is clearly apparent

and

supp L; = [X_q, Xi_q4k] = supp Ni_q x-



