Lecture Notes in

Computer Science

Edited by G. Goos and J. Hartmanis

111

-CONPAR 81
Conférence on Analysing Problem Classes
and Programming for Parallel Computing

- Nirnberg, June 1981
Proceedings

Edited by Wolfgang Handler

SprmgerVerlag .
. Berlin Heldelberg NewYork

IR M 1) Y O ! S IR ) PP e e TR O S RS T e pa b TS Bl T oy



HP\Z, Lecture Notes N

5" Computer Science

Edited by G. Goos and J. Hartmanis

. : o

(11
HH . R
i %
i .
i 5
it v
N g
.v-n
5

111 1,%,'_{_,__8'261361

CONPAR 81

Conference on Analysing Problem Classes

ﬂ‘ and Programming for Parallel Computing
| Niirnberg, June 10-12, 1981

E Proceedings polenie

r 0 -T' «

i ¥)

Springer-Verlag
Berlin Heidelberg New York 1981 A

o Lt A



Editorial Board : b

W. Brauer P. Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth ‘ " :

29 Editor

~ Prof. Dr. rer. nat. Wolfgang Héndler

P Universitaf Erlangen-Nurnberg B
Institut fir Mathematische Maschinen und Datenverarbeitung ;

e Martensstr. 3, 8520 Erlangen

AMS Subject Classifications (1979): 68 B99
CR Subject Classifications (1981): 4.9

ISBN 3-540-10827-0 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-10827-0 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part

of the material is concerned, specifically those of translation, reprinting, re-use of

illustrations, broadcasting, reproduction by photocopying machine or similar means,

and storage in data banks. Under § 54 of the German Copyright Law where copies

are made for other than private use, a fee is payable to “Verwertungsgesellschaft

Wort", Munich. R
© by Springer-Verlag Berlin Heidelberg 1981

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

2145/3140-543210 .




Laer ety

Lecture Notes in Computer Science

Vol. 23: Programming Methodology. 4th Informatik Symposium,
IBM Germany Wildbad, September 25-27, 1974. Edited by C.E
Hackl. VI,'501 pages. 1975.

Vol. 24: Parallel Processing. Proceedings 1974. Edited by T. Feng.
VI, 433 pages. 1975.

Vol. 25: Category Theory Applied to Computation and Control. Pro-
ceedings 1974. Edited by E. G. Manes. X, 245 pages. 1975.

Vol. 26: Gl-4. Jahrestagung, Berlin, 9.-12. Oktober 1974. Her-
ausgegeben im Auftrag der Gl von D. Siefkes. IX, 748 Seiten.
1975.

Vol. 27: Optimization Techniques. IFIP Technical Conference.
Novosibirsk, July 1-7, 1974. (Series: L.F.L.P. TC7 Optimization
_Conferences.) Edited by G. |. Marchuk. VIIl, 507 pages. 1975.

Vol. 28: Mathematical Foundations of Computer Science. 3rd
Symposium at Jadwisin near Warsaw, June 17-22, 1974. Edited
by A. Blikle. Vil, 484 pages. 1975.

Vol. 29: Interval Mathematics. Procedings 1975. Edited by K. Nickel-

V1,'331 pges. 1975.

Vol. 30: Software Engineering. An Advanced Course. Edited by
F. L. Bauer. (Formerly published 1973 as Lecture Notes in Eco-
- nomics and Mathematical Systems, Vol. 81) XII, 545 pages. 1975.

Vol. 31: S. H. Fuller, Analysis of Drum and Disk Storage Units. IX,
283 pages. 1975.

Vol. 32: Mathematical Foundations of Computer Science 1975.
Proceedings 1975. Edited by J. Betvat. X, 476 pages. 1975.

Vél. 33: Automata Theory and Formal Languages, Kaiserslautern,
May 20-23, 1975. Edited by H. Brakhage on behalf of Gl. VI,
292 Seiten. 1975.

Vol. 34: GI - 5. Jahrestagung, Dortmund 8.-10. Oktober 1975.
Herausgegeben im Auftrag der Gl von J. Miihlbacher. X, 755 Seiten.
19765.

Vol. 35: W. Everling, Exercises in Computer Systems Analysis.
(Formerly published 1972 as Lecture Notes in Economics and
Mathematical Systems, Vol. 65) VIIl, 184 pages. 1975.

Vol. 36: S. A Greibach, Theory of Program Structures: Schemes,
Semantics, Verification. XV, 364 pages. 1975.

Vol. 37: C. Bshm, A-Calculus and Computer Science Theory. Pro-
ceedings 1975. XIl, 370 pages. 1975.

Vol. 38: P. Branquart, J.-P. Cardinael, J. Lewi, J.-P. Delescaille,
M. Vanbegin. An Optimized Translation Process and lts Application
to ALGOL 68. IX, 334 pages. 1976.

Vol.39: Data Base Systems. Proceedings 1975. Edited by H. Hassel-
meier and W. Spruth. VI, 386 pages. 1976.

Vol. 40: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 1. Proceedings 1975. Edited by J. Cea. XIV,
854 pages. 1976.

Vol. 41: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 2. Proceedings 1975. Edited by J. Cea. XIl,
852 pages. 1976.

Vol. 42: James E. Donahue, Complementary Definitions of Pro-
gramming Language Semantics. VI, 172 pages. 1976.

Vol. 43: E. Specker und V. Strassen, Komplexitit von Entscheidungs-
problemen. Ein Seminar. V, 217 Seiten. 1976.

Vol. 44: ECI Conference 1976. Proceedings 1976. Edited by K.
Samelson. VlIl, 322 pages. 1976.

Vol. 45: Mathematical Foundations of Computer Science 1976.
Proceedings 1976. Edited by A. Mazurkiewicz. XI, 601 pages. 1976.
Vol. 46: Language Hierarchies and Interfaces. Edited by F. L. Bauer
and K. Samelson. X, 428 pages. 1976.

Vol. 47: Methods of Algorithmic Language Implementation. Edited
by A. Ershov and C. H. A. Koster. VIIl, 351 pages. 1977.

Vol. 48: Theoretical Computer Science, Darmstadt, March 1977.
Edited by H. Tzschach, H. Waldschmidt and H. K.-G. Walter on
behalf of Gl. VIIl, 418 pages. 1977.

Vol. 49: Interactive Systems. Proceedings 1976. Edited by A. Blaser
and C. Hackl. VI, 380 pages. 1976. ‘

Vol. 50: A. C. Hartmann, A Concurrent Pascal Compiler for Mini-
computers. VI, 119 pages. 1977.

Vol. 51: B. S. Garbow, Matrix Eigensystem Routines - Eispack
Guide Extension. VIIl, 343 pages. 1977.

Vol.52: Automata, Languages and Programming. Fourth Colloguium,
University of Turku, July 1977. Edited by A. Salomaa and M. Steinby.
X, 669 pages. 1977.

Vol. 53: Mathematical Foundations of Computer Science. Proceed-
ings 1977. Edited by J. Gruska. XII, 608 pages. 1977.

Vol. 54: Design and Implementation of Programming Languages.
Proceedings 1976. Edited by J. H. Williams and D. A. Fisher. X,
496 pages. 1977.

Vol. 55: A. Gerbier, Mes premiéres constructions de programmes.
XIl, 256 pages. 1977.

Vol. 56: Fundamentals of Computation Theory. Proceedings 1977.
Edited by M. Karpinski. XIl, 542 pages. 1977.

Vol. 57: Portability of Numerical Software. Proceedings 1976. Edited
by W. Cowell. VIIl, 539 pages. 1977.

Vol. 58: M. J. O'Donnell, Computing in Systems Described by Equa-
tions. XIV, 111 pages. 1977.

Vol. 59: E. Hill, Jr., A Comparative Study of Very Large Data Bases.
X, 140 pages. 1978.

Vol.60: Operating Systems, An Advanced Course. Edited by R. Bayer,
R. M. Graham, and G. Seegmiiller. X, 593 pages. 1978.

Vol. 61: The Vienna Development Method: The Meta:Language.
Edited by D. Bjerner and C. B. Jones. XVII|, 382 pages. 1978.

Vol. 62: Automata, Languages and Programming. Proceedings197é.
Edited by G. Ausiello and C. Béhm. VIIl, 508 pages. 1978.

Vol. 63: Natural Language Communication with Computers. Edited
by Leonard Bolc. VI, 292 pages. 1978.

Vol. 64: Mathematical Foundations of Computer Science. Proceed-
ings 1978. Edited by J. Winkowski. X, 551 pages. 1978.

Vol. 65: Information Systems Methodology, Proceedings, 1978.
Edited by G. Bracchi and P. C. Lockemann. XIl, 696 pages. 1978.

Vol. 66: N. D. Jones and S. S. Muchnick, TEMPO: A Unified Treat-
ment of Binding Time and Parameter Passing Concepts in Pro-
gramming Languages. IX, 118 pages. 1978.

Vol. 67: Theoretical Computer Science, 4th Gl Conference, Aachen,
March 1979. Edited by K. Weihrauch. VII, 324 pages. 1979.

Vol. 68: D. Harel, First-Order Dynamic Logic. X, 133 pages. 1979.

Vol. 69: Program Construction. International Summer School. Edited
by F. L. Bauer and M. Broy. VII, 651 pages. 1979.

Vol. 70: Semantics of Concurrent Computation. Proceedings 1979.
Edited by G. Kahn. VI, 368 pages. 1979.

Vol. 71: Automata, Languages and Programming. Proceedings 1979.
Edited by H. A. Maurer. X, 684 pages. 1979.

Vol. 72: Symbolic and Algebraic Computation. Proceedings 1979.
Edited by E. W. Ng. XV, 657 pages. 1979.

Vol. 73: Graph-Grammars and Their Application to Computer
Science and Biology. Proceedings 1978. Edited by V. Claus, H. Ehrig
and G. Rozenberg. VII, 477 pages. 1979.

Vol. 74: Mathematical Foundations of Computer Science. Proceed-
ings 1979. Edited by J. Betvar. IX, 580 pages. 1979.

Vol. 75: Mathematical Studies of Information Processing. Pro-
ceedings 1978. Edited by E. K. Blum, M. Paul and S. Takasu. VI,
629 pages. 1979.

Vol. 76: Codes for Boundary-Value Problems in Ordinary Differential
Equations. Proceedings 1978. Edited by B. Childs et al. Vill, 388
pages. 1979.

[



CONPAR 81

Die Graphik wurde mit einer Siemens-Datenverarbeitungsanlage erstellt.
Computer Graphic from: Georg Nees; Generative Computergraphik.




PREFACE

Wolfgang Héndler
General Chairman

In its title this conference differs from some similar events {

“dealing with parallelism in computer systems and with distributed

computing. Such conferences discuss structures which are proposed
for the solution of problems by the computation of particular
algorithms, but are oniy useful for these problems. Some more

‘sophisticated structures are useful in broader classes. Finally

there are good reasons to expect in the future <Adaptable
Architectures> [1, 2].

Nevertheless there is a lack in knowledge about the very nature

of algorithms, their partitionability in principle into parallel
constituents and about the way in which such algorithms can be
dealt with, e. g. by <divide and conquer> methods. An interesting
hint was given by C. R. Vick [3]:

I've always felt that the challenge to map an inherently
parallel problem space into a parallel solution space

with as few artifical transformations as possible repre-
sents one of the most interesting challenges ... (1978).

The German pioneer in computing, Konrad Zuse [4], developed similar
ideas (1969). He argues that the contemporary procedure is very
often a roundabout way. For example one endeavours to transform an
ultimately discrete problem into an analytic, i. e. continuous,
approach and to discretize it again for solving it by a (digital)
computer. He recommends a direct procedure using what he calls a
<Computing Space>.

It seems to be a worthwile goal for CONPAR 81, to investigate general
methods, examples, or case studies, which center on the problem, how
parallel algorithms (as a general term) can be implemented and
utilized for higher throughput, speed, and fault-tolerant computing.
In such a way the Program Committee and the staff of IMMD interpreted
the commission from the "Gesellschaft fiir Informatik" to organise

- CONPAR 81.




The responsibility of the Program Committee turned out to be not an
easy one. In accordance with the decision of the committee not to
admit 'parallel sessions' during the conference, we had to select
29 papers from a total of 80 submitted papers. Despite the good
quality of some papers we had to reject them because they did not
fit the declared aim of CONPAR 81.

We succeeded in getting contributions from distinguished experts

in the field, accordingly announced as 'invited speakers'. In this
context I welcome in particular our outstanding keynote speaker,
Prof. Arthur W. Burks, who directed our attention at an early point
of time to the activities of the late John von Neumann [5] concerning
cellular automata and also 'growing' automata. Being one of the best
known pioneers of the computer scene, A. Burks is at the same time
a distinguished philosopher, which made it particularly valuable to
receive his contribution.

Originally we planned to hold the conference at the Campus Erlangen-
South of the University Erliangen-Niirnberg, where activities in
parallelism are located. Unfortunately another conference with the
same date in the city of Erlangen prevented this.

Nevertheless Nuremberg (Niirnberg) is an excellent alternative which
offers a great spectrum of other opportunities, and we hope that the
participants enjoy the medieval and stimulating atmosphere around the
conference site.



[2]

[3]

(4]

[5]

Vil

REFERENCES

Vick, C. R., S.P. Kartashev and S- I. Kartashev:
Adaptable Architectures for Supersystems, Computer 13 (1980)
pp. 17 - 35

H&ndler, W., F. Hofmann and H. J. Schneider:

A general purpose array with a broad spectrum of applications

in: Computer Architecture, Workshop of the Gesellschaft fiir
‘Informatik, Erlangen, May 1975, Berlin, Heidelberg, New York
Springer 1976

Vick, C. R.:

Research and Development in Computer Technology,

How do we follow the last Act (keynote address)
Proceedings 1978 International Conference on Parallel
Processing. IEEE pp. 1 = 5

Zuse, Konrad:

Rechnender Raum (Computing Space)
Schriften zur Datenverarbeitung. Bd. 1
Braunschweig: Vieweg und Sohn 1976

Burks, Arthur W. (edit.)

Essays on Cellular Automata

(To the memory of John von Neumann)
Urbana, Chicago, London:
University Illinois Press 1970

(Citation not exhaustive)




Vol. 77: G.-V. Bochmann, Architecture of Distributed Computer
Systems. VIII, 238 pages. 1979.

Vol. 78: M. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF.
VI, 159 pages. 1979.

Vol. 79: Language Design and Programming Methodology. Pro-
ceedings, 1979. Edited by J. Tobias. IX, 255 pages. 1980.

Vol. 80: Pictorial Information Systems. Edited by S. K. Chang and
K. S. Fu. IX, 445 pages. 1980.

Vol. 81: Data Base Techniques for Pictorial Applications. Proceed-
ings, 1979. Edited by A. Blaser. XI, 599 pages. 1980.

Vol. 82: J. G. Sanderson, A Relational Theory of Computing. VI,
147 pages. 1980.

Vol. 83: International Symposium Programming. Proceedings, 1980.
Edited by B. Robinet. VI, 341 pages. 1980.

Vol. 84: Net Theory and Applications. Proceedings, 1979. Edited
by W. Brauer. XIIl, 5637 Seiten. 1980.

Vol.85: Automata, Languages and Programming. Proceedings, 1980.
Edited by J. de Bakker and J. van Leeuwen. VIlI, 671 pages. 1980.

Vol.86: Abstract Software Specifications. Proceedings, 1979. Edited
by D. Bjerner. Xlll, 567 pages. 1980

Vol. 87: 5th Conference on Automated Deduction. Proceedings,
1980. Edited by W. Bibel and R. Kowalski. VIl, 385 pages. 1980.

Vol. 88: Mathematical Foundations of Computer Science 1980.
Proceedings, 1980. Edited by P. Dembinski. VIIl, 723 pages. 1980.

Vol. 89: Computer Aided Design - Modelling, Systems Engineering,
CAD-Systems. Proceedings, 1980. Edited by J. Encarnacao. XIV,
461 pages. 1980.

Vol. 90: D. M. Sandford, Using Sophisticated Models in Reso-
lution Theorem Proving.

Xl, 239 pages. 1980

Vol. 91: D. Wood, Grammar and L Forms: An Introduction. IX, 314
pages. 1980.

Vol. 92: R. Milner, A Calculus of Communication Systems. VI, 171
pages. 1980.

“ Vol. 93: A Nijholt, Context-Free Grammars: Covers, Normal Forms,

and Parsing. VI, 253 pages. 1980.

Vol. 94: Semantics-Directed Compiler Generation. Proceedings,
1980. Edited by N. D. Jones. V, 489 pages. 1980.

Vol. 95: Ch. D. Marlin, Coroutines. Xll, 246 pages. 1980.

Vol. 96: J. L. Peterson, Computer Programs for Spelling Correction:
VI, 213 pages. 1980.

Vol. 97: S. Osaki and T. Nishio, Reliability Evaluation of Some Fault-
Tolerant Computer Architectures. VI, 129 pages. 1980.

. Vol. 98: Towards a Formal Description of Ada. Edited by D. Bjerner

and O. N. Qest. XIV, 630 pages. 1980.
Vol. 99: I. Guessarian, Algebraic Semantics. XI, 158 pages. 1981.

Vol. 100: Graphtheoretic Concepts in Computer Science. Edited by
H. Noltemeier. X, 403 pages. 1981.

Vol. 101: A. Thayse, Boolean Calculus of Differences. VII, 144 pages.
1981

Vol. 102: J. H. Davenport, On the Integration of Algebraic Functions.
1-197 pages. 1981.

Vol. 103: H. Ledgard, A. Singer, J. Whiteside, Directions in Human
Factors of Interactive Systems. VI, 190 pages. 1981.

Vol. 104: Theoretical Computer Science. Ed. by P. Deussen. VII,
261 pages. 1981.

Vol.105: B. W. Lampson, M. Paul, H. J. Siegert, Distributed Systems -
Architecture and Implementation. XIll, 510 pages. 1981.

Vol. 106: The Programming Language Ada. Reference Manual. X,
243 pages. 1981.

Vol. 107: International Colloquium on Formalization of Programming
Concepts. Proceedings. Edited by J. Diaz and |. Ramos. VII, 478
pages. 1981.

Vol. 108: Graph Theory and Algorithms. Edited by N. Saito and
T. Nishizeki. VI, 216 pages. 1981.

Vol. 109: L. Bolc, Z. Krlpa, Digital Image Processing Systems. V,
353 pages. 1981.

Vol. 110: W. Dehning, H. Essig, S. Maass, The Adaptation of Virtual
Man-Computer Interfaces to User Requirements in Dialogs. X, 142
pages. 1981.

Vol. 111: CONPAR 81. Edited by W. Hindler. XI, 508 pages. 1981.

= I)""",, o) N7

-

- ,' ' (p o,
R VR T i,




TABLE OF CONTENTS

KEYNOTE SPEAKER
Athur W. Bwihs : 1

Programming and structure changes in parallel computers
' SESSION 1, MATCHING THE STRUCTURE OF COMPUTATIONS AND MACHINE ARCHITECTURE
F.J. Petens 25

Tree machines and divide-and-conquer algorithms

M. Fellen, M.D. Ercegovac 37
Queue machines: an organization for parallel computation

D.A. Podsiadlo, H.F. Jonrdan 48
Operating systems support for the finite element machine

D.J. Kuck, invited speaker 66
Automatic program restructuring for high-speed computation

- SESSION 2, PROGRAMMING LANGUAGES WHICH SUPPORT PARALLELISM

| .G. Ddvid, 1. Losonczi, S.D. Papp 85
Language support for designing multilevel computer systems ;
J.P. Banatre, M. Banatre 101
Parallel structures for vector processing
R.H. Perrott 115
Language design approaches for parallel processors
. AH. Veen 127
Reconciling data flow machines and conventional languages
' M. Broy 141
On language constructs for concurrent programs
' J.R. Guad, J.R.W. Glauert, C.C. Kirkham 155

Generation of dataflow graphical object code for the Lapse
* programming language

T. Legendi, invited speaker 169
Cellular algorithms and their verification

: SESSION 3, CELLULAR ALGORITHMS AND THEIR VERIFICATIONS

. Pecht 189
The development of fast cellular pattern transformation algorithms
u;ing virtual boundaries




E. Katona 203
Cellular algorithms for binary matrix operations

SESSION 4, SYSTEMATIC DESIGN, DEVELOPMENT, AND VERIFICATION OF PARALLEL
ALGORITHMS

J. Staunstrwup 217
Analysis of concurrent algorithms

P. Lecougfe 231
SAUGE: How to use the parallelism of sequential programs

A. Pettorossi 245
A transformational approach for developing parallel programs

Ch. Lengauern, E.C.R. Hehnen 259
A methodology for programming with concurrency

K. Ramamnitham, R.M. Kellfer 271
On synchronization and its specification

P.M. Flanderns, invited speaker 283
Non-numerical aspects of computations on parallel hardware

SESSION 5, NONNUMERICAL PARALLEL ALGORITHMS

S.R. House 298
Compiling in parallel

Y. Shiloach, U. Vishkin 314

Finding the maximum, merging and sorting in a parallel computation model

G. Salton, D. Bergmark 328
Parallel computations in information retrieval

D.D. Gajski 343
Recurrence semigroups and their relation to data storage in fast
recurrence solvers on parallel machines

D. Nath, S.N. Maheshwari, P.C.P. Bhatt 358
Parallel algorithms for the convex hull problem in two dimensions

U. Schendel, invited speaker 373
On basic concepts in parallel numerical mathematics

V. Saad and A.H. Sameh, invited speaker 395
Iterative methods for the solution of elliptic difference eguations
on multiprocessors




Xl

SESSION 6, PARALLELISM OF NUMERICAL ALGORITHMS
PART I

N.K. Kasabov, G.T. Bijev, B.J. Jechev

Hierarchical discrete systems and realisation of parallel algorithms

M. VajterSic
Solving two modified discrete poissonequations in 7 logn steps on
n? processors

L. Halada
A parallel algorithm for solving band systems and matrix inversion

F. Hossfeld, P. Weidner
Parallel evaluation of correlation time-of-flight experiments

PART II

G. Fritsch, H. Miller
Parallelization of a minimization problem for multiprocessor systems

J. Julliand, G.R. Pernin
Design and development of concurrent programs

E. Dekel, S. Sahni
Binary trees and parallel scheduling algorithms

J. Shanehchi, D.J. Evans

New variants of the quadrant interlocking factorisation (Q.I.F.) method

EXPRESSION OF THANKS

414

423

433

441

453

464

480

493

508




PROGRAMMING AND STRUCTURE CHANGES

IN PARALLEL COMPUTERS

Arthur W. Burks
Department of Computer and
Communication Sciences
The University of Michigan
Ann Arbor, Michigan 48109

1. Introduction

It is perhaps appropriate in a keynote paper to look at program-
ming for parallel computers from a general point of view. What, we may
ask, is computer architecture all about? Well, there are domains of
problems to be solved and there are available hardware building blocks.
The architecture of a computer is the way in which these building blocks
are organized, and is to be judged on how well that organization is
adapted to the given class of problems.

This conference is directed to the issue of parallel problems.
These are problems which can be solved efficiently and rapidly on a com-
puter capable of carrying out many interacting streams of computation
simultaneously. But any parallel problem can also be computed serially.
Hence, to understand the domain of parallel problems we need to study
its relation to other problem domains. One of the architectural choices
to be made is that of specialization vs. generalization: Should special
machines be made for parallel computations?

Consider the Illiac IV, the most powerful parallel computer of
its time. Looking back one can ask: As a working computer, was it an
economic success? Has it solved important problems that could not other-
wise be solved? Can it solve parallel problems more cheaply than other
computers? If the answers are negative, one should then ask: At the
time, was building a machine the best way to answer these questions?
Would the answers be different if the machine had been built at another
time?

It is characteristic of the computer industry, and a reflection
of the rapidity of the computer revolution, that these questions are
highly time-dependent. The Illiac IV would have been impossible/five
years earlier, but much easier a chip generation later. Today the time
is ripe for the development of many useful kinds of parallel computers.
By its nature, parallelism requires many small computing subsystems,
with many fast cross-connections between them. Both are feasible with

very large-scale integrated circuits.




The situation was quite different when electronic computers were
born, at which time the most efficient computers were highly serial.
As Dr. Handler has stressed in his call to this meeting, there is a
vast architectural distance between "the conventional Princeton-type
computer" and current concepts of multiprocessing, array and cellular
computers, and other parallel organizations. Let me make some histori-
cal remarks on this topic.

I will first compare the old method of rearranging the parts of
a machine for each new problem, as by the use of a plugboard, with the
modern method of programming a machine for each problem. Then I will
discuss the architecture of the first stored program computers.

2. Machine Assembly versus Machine Programming

Imagine that you have only one problem to solve, that it is to be
solved many times with only a variation of input conditions, and that
your technological means consists of an indefinite number of primitive
building blocks at a fairly low logical level: switches, registers,
adders, connecting cables, etc. To solve your problem you assemble a
machine from these primitives. In a sense, you design a new machine
for each problem.

Let us call this "the machine assembly method" of solving prob-
lems. No doubt this approach seems far out, a Tinkertoy or Meccano
method of computing as compared to the use of programs. But at one
time and for certain purposes it was the best approach. The most power-
ful computers in the period 1925 to 1945 all used it: the electrical
network analyzer, differential analyzer, and the ENIAC.

The competitors of these machines were the electromechanical com-
puters of Konrad Zuse, Aiken and IBM, and Stibitz of Bell Laboratories.
These were programmed with punched paper tape, and were thus limited by
the slow speed of their tape readers. Machines with paper tape pro-
grams were an important step on the way to the stored program computer,
but they were not in general superior to machines that used the machine
assembly method of solving problems. It should also be noted that the
two methods sometimes overlapped. For example, the new MIT differential
analyzer, though it calculated mechanically, was set up in a few minutes
from punched paper tapes. Incidentally, the differential analyzer was
a parallel computer to the core, for all its parts had to work simul-
taneously.

Despite its being archaic, I think there is something to be learned
from the concept of assembling a machine to solve a problem. For any

given algorithm there are many possible machines that will execute it,




B R SR o R R ¥ P L B a5 G - Nl e - ? 3 AR LT 2

so that the basic architectural question is: Which of these machines
is best? This question can be partially formalized by assigning a cost
to each building block and asking: Which machine has the minimal cost?
But like any formalization, this one has its limitations.

The first limitation concerns what is left out. The most import-
ant omitted characteristics are uniformity and simplicity of assembling
the machine to do a particular problem, and of debugging and maintain-
ing it. Humans are involved in these tasks, and uniformity and simpli-
city are aids to human understanding; moreover, the ratio of labor cost
to hardware cost is rising rapidly, as we are all well aware.

The second limit on this formalization concerns complexity. Though
our optimality problem can be defined precisely for any particular sys-
tem of primitive building blocks, because of the complexity of computers
it cannot be solved either mathematically or computationally for inter-
esting cases. Hence machine assembly formalisms are valuable mainly as
points of view. The same is true, in my opinion, of many formalizations
in computer science. In the field of computer architecture it is cer-
tainly the case that formalisms are limited to a conceptual role, for
actual architectures can be evaluated only by experience and simulation.

With these limitations on the value of a formal approach to archi-
tecture in mind, let us continue our comparison of the machine assembly
method of solving problems with the programming method. The former
created a new architecture for each problem, which might be optimized
for that problem. In contrast, the architecture of a programmable com-
puter has to be optimized over its whole class of problems. Of course,
there was a greater set-up cost in the machine assembly method.

The relative merits of the two methods changed with the state of
technology. While both were important from 1925 to 1945, after capa-
cious electronic stores were developed in the mid and late 1940's,
making the stored program computer possible, the programming method
quickly came to dominate. Electronic analog computers with plugboards
for problem set-up persisted for some time, but they are rare now.

The plugboard method of problem set-up is forever dead, because
‘manual and electromechanical technologies are outdated. Of course, we
still use these technologies at a high architectural level, as when we
add a second processor, a new terminal, etc., or augment a minicomputer
by plugging in another disk drive. But these changes, being high-level,
are infrequent, whereas the changes made by the plugboard method were
low-level, and hence frequent.

However, the idea of radically restructuring a machine for a new

problem, or a new group of problems, still has merit. I intended the




expression "machine assembly method of solving problems" to cover any
such radical restructuring. The plugboard method of earlier computers,
and the interconnection method of the differential analyzer, were elec-
trical and mechanical ways of machine assembly, suitable for their era
but now outdated.

Compiling a machine at the machine assembly level is much more
difficult than compiling a program. However, technology changes rapidly.
Modern chip manufacture is much more like book printing than was the
construction of vacuum tube machines. Printed books will eventually be
replaced by hard computer copy. Maybe these kinds of development will
someday make it economical to produce specific computers for particular
problems. We can imagine an automated manufacturing system that receives
an algorithm as input and produces as output a computer which executes
that algorithm efficiently. But even if that never comes to pass, there
hay be other ways of radically restructuring computers. I will return
to this topic near the end of my paper.

3. The Architecture of the First Stored Program Computers

The stored program computers grew directly out of the ENIAC. The
architectures of the two machines were radically different in a way that
is relevant to this conference, so it may be instructive to say a few
words about them.

The ENIAC was highly parallel and highly decentralized. It had
twenty-seven different computing and input-output units, each with its
own local program controls. There was a central program control unit
for supervisory management. For its version of the machine assembly
method of solving problems, it had a vast plugboard-like switch running
past all the units; to structure the system to solve a problem, the
operator set switches on the program controls and manually intercon-
nected the units to one another via the switches in a manner appropriate
for that problem.

In theory it was possible to set up the ENIAC so that all the
units operated simultaneously. In practice, this potentiality for
parallelism was not as useful as had been anticipated. The ENIAC's
complete parallelism was rarely employed, and arranging it for partial
parallelism added to the burden of the operator. Thus users of the
first general-purpose electronic computer met two problems basic to
parallel processing: Which algorithms can be efficiently executed in
parallel, and which not? What is the best way to plan a parallel com-
putation and to structure or program a machine to execute it?

The ENIAC's parallelism was relatively short-lived. The machine



was completed in 1946, at which time the first stored program computers
were already being designed. It was later realized that the ENIAC could,

be reorganized in the centralized fashion of these new computers, and
that when this was done it would be much easier to put problems on the
machine. This change was accomplished in 1948. Since the original ENIAC
employed the machine assembly method of solving problems, very little
additional equipment was required to convert it to a centrally programmed.
machine. Thereafter the plugboard of the ENIAC was never modified, and
the machine was programmed by setting switches at a central loocation.
Thus the first general-purpose electronic computer, built with a parallel
decentralized architecture, operated for most of its life as a serial
centralized computer! Ironically, the fact that the ENIAC incorporated
the machine assembly method of problem solving made it very easy to trans-
form the machine into a computer that did not use this method.

The jump from the ENIAC to the stored program computer was an im-
portant historical event, for modern computers are revolutionizing human
life. The question of who invented the stored program computer is there-
fore of interest, and as you may know, has been hotly debated for a long
time. This is not the place for a careful analysis of the contributions
of the participants, but since the architecture of the Princeton machine
is still taken as a paradigm, albeit an out-of-date paradigm, a few re-
marks are appropriate.

First of all, the "time is ripe" theory of discovery and invention
applies to the stored program computer. This is the theory that when-
ever an appropriate combination of materials, methods, problems, and
needs coalesces, invention is likely to result. Frequently, when the
time is ripe, there are independéent discoveries of the same item, though
not always. Many examples come to mind of independent and nearly si-
multaneous discovery. I'll mention a few cases that involved contribu-
tors from our host country: the invention of the adding machine (Schick-
ard and Pascal), the creation of the calculus (Newton and Leibnitz),
invention of the telegraph (Gauss, Morse with Henry), the discovery of
Neptune through calculations from the perturbations of Uranus' orbit
(Leverrier with Galle, Adams), the invention of the general-purpose elec-
tromagnetic computer (Zuse, Aiken with IBM, Stibitz with Bell Labora-
tories), and the conception of the general-purpose electronic computer
(Schreyer with Zuse, Atanasoff with Mauchly and Eckert).

The stored program computer was not a case of independent dis-
covery on the part of several people or institutions. But it did arise
out of a background of pre-electronic and electronic digital computing
in the United States which involved much original discovery, some of it



