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Preface

An International Conference on Preconditioned Conjugate Gradient Methods was
held at the Faculty of Mathematics and Informatics, University of Nijmegen, The
Netherlands on June 19-21, 1989.

The main motivation in organizing this Conference was the wish to bring together
specialists working on iterative solution methods, in particular using precondi-
tioning methods. The conference was preceeded by a short course on precondi-
tioned conjugate gradient methods, on June 15-17, 1989.

Although the conference was organized and announced only a few months prior to
its taking place, many scientists from different countries attended the conference.
The director of the faculties of sciences, dr.ir. L.H.J. Wachters, had kindly accepted
the invitation to open the conference.

The topics presented at the conference contained both analysis and implementa-
tional aspects of the methods. The proceedings contains the full text of 11 invited
or contributed papers.

We are grateful to the participants, and especially to the speakers who made this
meeting an important scientific event. We are also most indebted to the Adminis-
tration of the Faculty of Mathematics and Informatics, to the younger members
of the numerical analysis group and to the secretatiat of the Institute of Math-
ematics whose support was an indispensable contribution to the success of this
conference.

0. Axelsson and L. Kolotilina



MODIFIED INCOMPLETE FACTORIZATION STRATEGIES

R. BEAUWENS
UNIVERSITE LIBRE DE BRUXELLES, SERVICE DE METROLOGIE NUCLEAIRE

50, AV. F.D. ROOSEVELT, B-1050 BRUSSELS, BELGIUM

Abstract. We review here the conditioning properties of modified incomplete symmetric factor-
izations of Stieltjes matrices, appropriate for the PCG solution of symmetric positive definite linear
systems. Emphasizing the algorithmic interpretation of the required assumptions, we analyse the
theoretical support that can be given to practical factorization algorithms and the choice left open
between “perturbed” and “unperturbed” policies. Recent results extending the scope of unperturbed
modified factorizations are included and discussed.

1. Introduction. We consider in this work the PCG solution of a linear system

(1.1) Az —b
with the purpose of reviewing a priori upper bounds on the spectral condition number
Apae(B2A)
1.2 = e A D et S
(12) ERT R e

of the preconditioned matrix B~! 4 and factorization “strategies” that are supported
or suggested by these results, under the assumptions that A is a Stieltjes matrix and
that B is determined from a modified incomplete factorization of A.

We notice here that the case of an arbitrary symmetric positive definite matrix
A may be reduced to the Stieltjes case (or even to some more restrictive class of
matrices) provided that one can determine spectral bounds for a pencil of the form
A—)A, where A, is Stieltjes since, if a and 3 are positive numbers such that, for all

2e P2 £0,

(z,Az2)
(1.3) a< oy e <8,
then
(1.4) k(B7'A) < gn(B"lA,,).

The assumption that B is determined from an incomplete factorization of A means
that B is of the form

(1.5) B=UTP U

where U is upper triangular with positive diagonal entries, P = diag(U), and that
the entries of U = (u;;) are related to those of A = (a;j) through the relations

Uy Upj . .
(1.6) Uij =a,~j-—ﬂ,-jz——-r-"— 1 <7

u
r<i L

A
where 3 = (fi;) is a given (0,1) matrix. The assumption, made here, that B is deter-
mined from a modified incomplete factorization of A means that the determination
of the diagonal entries of U is modified with respect to the previous scheme. These
entries are now determined from the relations

(1.7) Bi = A# + ADz



where # is a given positive vector, D = diag(A) and A is a nonnegative diagonal
matrix. The latter relations may equivalently be written

(1.8) Uz = Az + ADi — (UT - P)P~Us.

In other words, modified incomplete factorizations use the relations (1.6) to determine
(U — P) and (1.8) to determine U, whence P.

The matrix A = (A;é;;) is a nonnegative diagonal matrix of “small” parameters
A; that may be given (static factorization algorithms) or that may be determined
during the computation of U (dynamic factorization algorithms). The proper choice
of A is crucial for the convergence behaviour of the associated PCG method and we
shall review below the recipes that can be given for its choice on the basis of available
upper bounds on k(B! A4).

Standard definitions and notation used throughout the paper are the following.
All matrices are n x n matrices and all vectors are n vectors. The order relation
between real matrices and vectors is the usual componentwise order : with A = (a;;)
and B = (b;;), then A < B (A < B) if a;; < b;j (a;; < b;;) for all i,5. A is
said nonnegative (positive) if A > 0 (4 > 0) and monotone if it is nonsingular with
A~! > 0. An M-matrix is a monotone matrix with nonpositive offdiagonal entries.
A Stieltjes matrix is a symmetric M-matrix. If A = (ai;), we denote by diag(A) the
(diagonal) matrix with entries a;;6;;. By e we denote the vector with all components
equal to unity.

2. Spectral Bounds. We first review the most general spectral bounds obtained
to date for the pencil A — v B, trying to emphasize the algorithmic interpretation of
the assumptions required by these results. The following general assumptions will be
made in most theorems reported in this work and referred to as (GA). Proofs that
can be found elsewhere are omitted. See [5,6,8,10] for those of the results reported in
the present section.

DEFINITION 2.1. General assumptions (GA) mean the following.

A is a real symmetric matriz,

D = diag(A),

U is a real upper triangular matriz,

P = diag(U) is nonnegative and nonsingular,
B = UTpP-1y,

Z is a given positive vector.

We first separate upper and lower spectral bounds to display the proper relevance

of additional assumptions.
THEOREM 2.2. Adding to (GA) that

{2.1) U is an M — matrit,

(2:2) of fdiag(UT +U) < of fdiag(4),
(2.3) Bz > (1 - 1)A%,

(2.4) Uz > (1-1)P%,

(2.5) r< 1,



then
1

(2.6) Amax(B™'A) < 17—

THEOREM 2.3. Adding to (GA) that
(2.7) of fdiag(A — (UT — P)P~Y(U — P)) < of fdiag(UT + V),
(2.8) Bi < A%,
then
(2.9) N8B A) ix L.

Gathering now these results, we get :
THEOREM 2.4. Adding to (GA) that

(2.10) U is an M — matriz,

(2.11) of fdiag(A — (UT = P)P~"(U - P)) < of fdiag(UT +U) < of fdiag(A),
(2.12) (1-7)Az < Bi < Az,

(2.13) Uz > (1 - )Pz,

(2.14) <1,
then
(2.15) 1€ 3t A & : 1T :
whence
1
-1
(2.16) KBIA) < =

The additional assumptions required by these results may be subdivided in two
groups.

The first group, comprising (2.1), (2.2) and (2.7) or, in the combined version,
(2.10) and (2.11), bears on the offdiagonal entries of U and A. They essentially
determine the class of matrices A and B that are covered by the results. It is readily
checked that, for incomplete or modified incomplete factorizations, (2.10) and (2.11)
are always satisfied when A is a Stieltjes matrix. We refer to [10] for a recent gene-
ralization of these assumptions.

The second group, comprising (2.3), (2.4), (2.5) and (2.8) or, in the combined
version (2.12), (2.13), (2.14), bears on the diagonal entries of U and deserves careful
attention. “

It should first be noticed that compatibility of (2.3) and (2.8) requires that 2.is
chosen such as A& > 0. This again is always-possible when A is a Stieltjes matrix.
The existence of # > 0 with A > 0 is indeed a well-known criterion for A with
of fdiag(A) < 0 to be an M-matrix (cf. [18] : Theorem 1). In that case, AZ >0 is
further a sufficient condition for the existence of B satisfying (1.5)-(1.7). Existence
criteria useful under the less stringent condition A% > 0 will be mentioned below.



It should next be noticed that, if P is so chosen (i.e. large enough) that U > aP#
with o« = 1 — 7 > 0, then, by Theorem 2.2, 1/« is an upper spectral bound for the
pencil A — vB. For that purpose, it is sufficient to increase appropriate components
of B% as it is readily seen from the relation

(2.17) Ui = B - (UT - P)P"'U%.

But Bz may not be arbitrarily increased because of condition (2.8) of Theorem 2.3.
The best compromise within the constraints (2.12) appears therefore to be

(2.18) Bi = A#

and, if this choice also meets the condition (2.13) with (2.14), then we get the bound
(2.16). In other cases, one may try to increase B beyond the limit AZ (hereby
requiring an improved version of Theorem 2.3) or philosophically live with B¢ = Az
(hoping that an improved version of Theorem 2.2 does apply).

Before proceeding to the consideration of these “strategies”, we wish to figure
out the order of magnitude of the bound 1/(1 — 7) with an analytical estimate which,
although less accurate, is more appropriate for that purpose. It should however be
appreciated that 7 is readily computed during the factorization and thus, always
numerically accessible.

Analytical results to be stated here and in later sections rest on the consideration
of matrix graph properties and we now need a short digression into this area to recall
some terminology. We refer to [11] or [14] for the general terminology on matrix graphs
with the warning that all graphs considered in this work are ordered undirected graphs
with node set [1,n], i.e. the ordered set of the first n integers or, when subgraphs
are considered, some subset of [1,n]. Given a graph G, we use the notation Adj(z) to
denote the set of neighbors of ¢ in G; with M C [1,n], we further set

Adj(M) = | J Adj(i).
iEM

DEFINITION 2.5. An increasing path in a graph is a path i,,iy,13,...1¢ such that
fe <<t <..<.

DEFINITION 2.6. The mazimal increasing length €(M) of an nonemply subset
M of the node set of the graph G is the length of the longest increasing path in the
subgraph of G induced by M. We further set £(0) = —1.

DEFINITION 2.7. A node k of a graph G is called a precursor (successor) of the
node i of G if k € Adj(i) with k < i(k > i). The set of precursors (successors) of i
is denoted by P(i) (S(i)). If M is a subset of the node set of G, the set of precursors
(successors) of the nodes of M is denoted by P(M) (S(M)). In other words :

P(M)= | PG),  S=|J S6).
i€eM ieM
H
We further set P(0) = S(0) = 0.
DEFINITION 2.8. For any node i of a graph G, we define the ascent As(i) of i
as

As(i) = {k | There ezists an increasing path from k to i }.



For any sel M of nodes of G, we define the ascent As(M) of M as

As(M) = | ] As(i)

iEM

if M # 0, with As(0) = 0.
DEFINITION 2.9. For any pair of nodes i and j of a graph G, we denote by

Pe(i, j) = P(i) N P(j)
their set of common precursors. We further set
Pe(@) = . ko Pelivd)
,j=1
i#]

and, if G is the graph of a matriz A, we also use Pc(A) for Pc(G).
It may be mentioned as a first application of these definitions, that the assumption
(2.4) of Theorem 2.2 (whence also (2.13) of Theorem 2.4) may be weakened to

(2.19) (Uz); > (1 - T7)(Pz); for iic Pe(ll) o

a remark which leads us to the following analytical bound.
THEOREM 2.10. Under (GA), (2.1), (2.2) and

(2.20) FDI_II (UT - U)a) < (Bay  for i € As(Pe(V))
(2.21) k—+—2—+—2 A%< BB

with & = £(As(i)), £ = LAs(Pc(U))) and k > 0, we have that the conditions (2.3)
and (2.19) are satisfied with 1 —7 = 1/(k+ €+ 2). Therefore

(2.22) Amaz(B~1A) < k+1£+42
and, if (2.7) and (2.8) are also mel,
(2.23) k(B™'A) < k+£+2.

This result displays a relation between the ordering of U and the condition number
of B-1A since the assumption (2.20) and the conclusion (2.22) (or (2.23)) clearly
depend on the ordering of U. One may recommend, on this basis, to order U so as to
satisfy (2.20) (together with B& = Az as already discussed) with the smallest possible
value of k + £. \

Consideration of applications to discrete PDE’s shows on the other hand that
this bound may be considered as an algebraic generalization of the O(h~!) bound of
the geometrical approach developed by Axelsson and his co-workers (cf. [2,13] and
the references cited there).

It must finally be remarked that the conditions (2.19) and (2.14) require the strict
diagonal dominance of U with respect to Pc(U) and z according to the following
definition.



DEFINITION 2.11. Let A = (a;;) be a matriz with positive diagonal entries and
non-positive offdiagonal entries, let z be a positive vector and M C [1,n]. We call
dominance ratio of A with respect to M and z the number

LN
t = max (—;——E gL J)
iEM ai; x;

witht =0 if M = 0. A is diagonally dominant (with respect to M and z) if t <1
and sirictly diagonally dominant (with respect to M and z) if t < 1.

Before concluding this section,let us reconsider the existence problem of B subject
to (1.5)-(1.7) when A is an M-matrix with £ > 0 such that AZ > 0. Notice first that
Gustafsson’s existence analysis (cf. [13] : Theorem 3.1) precludes the unperturbed
case by requiring a strictly positive perturbation AD#. The latter condition acts like
strict diagonal dominance (i.e. AZ > 0) and dispenses with any additional require-
ment. Notice on the other hand that the author’s criterion (cf. [5] : Corollary of The-
orem 2.1) of lower semistrict diagonal dominance (i.e. Az > 0 with > ;] a;jz; > 0)
is sufficient but not necessary. The precise necessary and sufficient adémonal condi-
tion has recently been obtained by Notay (cf. [17] : Theorem 3.4) and writes in the
present framework, with graph notation referring to G(U),

(2.24) Vj:S8(j) = 0= 3i € As(j) with (A2); + Xi(DZ); > 0
and in particular, when A = 0,
(2.25) Vj:S(j) =0 = 3i € As(j) with (Az); > 0.

It may further be added that (2.25) is true a.o. whenever the only nodes without
successors are the last nodes of the connected components of G(U), a condition which
occurs under the assumptions considered in Section 4.

3. Factorizations algorithms. Let us now recall that modified incomplete fac-
torizations use the relations (1.6) to determine (U — P) and (1.8) to determine UZ,
whence P. We consider in this section that A is a Stieltjes matrix and that 8 is a
given (0,1) matrix. It then follows from (1.6) that the assumptions (2.1), (2.2) and
(2.7) of Theorems 2.2 and 2.3 are satisfied.

It remains to determine P. We consider here four examples of algorithms that
may be used for that purpose following the “strategies” indicated in the previous
section and we try to analyse their properties on the basis of the preceding theory.In
all cases; a (small) parameter o with 0 < @ < 1 and a positive vector & have to be
chosen; 1/a is the “target” upper bound on k(B~! A); % is used to measure the degree
of diagonal dominance of U and must be such that AZ > 0. We also assume here that
(2.25) is satisfied. A simple modification dispensing us from that requirement will be
indicated in fine.

It is understood that each line of U is computed successively beginning with u;;
for i < j < n (cf. (1.6)) and ending with u;; (% below). It is clear that, at the i* th
stage, the formula (1.6) needs u,, for s < i only.

STRATEGY 1. Compute P = diag(U) by solving, at the * h stage,

(3.1) , (Uz); = (Az); — (UT = P)P~'U%);

for uy;.



STRATEGY 2. Denote by P the diagonal matriz equal to P = diag(U) with
the (possible) exception of its i'h (diagonal) eniry which we denote by uf; and let

U(') P(‘) + (U — P). Notice that neither P,S ) nor P is entirely known at the i*®
stage but this is irrelevant for our purpose.
Determine first u; by solving

(3.2) (U9%); = (Az); — (U - P)TP'U%),

for ug; and compute of = (Ugi)f:);/(Poi):i:)g. Ifi ¢ As(Pc(U)) or if b > a, set
ui; = uf;. Otherwise, determine u;; by solving

(3.3) (Uz)i = (Az); + 8&(PPD&); — (U - P)T P 'Uz);
for u;, where é; is given by

el a maz{(UT — U):L').,O}
(3.4) 6 = l—a+1—a (Po()).

STRATEGY 3. Proceed in the same way as in the former case, but define §; by

a? a ((UT - U)-’B)s
l-a l1-a (p( ):c),

(3.5) Oi=

STRATEGY 4. Determine uf;, P ), 5‘) and o as in the former case. If
i€ Pc(U) orifal > a, set ui; = uf;. Otherwise, determine u;; by solving (3.3) for
u;; with

a - o
3.6 b = —2.
L : l-a
The first strategy was called “unmodified” factorization in [2] (with & = e).

We prefer to call it “unperturbed” to avoid confusion with the case where P is also
determined by the relation (1.6) and because it amounts to set A = 0 in the relation
(1.7). The second strategy is an obvious adaptation to our framework of the Axelsson-
Barker scheme (defined by Eqs (7.18) in [2]) and the third one is a simplified version
of the same algorithm. The fourth strategy is new although supported by the same
philosophy as we shall see below. Notice that in all cases, the diagonal matrix A =
(Xibij) of Eq. (1.7) may be determined from

o
(3.7 Af =il

provided that §; is initialized to zero at the beginning of the i** stage.

The first remark to be done when discussing these strategies is that, would it
happen that a} > « at all stages, then all four strategies reduce to the first one. It
does happen in particular when the assumptions of Theorenr 2.10 are satisfied, with
o= ﬁﬁg and this shows that the indications provided by the latter result should
be used before starting any of these procedures to :

(1) try to find an ordering of U such that k+ £ be not too large and that the con-

dition (2.20) is approximately satisfied at most if not all nodes of As(Pc(U));



(2) choose a once the ordering has been chosen.

Our next remark is to emphasize the opposite points of view which support the
first strategy on the one hand and the other three on the other hand : the first
strategy preserves an exact lower bound for the pencil A — vB since 1 is then the
lowest eigenvalue of A — vB (with & as associated eigenvector) while, as it will now
be shown, the other strategies imply that 1/a is an upper bound on the spectrum of
A—-vB.

THEOREM 3.1. Adding to (GA) that

(3.8) A is a Stieltjes matriz with Az > 0 , 5
(3.9) U — P satisfies (1.6) with0 < B;; < 1fori < j < n

(3.10) P is determined from strategy n°i withi = 2or3 or4 ,

(3.11) Di<ia<

then (2.3) and (2.19) are satisfied with 1 — 7 = . Therefore

(3.12) e e é

Proof. It is clearly sufficient to show that the ith stage leads to u;; such that
(Uz); > a(P#);, whenever i € Pc(U).
In the case of the fourth strategy, this follows from
Ua) — a(P2) = (UDE) + &(PPE) — o(PP)i + &(PPE):)
= (of - a+ 8(1-a)(PD2) = 0
when af, < « while there is nothing to prove when af, 2 oo
In the case of the third strategy, we prove by induction that (Uz); > a(Pz);

whenever i € As(Pc(U)) (whence also in particular for i € Pc(U)). If ol < a,we
have

(Uz); — a(Pz);

(WUP&) + (1 - a)bi — a)(PP &)
(UD&)i + a((UT - V)2)i — a(1 - a)(PP2)i
= (UPz); + a(UT - P)i);

— o((U — P)&); — a(l — a)(P2);
(Az); — (UT = P)P~Y(U — aP)&);

+ a(1 - a))(PP2) — a(l - a)(PP2);

= (A%); — (UT = P)"'(U - aP)d; + a(a - oab)(PP2): ,

but the first term of the RHS of the latter equation is nonnegative and the last

one positive by assumption while the second one is nonnegative by the induction
hypothesis, entailing

(Uz); — a(Pz); > 0

while again, there is nothing to prove if o> g
The same argument holds a fortiori in the case of the second strategy. |
It is now clear that the last three strategies satisfy all the assumptions of Theorem
2.4 with the possible exception of the right inequality (2.12). Defining A = (Xidi;)
through (3.7) we actually have

Bi = A% + ADz



and the question raises to evaluate the influence of the perturbation ADZ on the lower
spectral bound of A — vB. One has the following result.
THEOREM 3.2. Under (GA), (2.7) and

(3.13) B < Az +ADg
(3.14) A cme i (b)) 20

2 (z,ADz)
S ¢ 5 W GAn
one has

1

3.16 Amin(B™1A) > ——
(3.16) e

Proof. We have by (2.7) that
of fdiag(A+ AD — B) = of fdiag(A—B) < 0
and, by (3.13) with (3.14) that
(A+AD-B)& > 0.
It follows that A 4+ AD — B is nonnegative definite, whence by (3.15),

(2,Bz) < (2,(A+AD)2) < (z,A2)(1+¢)

which implies (3.16). i
This result reduces the question raised above to the estimation of §. Clearly
A
: Rt

where
(3.18) A= lr<n’5asxn(/\.-)
and

-1 o : (Z,AZ)
(3.19) AP 4y = min (z, D7)

But this bound on ¢ is often too large; more precisely, with

: (z,ADz%)
(3.20) SN = .D3) °
it is found that (3.17) is accurate when A ~ < X > but an order of magnitude too
large when A 3>>< X > (see [6] and [8] for a more detailed account).

Unfortunately, no closed form formula has been rigorously obtained to deal with
the latter case. Instead, appropriate procedures have been set up for obtaining upper
bounds on £ in specific situations. Since these procedures are somewhat involved,
we must however refer the reader to the literature (cf. [2,8,12,15]) for more detailed
information.
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Nevertheless, the following heuristic formula can be proposed

XS

inasmuch as one may admit that the fundamental eigenvector z; of th pencil A —AD
is a valid trial vector for the Raleigh quotient estimate of £, i.e. that

o (21,ADz;)  (21,ADz) 1
(322) 6 &2 (Zl,AZI) = (zl,Dzl) AI(D_IA)

and further that

(zl,ADzl) ot

3.23 S N
( ) (ZI,DZI)

Despite the lack of rigorous justification of the formula (3.21), it has the essential
merit of representing the most concise summary of the general conclusions that can
be drawn from the rigorous analysis of a variety of examples to be found a.o. in
[2,8,12,15], reproducing the exact formula when A =< X >, exhibiting the right order
of magnitude when A > < A > and displaying correctly the influence of Ay (D~ A).

The main practical conclusion to be drawn from the latter remark is that the
strategies N° 2, 3 and 4 are likely to provide a good spectral condition number
k(B~1A) whenever < A >~ X, (D~!A), i.e. whenever A;(D~!A) is not too small. In
other cases (quasi singular problems) one may attempt to limit the perturbations A;
so that < A >~ A (D~'A), i.e. essentially shift to the first strategy. As noticed in
Section 2, such an attitude relies on the hope that an improved version of Theorem
2.2 applies. The results to be reported in the next section show that such an hope
needs not be unrealistic.

It is now appropriate to reconsider the assumption (2.25). It follows from the
(2.24) version of Notay’s result that a simple way to take care of any violation of
(2.25) at some node j is to introduce a corresponding positive perturbation A;(D#);.
Since S(j) = 0, this perturbation does not affect later coefficients nor does it affect the
upper spectral bound discussed above. Since on the other hand, its size is arbitrary, it
can be chosen small enough to have a negligible influence on the lower spectral bound.
With this slight modification of our factorization algorithms, the only requirement to
be put on Z is that Az > 0.

Before leaving this section, let us finally notice that the essential limitation of
Theorem 2.2 arises from the requirement (2.5) which (together with (2.19)) means-
that U must be strictly diagonally dominant (with respect to Pc(U) and £). In this
respect, it is of interest to mention the following result by Axelssen [1] (cf. also [3])
which applies to the generalized SSOR method.

THEOREM 3.3. Adding to (GA) that :

A is symmetric positive de finite,
of fdiag(UT + U) =, of fdiag(A),
Drscs ) 70 Br

T )

then
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Exchanging Theorem 2.2 for the latter result, a new family of strategies can be
developed (for the generalized SSOR factorization of Stieltjes matrices) in much the
same way as done above, but where the perturbations have now to take care of the
condition 7, < 1 (i.e. of the strict positive definiteness of 2P — D) rather than 7 < 1.
Unfortunately this new requirement is almost as restrictive as the preceding one and
leads us to similar difficulties.

4. The unperturbed strategy. We now report recent results on upper spec-
tral bounds which do neither require the strict diagonal dominance of U nor the
strict positive definiteness of 2P — D. These improved versions of Theorem 2.2 have
been obtained in [9] and [16] under the additional assumption that the approximate
triangular factors are “S/P consistently ordered”. We therefore begin with a few
definitions to clarify this notion.

We first rephrase Young’s definition of consistent ordering [19,20] through the
notion of level structure [11].

DEFINITION 4.1. A level structure of a graph G is a partitioning of its node set,
L= (Lk)k=0'1’__,,[, such that

()  Adi(Lo)CL,ULy ;
(b) Adj(Lk) C Lic1ULgULgyy for 0<k<?;
(¢) Adj(Le) CLe-1ULe

£ is called the length of L.

DEFINITION 4.2. A graph G is consistently ordered if there ezists a level struc-
ture £ = (Lik)k=0,,...,. of G such that

f€ly=>P)CLy.y for _0<k<l
and
iGLk=>S(i)CLk+1 for 0§k<£

A matriz is said to be consistently ordered when ils graph is consistently ordered.

A level structure satisfying the preceding properties will be called associated with
the consistent ordering of G. As observed in [7], if G is consistently ordered and
connected, it has a unique level structure associated with its consistent ordering.

Next, complementing Definition 2.9 with the notation Sc(i, j) to denote the com-
mon successors of any pair of nodes i and j in a graph G :

Se(i,j) = S(1) N S(),

we introduce the notion of S/P consistent ordering.
DEFINITION 4.3. We say that a graph G is S/P consistently ordered if, for any
pair of nodes i,j withi # j,

A
Pe(i,j) # 0 = Se(i, j) # 0

A malriz is said to be S/P consistently ordered when ils graph is S/P consistently
ordered.



12

We recall from [7] that an S/P consistently ordered graph is consistently ordered
and that if it is connected, its (unique) associated level structure satisfies :

(a) its last level is Ly = {n} :
(b) its k** level is Ly = P(Lgyy) for 0 <k < L.

To deal with S/P consistently ordered graphs and matrices, it is appropriate to
further complement Definition 2.9 with the following notation : for any couple of
nodes 7 and j in a graph G, we set

Seled) =t gl i T

otherwise

and we define

seG)= | Swii).
=]
i# ]
If G is the graph of the matrix A, we also write Sp(A) for Sp(G).

To introduce our next definition, let U = (u;;) be an upper triangular matrix and
consider products of the form uru,; with »r < i < j; such expressions are nonzero
only if r € Pc(U); now if U is S/ P consistently ordered, to nonzero expressions of this
type, we can associate nonzero products of the form u;,uj, with i < j < s since the
existence of 7 € Pc(i, j) entails that of s € Se(i, j); further, if U is an M-matrix, we can
introduce positive normalization constants U;jrs such that ug,uj, /uijr, = upitiyj /u,,;
more generally, to any pair of nodes ,j with i # j such that Pc(i, j) # 0, we can
associate some family of positive parameters u;j,,s € Sc(i, j) such that

Z UisUjs Z Upi Uy
Ui; Ui
s€Sc(i,j) ° rePc(ij)

These remarks show that any upper triangular S/P consistently ordered M-matrix
has S/P images according to the following definitions.

DEFINITION 4.4. Let U = (u;j) be an upper triangular matriz with positive
diagonal entries. Then a lower triangular matriz L = (4ij) is called an S/P image of
U if

(a) the offdiagonal entries of L satisfy
{ uji if i€ Sp(U) and j € S(Pc(V)),

b im 0 otherwise,

(b) the diagonal entries of L salisfy

e otherwise,

‘ _{ ;nin{u,-j,|i,j€P(s), i#d; Pe(i,ip# 0} if s€Sp)),

where uij, is a family of positive paramc)ers defined for all s € Sp(U), i,j €
P(s), i # j and Pc(i, ) # 0, and which satisfy the relations

Z Uis uz’a = E Uypi Uy
Us4 u
s€Sc(i,j) M° rePc(i,j)

for all couples of indices i,j with i # j and Pc(i,j) # 0.
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DEFINITION 4.5. Let U = (u;j) be an upper triangular S/ P consistently ordered
M-matriz and let the diagonal matriz K = (k;6;;) be such that 0 < k; < 1 for all
i <i<n. Any S/P image of KU is called a reduced S/P image of U, of reduction
matriz K and of reduction ratio K = min;<i<n(&:).

With these notions in mind, we can now state the following improved version of
Theorem 2.2, borrowed from [9].

THEOREM 4.6. Under (GA), (2.1), (2.2), (2.19) and

(4.1) U is S/P consistently ordered,
(4.2) L is a reduced S/P image of U, of reduction ratio 0,
5 T 2
(4.3) B > (1-7+1 m)Ax,
(4.4) (L) > (1—7)(Q%&); for i€ Sp(U),
(4.5) <1
with Q = diag(L) and £ = {(Pc(U)), we have that
(4.6) Apiac( BT Ay < : e Ak
L=T4 0153 n

and therefore, if (2.7) and (2.8) are also met,

(4.7) k(B7'A) < e

The condition (4.5) together with (2.19) means that U is diagonally dominant
with respect to Pc(U) and & but strict diagonal dominance is no more required. We
refer to [9] for numerical results illustrating the power of Theorem 4.6, noticing here
that, when U is S/ P consistently ordered, it justifies the recourse to the first strategy
suggested in Section 3, at least when the other ones are not satisfactory.

It remains of course to consider the implications of the other assumptions of this
new bound to be sure that it truly generalizes Theorem 2.2.

It should first be noticed in this respect that (4.2), (4.4) and (4.5) require the
existence of a reduced S/P image of U which must be diagonally dominant with
respect to Sp(U) and &. That this requirement is always satisfied has recently been
shown by Notay who proved in [16] that any S/ P consistently ordered upper triangular
M-matrix has reduced S/P images of any a priori prescribed dominance ratio ¢ (with
respect to Sp(U) and any given £ > 0).

Because of Notay’s theorem, we may introduce the following definition.

DEFINITION 4.7. Let U be an upper triangular S/P consistently ordered M-
matriz, & a posilive vector and t a positive number. We call mazimal reduction ratio
of U with respect to & and t and we denote by (U, z) the mazimal value of 1 such
that U has a reduced S/P image of reduction ratio n and whose dominance ratio with
respect to Sp(U) and & does not exceed t.

It follows from these considerations that the assumptions (4.2) and (4.4) may
simply be exchanged for

(4.8) n < (U, £).

On the other hand, when considering modified incomplefe factorizations of a
Stieltjes matrix A with A% > 0 and B# = Az, the condition (4.3) is actually implied



