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INTRODUCTTION

The contents of this publication have been taught at the University Pierre &
Marie Curie as a graduate course in numerical analysis during the academic year

1977-78.

In the last few years, many engineers and mathematicians have concentrated
their efforts on the numerical solution of the Navier-Stokes equations by finite
element methods. The purpose of this series of lectures is to provide a fairly
comprehensive treatment of the most recent mathematical developments in that field.
It is not intended to give an exhaustive treatment of all finite element methods
available for solving the Navier-Stokes equations. But instead, it places a great
emphasis on the finite element methods of mixed type which play a fundamental
part nowadays in numerical hydrodynamics. Consequently, these lecture notes can

also be viewed as an introduction to the mixed finite element theory.

We have tried as much as possible to make this text self-contained. In this
respect, we have recalled a number of theoretical results on the pure mathematical
aspect of the Navier-Stokes problem and we have frequently referred to the recent book
by R. Temam [ 44 ]. The reader will find in this reference further mathematical

material.

Besides R. Temam, the authors are gratefully indebted to M. Crouzeix for

many helpful discussions and for providing original proofs of a number of theorems.
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CHAPTER I

MATHEMATICAL  FOUNDATION OF THE  STOKES  PROBLEM

§ 1 - GENERALITIES ON SOME ELLIPTIC BOUNDARY VALUE PROBLEMS

In this paragraph we study briefly the Dirichlet's and Neumann's problems for

the harmonic and biharmonic operators.

1.1. Basic ooncepts on Sobolev spaces

Our purpose here is to recall the main notions and results, concerning the
classical Sobolev spaces, which we shall use later on. Most results are stated
without proof. The reader will find more details in the references listed at the
end of this text .

To simplify the discussion, we shall work from now on with real-valued func-
tions, but of course every result stated here will carry on to complex-valued
functions.

Let § denote an open subset of RY with boundary T . We define <D(Q)
to be the linear space of functions infinitely differentiable and with compact
support on @ . Then, we set

D@ = Loy 3 v€ DRDY
or equivalently, if (¢ denotes any open subset of ®R" such that o C O,

D) = (wm ; v€ DY .

Now, let <D(22) denote the dual space of <D(Q), often called the space of distri-
butions on § . We denote by < . , . > the duality between J<D'(Q) and D(Q)
and we remark that whem f 1is a locally integrable function, then f can be

identified with a distribution by

< fyo > = f f(x)¢ (x)dx vy € ()
Q

Now, we can define the derivatives of distributions. Let a = (a



n
and |a| = z a; For u in <D'(Q), we define 3% in D'() by :

<%0 > = -1 <y s vee D@ ;

- glol
ie. it ue €M@ then % - ——2—
1 n
9x e OX
1 n
For mE€N and p € R with 1 <p < » , we define the Sobolev space :

WhP) = (veiP(e) ; 3% e’ , Vo <m},

which is a Banach space for the norm

1
(1.1) lu =C ] [ la%@0 [Pax) /P, p < w
m,p,N Q
la|<m
or
Iu "m w.q =  SuP ( sup ess laau(x)|) sy P =@
* |a|]<m x€Q
We also provide Wm’p(Q) with the following seminorm
o 1
(1.2) |ul =( 7 [ | 3%u(x) | Pax) e,
m,p,Q Q

|of=m
for p < = , and we make the above modification when p = = .

When p =2 , Wm’z(ﬂ) is usually denoted by Hm(Q), and if there is no ambi-
guity, we drop the subscript p = 2 when refering to its norm and seminorm.

Hm(Q) is a Hilbert space for the scalar product

(1.3) (u,v)m Q = Z I aau(x)aav(x)dx i
’ Q

[a]|< m
In particular, we write the scalar product of L2(Q) with no subscript at all.

As D) C Hm(Q) , we define
. om
(1.4) i@ = Dot @

i.e. H:(Q) is the closure of «(9) for the norm | . “m Q" We denote by
5

H ™(2) the dual space of Hg(ﬂ) normed by
< f,v >
(1.5) IHE Il G = s [—_l
“m, ven @ vl
6 m
v#0

»§2



The following lemma characterizes the functiomals of H~m(Q) .

ILEMMA 1.1.

A distribution f belongs to H_m(Q) if and only if there exist functions

fa in L2(Q), for |u| < m , such that

£ = T 3%

|a|< m

THEOREM 1.1. (Poincaré-Friedrichs' inequality)

If Q 1is connected and bounded at least in one direction, then for each

m € N, there exists a constant Cm such that

(1.6) v VvGH:(Q)

. ; m :
Hence the mapping v +— |v| is a norm on HO(Q) equivalent tolIvIIm

m,Q 0
In order to study more closely the boundary values of functions of Hm(Q) §

we assume that T , the boundary of Q , is bounded and Lipschitz continuous — i.e.

I' can be represented parametrically by Lipschitz continuous functions. Let do

denote the surface measure on I and let L2(F) be the space of square integrable

functions on I with respect to do , equipped with the norm
vl . = {f (v(e)) a0y /2
o,
r
THEOREM 1.2.
1°) D) is dense in Hl(Q)

2°) There exists a constant C such that

(1.7) hyge g p < Cliell Vee D@ ,

o7 Q

where Yo¢ denotes the value of ¢ on T

It followsfrom Theorem 1.2. that the mapping Y, defined on D(Q) can be
s

extended by continuity to a mapping, still called Y, o from H](Q) into Lz(r)

i.e. Y, € I(H](Q) 3 LZ(F)). By extension, Yow is called the boundary value of

¢ on I ; to simplify notations, we drop the prefix vy when it is clearly implied.
plify .



THEOREM 1. 3.

1) Rer(y,) = H. (@)

° 3 2
2°) The range space of Y, is a proper and dense subspace of L7 (T),

1/2

called H '7(I)

For u in H‘/Z(F) , we define

(1.8) V! ”]/Z,P = inf Fv I .

v € H(Q) 1.8
YU T H
5 4 5 1/2 1/2 . .
The mapping u +— llull is a norm on H (T), and H (T) 1is a Hilbert

1/2,T7
-1/2 1/2

space for this norm. Let H (T) be the corresponding dual space of H (r),

normed by

*
(1.9) NIy sup Jﬁ‘"—u“,,il— ,
’ N 1 1/2,T
u#0

1/2

B2y ana w872 . we

where again < .,. > denotes the duality between
remark that <.,.> is an extension of the scalar product of L2(I) in the sense

* 2 - s * ; *
that when p € L7 (') , we can identify < u ,u > with I v (o)u(o) do .
r

Let v = (vl . vn) be the unit outward normal to I which exists almost
everywhere on I thanks to the hypothesis of Lipschitz continuity. If v 1is a

. . 2 . : : :
function in H (2), we define its normal derivative by

(1.10) W _ E Avy
: v . Vi ek,
1=1 i

It can be proved that the mapping v +—— %% € £(H2(Q) 5 HI/Z(F)). Moreover, we can

characterize Hi(ﬂ) as follows

THEOREM 1.4.

2 v
= € H2 ; = = = .
HO(Q) {v € H4(Q) ; Y,V 0 and ™ 0}

When I 1is sufficiently smooth, the range space of Yo can also be extended

as follows. For mE€N , m=> 1 , we define Hm_l/z(F) as the image of Hm(Q) by

the transformation Yy o equipped with the norm

IE Il = inf v Il .
m=1/2,T | e gmeg) m, &

¥ ¥ = f



Then, it can be checked that ds € Hm_3/2

o (T) for u in Hm(Q), and the following

result holds :

THEOREM 1.5.
The mapping u +— {you,%%} defined on Hm(ﬂ) is onto Hm-]/Z(F) x Hm_3/2(r).

We close this section with two useful applications of the Green's formula.

LEMMA 1.2.
1°) Let u and Vv € H](Q) . Then, for 1 <i<n ,
(1.11) j u %X dx = - f %5 v dx + f uvvi do .
o °% o %% T

. 2
2°) Moreover, if u € H(Q) , then

v du 3 0 3%y E: 3u

(1.12) Z —u-—vdx=-z —7 v dx + Z V. =— v do .
8 9%, 00X, ; x4 < i 9x,
1=1 Q 1 i i=1 ’'Q i =] «7 1

Adopting the usual notations :

0 2y == _ ,0u du
Au = .z 5;? , grad u = (5;- seaiey 3; ) s
i=1 1 1 n
(1.12) becomes :
(1.13) (grad u,grad v) = - (bu,v) + { %v do .
T

1.2. Abstract elliptic theory

This section gives a brief account of a fundamental tool used in studying
linear partial differential equations of elliptic type.

Let V be a real Hilbert space with norm denoted by | . “V ; let V' be its
dual space and let <.,.> denote the duality between V' and V .
Let (u,v) v a(u,v) be a real bilinear formon V x V , £ an element of V'

and consider the following problem :

Find u € V such that
(P)

a(u,v) = < 2,v > YveE V.



The following theorem is due to Lax and Milgram [35 ]

THEOREM 1.6.

We assume that a 1is continuous and elliptic on V , i.e. there exist two

constants M and a > 0 such that

(1.14) la(u,v)| < Mu Iy v “V Y u,v €V
and

2
(1.15) a(v,v) Zallv ”V VVEV.

Then problem (P) has one and only one solution u in V . Moreover, the mapping

& + u 1is an isomorphism from V' onto V

QOROLLARY 1.1.

When a is symmetric - i.e. a(u,v) = a(v,u) VY u, v € V - then the solution

u of (P) 1is also the only element of V that minimizes the following quadratic

functional (also called energy functional) on V:

(1.16) J(v) =

% a(v,v) - < 2,v >

1.3. Example 1 : Dirichlet's harmonic problem

In all the examples, we assume that § 1is bounded and T Lipschitz continuous.
Consider the following non-homogeneous Dirichlet's problem :

Given f in H_I(Q) and g in HI/Z(T) , find a function u that satisfies

(D) E (1.17) - Au=f in Q

(1.18) u=g on T

Let us formulate this problem in terms of problem (P). We set V = HL(Q) and

a(u,v) = (é;zd u, é?;d Vs
It is clear that a 1is continuous on [H(])(Q)]2 , and owing to Theorem 1.1,
— 2 2 2
- = >
a(v,v) =l grad v “o,Q |v|1,Q = C, (R H]’Q

1/2

. i . ; 1
Besides that since H (T') 1is the range space of Yo , let u0 in H (Q)

satisfy YU, T8 and examine the following problem :



Find u in H](Q) such that
(") (1,19 u-u €H(D)

(1.20) a(u—uo,v) =< f,v > - a(uo,v) YV v E HL(Q) .
Since a 1is continuous, the mapping Vv LN < f,v> - a(uo,v) belongs to
H—I(Q) . Therefore, thanks to the Lax-Milgram theorem, problem (D') has one and
only one solution u in H](Q)

It remains only to prove that u may be characterized as the unique solution

of problem (D). Taking v € D(Q) in (1.20) gives :

a(u,v) = - < Au,v > = < f,v > YV v E JD(Q) "
Hence u satisfies
(1.19) vu €8 (),
(Dl) o o
(1.17) - Au=f in H_](Q)

Conversely, every solution of (D,) 1is a solution of (D') by the density of
D@ in H (@) . But

1 s
= € =
u ug HO(Q) iff Y u g

therefore problems (D]) and (D) are the same.

As far as the regularity of u 1is concerned, we know, from the Lax-Milgram's
theorem that the mapping & +— u - uy is an isomorphism from H—I(Q) onto

HI(Q) . Therefore,

Ilu-u0 Il]’Q < C2 2 ”—],Q
Clearly,

II'2 H_],Q < IIf “—I,Q + lluclll’Q .
Hence

||ull]’Q < C3 {Ir£ ”—I,Q + IIuo "),Q i

v u, € HI(Q) such that YU, < 8 - From definition (1.8) this implies that

< Cq en_

(S H],Q 1ot Il'g ”l/Z,F}

Thus, we have proved the following proposition :



PROPOSTTION 1.1.

. . 1
Problem (D) has one and only one solution u in H (Q2) and

(1.21) Ilull] g S C aren_ + gl } o,

1,Q 1/2,T

i.e. u depends continuously upon the data of (D).

Remarks 1.1.

1°) Let mE€EN , m=1. When T 1is sufficiently smooth, it can be shown
that if £ € H 2(a) and g€ B 2(r), then ue€ H™%) and

(1.22) II'a Hm < c(f Hm

2,0 " el /0,0 -

» 8

2°) When T 1is only Lipschitz continuous, the same result is still valid

for m= 2, provided Q 1is convex. =

1.4. Example 2 : Neumann's harmonic problem

Here, we assume in addition that § 1is connected and we deal with the non-
homogeneous Neumann's problem :

Find u such that :

(1.23) - Au=f in Q ,
Ju
1.24 - = T,
(N)ﬁ ( ) 30 - 8 on
1/2

where f € L2(Q) and g € H (') satisfy the relation :

L (1.25) [ fdx+ < g,l > =0.
Q r

Since problem (N) only involves the derivatives of u , it is clear that its
solution is never unique. We turn the difficulty by seeking u in the quotient

1 ; ] ;
space H (2)/R equipped with the quotient norm

(1.26) (RA inf |lv H]

H](Q)/R v E YV

Q

Th® theorem below states an important property of this space ; its proof can be

found in Netas [ 39 ]



THEOREM 1.7.

The space HI(Q)/R is a Hilbert space for the quotient norm (1.26). Moreover,

on this space the seminorm VvV +— |v]l g is a norm, equivalent to (1.26).
>

With this space, we can put problem (N) in the abstract setting of problem

(P). Let V = HI(Q)/R s

. . —> — . .
a(u,v) = (grad u,grad v) Yu€Eu, vev
and
(1.27) L v — f fv dx + < g,v >p VVvE V.
Q

Note that the right-hand side of (1.27) is independent of the particular v € v
thanks to the compatibility condition (1.25). Furthermore, £ € V' because,

owing to (1.8), we have :

| fv dx + < g,v > | < (£l + gl ) inf v Il
Q r o 3 1

o vEvV

-1/2,T .0 °

Thus

(1.28) HZHV. < IIfIIo + gl

1] =1/2;T
Obviously, a(u,v) 1is continuous on V x V , and by virtue of Theorem 1.7,
P < .2
a(v,v) = ]v|? a = C, Il .
$ H (@) /R

Hence, by the Lax-Milgram's theorem, the following problem

Find 0 in HI(Q)/R satisfying

") 1
(1.29) a(u,v) = < 2,v > ¥ vVEH (/R ,

has a unique solution U € H](Q)/R .
Let us interpret problem (N'). When v 1is restricted to <D(Q), (1.29) yields :
(1.30) - Adu=f in 12(Q) Yu€u

Next, by taking the scalar product of (1.30) with v and comparing with (1.29),
we find :

(1.31) (grad u, é?;d v) = (-Au,v) + < g,v > Y v E HI(Q)

r



Therefore, problem (N') is equivalent to
find u in H](Q) satisfying (1.30) and (1.31).

It remains to interpret (1.31) as a boundary condition. At the present stage

this cannot be done without assuming that u € HZ(Q) . Then Green's formula (1.13)

yields :
J %% v do = < g,V p Y veE H](Q) s
r
i.e.
%% =g on T

As u 1is supposed to belong to HZ(Q), this implies in particular that

g € HI/Z(F). In that case, problems (N) and (N') are equivalent. Of course this
is not entirely satisfactory in that the existence of a solution of problem (N)
is subjected to the regularity of the solution of (N'). Further on, with more

powerful tools, we shall be able to eliminate this regularity hypothesis.

Now, let us examine the regularity of u . According to the Lax-Milgram' s

theorem, (1.28) and the equivalence Theorem 1.7, we obtain :

laly g < GUEN  o+ligl_/n ) -

We have thus proved the following result.

PROPOSITION 1.2.

Let the solution U of problem (N') belong to HZ(Q)/R . Then U 1is the

only solution of problem (N) and each u € G is continuous with respect to the

data, i.e.

(1.32) [ ul S ClEl, o+ lgl_y/ p)

1,0

Remark 1.2.

As in the previous example, if T 1is very smooth and if f € Hm_z(ﬂ) and

Hm—3/2(r)

g € with m > 2, then it can be shown that o € H'(Q)/R and

. < a .
(1.33) |u|m’Q cdl £ “m—Z,Q +1lg "m—3/2,F) for every u€ u L]



