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PREFACE

Since the appearance of the author’s Theory of Rings and Artin, Nesbitt and
° Thrall’s Rings with Minimum Condition, s number of important developments
have taken place in the theory of (non-commutative) rings. These are: the struc-
ture theory of rings without finiteness assumptions, cohomology of algebras,
and structure and representation theory of non-semi-simple rings (Frobenius
algebras, quasi-Frobenius rings). The main purpose of the present volume is te
give an account of the first of these developments. The tools which have been
devised for the study of general rings yield improved proofs of the older struc-
ture results on rings with minimum condition and of finite dimensional algebras.
We have therefore considered the specislization of the general results and meth-
ods to these classical cases. Thus the present volume includes virtually all the
results on semi-gimple rings which can be found in the two books cited before.
For example;, the theory of centralizers of finite dimensional simple subalgebras
of simple rings with minimum eondition appears as a special case of the Galois
theory of the complete ring of linear transformations of a vector space over s
division ring. We believe that the passage to the more general case gives a
better insight into these results.

The general structure theory is applicable also to a number of important new
classes of rings. Of particular interest are the primitive rings with minimal ideals,
algebraic algebras and algebras with a polynomial identity. The first class in-
cludes the rings of bounded operators in Banach spaces. Some of the results .
(e-g. the isomorphism theorem) were first obtained for this special case (Eidel-
heit’s theorem). The study of algebraic algebras presents a number of interesting
problems, one of the most interesting being Kurosch’s analogue of Burnside’s
problem on periodic groups: Is every finitely generated algebraic algebra finite
dimensional? In striking contrast with the situation in the group case, important
positive results have been obtained for algebraic algebras. In particular, the
analogue of the restrieted Burnside problem has an affirmative answer for alge-

- braic algebras. This fact is a corollary of a more general result on Pl-algebras
(algebras satisfying a polynomial identity).

The starting point in our considerations is the definition of a radical for an
arbitrary ring. This is an ideal which measures the departure of a ring from
semi-simplicity. A semi-simple ring is one which has enough irreducible repre-
sentations to distinguish elements. A ring which has a faithful irreducible repre-
sentation is called primitive. Chapter I is devoted to the basic properties of the
radical, semi-simplicity and primitivity for rings and algebras. The considera-
tions of Chapter II center around a density theorem for primitive rings. This
is a special case of a more general result involving mappings of one vector space
into a second onme. The generalization and a lemma used in its proof are used in
Chapter IV to derive all the elementary results on dual vector spaces. An ex-
tension of the density theorem for primitive rings to completely reducible
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PREFACE v

modules is given in Chapter VI. Chapter III is concerned with rings satisfying
the minimum condition for right ideals. In the first part we consider the theory
of semi-simple rings with minimum condition. Next we collect a number of
formal results on idempotents and matrix units. Finally we consider the notions
of semi-primary and primary rings and we obtain structure theorems for these.
Chapter IV is devoted to the structure theory of primitive rings with minimal
ideals. We determine the¢ isomorphisms, anti-isomorphisms and derivations for
such rings, In Chapter V we define Kronecker products of modules and algebras
and we reduce the problems of determining the structure of Kronecker products
of simple algebras to the case of division algebras and fields. The notions of mul-
tiplication algebra and centroid play an important role in these considerations.
Chapter VI is concerned with completely reducible modules and their cen-
tralizers. The last part of this chapter deals with the Galois theory of the com-
plete ring of linear transformations of a vector space over a division ring. Chapter
VII lays the foundations for the study of division rings which may be infinite
dimensional over their centers. We consider the Galois theory of automorphisms
for division rings, the structure of Kronecker products of division rings, and
commutativity theorems (e.g. Wedderburn’s theorem on finite division rings).
In Chapter VIII we consider several types of nil radicals. One of these is the
lower nil radical of Baer which coincides with the intersection of the prime ideals
of a ring. We consider algo nil subsystems of rings with maximum or minimum
condition for right ideals. In Chapter IX we define a topology of the set of
primitive ideals of a ring and we use this to obtain representations of rings as
rings of eontinuous functions on topological spaces. The earliest result of this
type is Stone’s representation theorem for Boolean algebras. In Chapter X the
structure theory is applied to commutativity theorems for general rings and to
‘the study of PI-algebras and algebraic algebras. The main results on Kurosch’s
problem are derived here.

We have tried to make our presentation self-contained and to give complete
proofs, particularly in the basic results. The only knowledge assumed is that of
the rudiments of ring and module theory such as is found in any of the intro-
ductory texts to abstract algebra. Occasionally we have left proofs as exercises,
but this has been done only in secondary results. , ‘

The principal contributors to the structure theory of rings without finiteness
eonditions have been Amitsur, Azumaya, Baer, Chevalley, Dieudonné, Kaplansky,
Kurosch, Levitzki, McCoy, Nakayama and the present author. We had planned
originally to write a series of notes indicating individual contributions, However,
we had to abandon this project since it would have delayed still further the
publication of this book which has been in process for several years. Instead we _
have substituted brief textual references to sources from time to time and we
have listed the basic papers bearing on the subject of each chapter at the end of
the chapter. We have also added a few references to papers which give further
results on the topics considered. The bibliography at the end of the book is fairly
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complete for papers appearing since about 1943. For earlier references we refer
to the bibliography of our Theory of Rings (Mathematical Surveys, No. 2, 1943).

We are greatly indebted to a number of friends for assistance in preparing this
manuscript. The first version of this book was based on our lecture notes, which
were prepared by M. Weisfeld. Later versions were read by Dieudonné, A.
Rosenberg and Zelinsky who made a number of important suggestions for im-
provements. We are indebted also to Amitsur and to the late Professor Levitski
for communicating to us results prior to publication. Finally, we wish to ex-
press our hearty thanks to C. W. Curtis, F. Quigley, A. Rosenberg, G. Seligman
and F. D. Jacobson for valuable help with the proofs.

New Haven, May 1, 1956.
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CHAPTER I

THE RADICAL AND SEMI-SIMPLICITY

In this chapter we shall define the basic concepts of primitive ring, semi-
simple ring and the radical. While these notions can be approached from a num-
ber of points of view, the most natural one seems to be that of representation
theory. At any rate, we shall adopt this point of view here. In thia chapter, as in
most of the book, the main theme of our discussion will concern rings without
operators. Nearly everything carries over easily to the more general case of
algebras over a eommutative ring. The extension to algebras will be indicated
briefly fram time to time. For the ideas of the present chapter this is done in §9,
where we consider also the question of the dependence of the various concepts
on the domain of operators. A aumber of examples illustrating the basic concepts
are given in §11.

L ]
1. REPRESENTATIONS AND MODULES

In this section we recall the fundamental notiens of the theory of represen-
tations of rings. The reader is presumably familiar with these; hence we shall
confine ourselves to a brief summary of the main definitions and results.

We recall first that a representation of a ring % is 8 homomorphism of ¥ into
the ring of endomeorphisms of some commutative group M. An anfi-representation
is an anti-homomorphism of ¥ inte a ring of endomorphisms. A representation
(anti-representation) is said to be feithful if and only if it is 1-1, that is, an iso-
morphism (anti-isomorphism). Let @ — & be a representation a.ctmg in M. Then
we can define a composition of the product set I8 X % to I by setting ma = ma,
m € IR, a € ¥. In this way one obtains a right module in the sense of

Durmrrion 1. I is called a right ¥-module if and only if

() A composition + is defined in M} such that (M, +) is & commutative
group. : :

(i) ¥ isa ring.

(iii) Ahwofoompontlononmx ¥ into M is defined, which, for z, y € M
and a, b € ¥, satisfies

(®) (z + y)o = 2a + yq,

{(b) z(a 4+ b) = za + zb,

(c) z(ab) = (za)d.
-If, moreover, % hata muluphcatxve identity 1 and z1 = z for all x € M, then
M is ealled undtal.

1 This is often called “‘unitary”. However, this use of the term ‘‘unitary” is in conflict

with its well-established meaning in geometry. This has led us to adopt the new term “‘uni-
tal” here. |
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2 THE RADICAL AND SEMI-SIMPLICITY 1

We have noted that a representation determines a right module. The converse
holds also. Thus if I is a right A-module then we define the mapping a5 in M
by maz = ma. It is easy to check that az is an endomorphism of (M, +) and
that the correspondence a — a; is a representation. Thus we see that the con-
cepts of representation and module are essentially equivalent. In a similar fashion
one sees that the concepts of anti-representation and left module are essentially
the same. The latter is defined by replacing the product ma by a product am
satisfying the relations obtained from (), (b) and (c) by reversing the order of
the symbols which occur in these. Henceforth the term “module” without
modifier will always mean right module. ’

We recall now the fundamental concepts and elementary results of the theory
of modules.

DErFiNITION 2. R i8 called an #-submodule of the module 9 if and only if
(i) (R, +) is a subgroup of (M, +).
(ii) Foralla € Xandally € N, ya € N.

DeriNiTION 3.Let M be an A-submodule of M. The difference A-module
M — N is defined as follows: Form the difference group (M, +) — M, +).
Then regard the difference group as an %-module by defining (R + z)a = N + za.
It.is easy to see that this definition is independent of the choice of z in its coset
and that the rules for a module hold.

The ring ¥ itself is a module relative to right multiplication as module com-
position; the corresponding representation is called the regular representation.
The submodules of this module are the right ideals of the ring. In this volume
the word “ideal” without modifiers will always mean two-sided ideal. If 9 is an
ideal in a ring ¥ then the difference ring will be denoted by %/98 while, as above,
the difference module will be denoted as { — 9B.

DerFinrrioN 4. Let M and M’ be A-modules. A mapping A of M into P’ is
called a (A-) homomorphism if and only if

(i) 4 is a group homomorphism of (M, +) into (DY, +).

(i) Forallz € Mand alla € ¥, (za)d = (zA)a.
If A is 1-1 it is called an (%-) ssomorphism. If there exists a homomorphism
of M onto M’, then M’ is called a homomorphic image of M, and if there exists
an isomorphism of MM onto M, then M and PV are called 1somorphic modules.
Two representations of a ring % are called equivalent if and only if the associated
#-modules are isomorphic. ’

We recall also that if 9 is a submodule and I} = M — N then the mapping
vz — Z =z + N is a homomorphism of M onto ;. We call this the natural
homomorphism of MM onto M. If A is a homomorphism of M into a second module
9 then the smage MA = {z4 |z € M} is a submodule of N. Also the kermel @ of

» A, which is the set of elements y such that y4 = 0, is a submodule of 3. If ®



§1 REPRESENTATIONS AND MODULES 3

is a submodule contained in the kernel  then the mapping A: z + & — z4 is
single-valued (i.e. independent of the choice of z in its coset). If follows that
4 is a homomorphism of I — ¢ into N. We call A the mapping induced by A
and we note that A = »A wheére » is the natural homomorphism of 9% onto
M — 2. The kernel of 4 is § — 2. Hence A is an isomorphism if and only if
& = 2. This result implies the “fundamental theorem of homomorphisms” that
any homomorphic image IMA of I is isomorphic to a difference module M — K,
R the kernel of A.

It is sometimes convenient to regard a given module ¢ as a module with re-
spect to a second ring. Clearly if 8 is a subring then any %-module % can be
considered as a 8-module. Also if B is an ideal in ¥ and M is an A/B-module
then the definition za = z(a 4+ B) for + € M, ¢ € U defines M as A-module.
This is clear from the representation point of view; for all that we are doing is
defining a homomorphism for the ring % as a resultant of the natural ring homo-
morphism of ¥ onto /B and the homomorphism of /W into the ring of endo-
morphisms of M. It is clear also that the submodules of M as A-module are the
submodules of I as A/B-module and conversely. If D is the kernel of the repre-
sentation of ¥ determined by 9% then evidently © 2 B and D/B is the kernel
of the representation of /9. Conversely, suppose that we are given an #-module
M and an ideal B contained in the kernel of the representation of . Ther we
can define z(a 4+ B) = za and verify that this makes 9% into an A/B-module.
We summarize these results in the following .

ProrosrTioN 1. Let U be a ring, B an ideal in Y. If M is an A/B-module then
M can be considered as an A-module. Conversely, if M 18 an A-module and B is con-
tained in the kernel of the representation then It can be regarded as an $/B-module.
In either case the submodules of M as N-module are the same as those of M as A/B-
module and if D 1s the kernel for U then D/B is that for A/B.

The notation of quotients used in Noetherian ideal theory will be useful for
us. We shall employ it for ¥-modules in the following way: If N is an #-submociule
of M and S is a subset of M then

MN:8) =(b|lbec A sbecN, foralsc 8.

(M:8) is a right ideal in A. If x € I, the right ideal (0:z) is called the order or
order ideal of z. Evidently

©:M) = N {(0:2) | z € M}

and this is an ideal which is evidently the kernel of the representation of ¥ de-
termined by . Hence the representation of ¥ is faithful (i.e. 1-1) if and only if
O:M) = {0}. We remark also that if i is a submodule then (N:IM) =
0:I — N). We note finally the following result which follows from the funda-
mental theorem of homomorphisms. '



4 THE RADICAL AND SWI-SIMPLICH‘Y I

ProposrrioN 2. Let IR be an A-module and x an element of IN. Then the set
z¥% = {va|a € A} is a submodule of M and zA = A — (0:z).

2. FUNDAMENTAL DEFINITIONS

Suppose we have a set Z of %-modules. With each 9 € = there is associated
the kernel (0:9%) of the representation it defines. The set N {(0: M) | M € T} is
an ideal which we shall call the kernel of Z. The kernel of = is equal to {0} if and
only if for each a 7 0 in ¥ there is an M € = such that the image of a in the
representation determined by 92 is not the zero endomorphism. If the kernel is
{0} then we say that the set = is faithful. (This terminology will be used also for
a single medule.)

The fundamental concepts of this chapter depend on the eoneept of an irre-
ducible module. For our purposes it is convenient to adopt the following

DerinrrioN 1. An ¥-module % is called srreducible and the associated repre-
sentation is called irreducible if and only if

Q) MA = {Zzwa;|z; € M, a; € A} = {0).

(i) There is no proper %-submodule of I other than {0}. Evidently (i) im-
plies that I »« {0}.

We ean now give the basic definitions of the structure theory which we shall
develop, as follows:

DerFrerrion 2. A ring ¥ is called (right) primitive if and only if it has a faith-
ful irreducible module. If ¥ is arbitrary let I be the set of irreducible Y-modules.
Then the kernel of I is called the radscal of ¥. If I is faithful then ¥ is called
semi-simple. It is understood that if 7 is vacuous, then ¥ is its own radical, in
which case, we say that ¥ is a radical ring.

Anideal%ofaring![isoalledprimitz’veifandonlyif2[/$isaprimitivering.
Since & primitive ring is necessarily {0}, P is a proper ideal. Left primitivity,
the left radical and left semi-simplicity are defined in the obviaus way using left
modules. It is not known whether or not primitivity implies left primitivity.
It seems unlikely that it does, but no examples of primitive rings which are not
left primitive are known. On the other hand, we shall see later that the left
radieal caincides with the radical and hence that left semi-simplieity is equivalent
to semi-gimplicity.

TauoreM 1. The radical of a ring U is the intersection of its primstive ideals.

Proor. It suffices to show that  is a primitive ideal in % if and only if § =
(0:3%) where 3 is an irreducible #-module. Suppose P is a primitive ideal and
I is a faithful irreducible %/P-module. Then according to Proposition 1.1, I}
is an irreducible #-module, and P = (0:90) considering R as an ¥-module.
Conversely, suppose $ = (0:2) where 3 is an irreducible ¥-module. Then by
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Proposition 1.1, M is an irreducible %/P-module which is faithful for %u/B.
Hence /P is primitive.

TaBoREM 2. If R is the radical of a ring ¥, then A/R is semi-simple.

Proor. Let I be the set of irreducible #-modules. Since R (0:9R) for all
M € I, by Proposition 1.1, each M in 7 is an irreducible 9/R-module. Clearly
- this set of %/8t-modules is faithful. Hence %/ is semi-simple.

3. StricrLy Cycric MobuLes. MobuLar Rienr IDmats

It is important to relate the external notions of primitivity and the radical,
which we have defined by properties of #-medules to internal ones in the ring ¥
itself. This is particularly useful in applications where it is necessary to deduce
properties of a primitive ring from other given properties of the ring. We shall
consider now a type of module which can be related in a direct manner with a
certain type of right ideal in a ring.

DermviTion 1. An #-module 3R is called strictly cyclic if and only if there exists
a u € M such that M = u¥. The element u is called & generalor (in the strict
sense) for M. '

Dermvrrion 2 (1. E. 86aL). A right ideal § & ¥ is called modular® if and only
if there exists an e € ¥ such that for all a € %, ¢ — ea € 3. The element ¢ is
called a left identsty modulo .

We remark that if ¥ has an identity 1 then every right ideal of ¥ is modular.
Moreover, if IR is unital, then a submodule N of M is strictly cyolic with « as
generator if and only if 9 is the smallest submodule eontaining the element u.

Prorosrrion 1. A module M 18 sirictly cyclic if and only if M= A — I where
3isamodularrightideal..4n'ghtidtal3ismdularifandmlyif3 = 0:u)
where u 18 a generaior of a strictly cyclic W-module. '

Proor. Let R be a strictly cyclic #-module with u as a generator. Then every
element of I has the form ua. The mapping ¢ — ua is a homomorphism of ¥,
considered as an ¥-module, onto M. The kernel is the right ideal (0:u) = &,
and M == % — 3. The element u can be expressed in the form u = ue where
¢ € A. Then for a € ¥, ua = uea or u(a — ea) = 0. Hence ¢ — ea € & for all
a € ¥, which means § is a modular right ideal. It remains to show that, if 3 is
modular, then M = % — Jis strietly cyclic and & = (0:u) for a suitable gener-
ator of M. Let I be a modular right ideal in ¥ with e as a left identity modulo
8. Consider the #-module B = ¥ — J. Sincea + § = (¢ + I)a, M is a strictly

3The terminology in the literature is *regular’’. This is, however, in conflict with the
equally standard “‘quasi-regular” which we shall use later on (§6). Foz this reason we have
introduced the substitute ‘‘modular” for ‘‘regular”.
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cyelic #-module with generator ¢ + 3. Moreover, it is immediate that the order
O+ =3
CoROLLARY. If & 48 a modular right ideal of ¥, then § 2 (J:¥).

Proor. § = (0:u) 2 (0:M) = (0: ¥ — J) = (F:9).
We recall that a right ideal J is called maatmal if and only if J is proper and
Y’ 2 S, for a proper right ideal §', implies 3’ = 3. We observe now that if J
is a modular right ideal with ¢ a left identity modulo & and J’ is a right ideal
containing § and ¢, then 3’ = %. Thusif e € 3’ thenea € I foralla € A.
Hence every ¢ = (¢ — ea) + ea € 3’. We use this remark to prove

ProprosrTioN 2. If S is a proper modular right ideal in %, then 3 can be imbedded
in a maximal (necessarily modular) right ideal.

Proor. Let ¢ be a left identity modulo J. Consider the class S of right ideals
&’ such that (i) &’ 2 J and (ii) e ¢ I, partially ordered by inclusion. S is not
empty since § € 8. Let T be an ordered subclass of S. Itleeasytovenfythat
U{S'| 8’ € T} is an upper bound for 7. Hence by Zorn’s lemma S has a maxi-
mal element 3*. It follows from the remark made before that 3* is & maximal
right ideal containing &. Since every right ideal containing a modular one is
modular, 3* is modular.

4, CHARACTERIZATIONS OF IRREDUCIBLE MODULES.
CoumuTaTIVE PRiMiTivE RiNas

We shall now give two characterizations of irreducible modules.

ProrosiTION 1. M 13 an irreducible W-module if and only if (1) M = {0} and
(2) M i3 sirictly cyclic with every non-zero element as a generator.

Proor. Assume that I is irreducible. Then M » {0}. Consider the subset 3
of I of elements zsuch that za = 0 for all ¢ € Y. Evidently 3 is a submodule;
hence either 3 = {0} or 8 = MM and the latter implies MA = {0} contrary to
assumption. Hence 8 = {0}. Thus if « € M and u # 0, then ¥ is a non-zero
submodule of M. Consequently, u¥ = M. Conversely, assume (1) and (2). Let
% be a non-zero element of M. Then u¥ = M and MA = M == {0}. Suppose
there is an %-submodule of I, call it N, such that {0} TR C M. If we choose
u ## 0in N, then M = A CN C M, which is a contradiction.

PROPOSITION 2. M 38 an irreducible N-module if and only if M = A — S where
X 18 a modular mazimal right ideal.

Proor. Let I be an irreducible ¥-module and let 0 = u € M. Then
M = uA == A — (0:u) where (0:u) = & is & modular right ideal. § is maximal
because of the well-known correspondence between #-submodules of M = ¥ — F
and right ideals containing . Conversely, if & is 8 modular maximal right ideal,
then M = A — I contains no proper A-submodules > {0}. Since MY is a sub-
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module, MA = {0} or MA = M. If MA = {0} then A C O:M) = 0:A—-3) =
(3:9) © 3, by the corollary to Proposition 3.1. Since 3 is maximal this is
false. Hence MA = M. : :

The foregoing result gives an internal characterization of primitive ideals and
hence of the notion of primitivity of a ring. This is the following

CoroLLARY. P is a primitive ideal in % if and only if P = (8:¥) where S is a
modular mazimal right ideal.

Proor. By the proof of Theorem 2.1, P is primitive if and only if B = 0:IM)
where I is an irreducible %-module. By Proposition 2, 3t is irreducible if and
only if M = A — I where & is a modular maximal right ideal. Since ©O:% —
3) = (J:9), the result is clear.

It is clear from this criterion that a ring ¥ is primitive if and only if ¥ con-
tains & modular maximal right ideal 3 such that (3:9) = {0}. For evidently ¥
is primitive if and only if {0} is a primitive ideal in 9. We note also that if § is
a modular right ideal then (3: ) is the largest ideal of % contained in 3. Thus,
we have seen that (3:¥%) € &, and if 8B is an ideal CY and b € B, then 9 C
B © J implies that b € (3: ¥).

We can use these results to give a precise identification of the commutative
primitive rings, namely, we have the following

TarorEM 1. A commutative ring is primitive if and only if it is a field.

Proor. Let % be a commutative primitive ring and let & be a modular maxi-
mal right ideal such that (3:%) = {0}. Since ¥ is commutative, S is an ideal.
Hence J = (3:¥) = {0} and {0} is a modular maximal right ideal in the com-
mutative ring %. The modularity of {0} implies that ¥ has an identity. This,
together with the maximality of {0}, implies, as is well known, that ¥ is a field.
To prove the converse, we observe that the following stronger result holds: Any
division ring is primitive. This is clear since the regular representation of a divi-
sion ring is faithful and irreducible.

5. Quasi-REGULARITY AND THE CircrLe CoMPOSITION

With each element ¢ of % one can associate a least modular right ideal baving
e as a left identity, namely, the set {a — ea | a € %}. One verifies that this is a
right ideal. We denote this set as (1 — ¢)¥ even when ¥ does not have an identity.
Any modular right ideal having e as left identity contains (1 — ¢)¥. It may
happen that (1 — 2)% = ¥; in this case we say that the element z is right quasi-
regular (r.q.r.). It is clear that z is r.q.r. if and only if (1 — 2)¥ contains 2, or
equivalently, —z. The condition for this is that there exists an element 2’ in %
such that 2’ — 22’ = —2, or

1) 242 — 22 =0. ,
An element 2’ satisfying this condition will be called a right quasi-inverse (r.q.i.)
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for z. In a similar fashion we define left quasi-regularity (Lq.r.) and left quasi-
tnverse (L.q.i.).

Thesmdyoftheconceptsofquasz—regulmtymarmgmnbefao:htatedby
the introduetion of the “circle” composition in ¥. If @, b € ¥ we define

aob=a+b— ab

It is easy to verify that (¥, o) is a semi-group, that is, ° is an associative binary
composition in 3. Moreover, 0 acts as the xdentrty in (¥, o). If ¥ has an identity
then the circle composition corresponds to the ring multiplication under the 1-
mapping @ — o = 1 — ¢ in A. Thus

aob = (aebe)e =1— (1 —a)l —b) =a+b— ab

Since any ring can be imbedded in a ring with an identity, this observation ex-
plains the associativity of ¢ and the fact that 0 is the identity.

We have remarked that an element z € ¥ is r.q.r#if and only if there exists a
2 € W such that z + 2’ — 22’ = 0. This says that z has a right inverse relative
to o. Similarly an element z is 1.q.r. if and only if there exists a 2’ in ¥ such that
7 ¢z = 0. Now we shall say that the element 2 is guasi-regular (q.r.) if there
exists a 2’ in ¥ such that z 02’ = 0 = 2’ o2, 2/ is called a guast-inverse (g.d.) of 2.

It is easy to see that if 2 is right and left quasi-regular then z is quasi-regular.
The quasi-inverse is unique. It is well known that the elements which possess
two-sided inverses it any semi-group with an identity form a subgroup. In par-
ticular, the quasi-regular elements of a ring form a group under the circle com-
position. If ¥ has an identity this group is isemerphic to the group of units of %
under the correspondencea — ae = 1 — a.

We shall say that a right ideal J of ¥ is quasi-regular (q.r.) if every element
of & is r.q.r. Then we have the following

ProprosaTION 1. Aquasi¢eguhrﬁaldideal£}inaﬁ1&§ﬂisawbgrmofthe
group of q.r. elemenis of (%, o).

Proor. Let z € & and let 2’ be a r.q.i. of z. Then z + 2 — 22/ = 0, so that
Z = z2' — 2 € 3. Hence 2’ has a r.q.i. 2. We have

gmzo0=z0(s02") = (gog) 02 =2,

Henecez oz’ =0 =2z ozand zis q.r.

We recall that a one-sided or two-sided ideal in a ring is called nsl if and only
if all of its elements are nilpotent. Ifnsnilpatent thereenstsapontwemteger
nsuchthatz® = 0. Let 2’ = —2 — 2 — <. — 2* " Thenzo2z' =0 =2 o2
Thus z is q.r. Evidently this implies

ProrostTioN 2. Every nil right ideal is quasi-regular.
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6. CHARACTERIZATIONS OF THE RADICAL

We can now give the important internal characterisations of the radical. In
the following theorems, as always, it is understood that the intersection of a
vacuous collection of subsets of a set is the whole set.

THEOREM 1. (1) The radical R of a ring ¥ s the inlersection of the modular
mazximal right ideals of the ring.

@ Theradwalﬁofanngﬂuaguaumulandaalwlmhmmm
regular right ideal.

Proor. (1) If J is a modular maximal right ideal, then (3:%) is a primitive
ideal and 3 2 (3:¥). Hence N{Y | 3, modular msaximal right ideal}] 2
N {(3:%) | 3, modular maximal right ideal} 2 R. On the other hand, if R is
an irreducible ¥-module, (0:3R) = N{(0:4) | u € M} and for u »= O, (0 u)is a
. modular maximal right ideal. Hence we have R = N{(0:M) | M irreducible}
2 N{J | 3, modular maximal right ideal}. Thus ® = N{J | §, modular maxi-
mal right ideal}.

(2) Suppose z € R and z is not r.q.r. Then (1 — 2)¥ » ¥ and by Proposition
32, (1 — 2)¥ can be imbedded in a modular maximal right ideal §. By (1),
z € 3. Hence J = ¥A which is a contradiction. Therefore R is q.r. Next let 3 be
any q.r. right ideal and let z € 3. Then 2a is r.q.r. for all ¢ € ¥. Let I be an
irreducible #-module. Suppose z ¢ (0:9). Then there is a u € I such that
uz # 0. uz is thus a strict generator of I and hence there is an a € ¥ such that
uza = u. If A has an identity 1 then this reads u(1 — 2a) = 0. Since 1 — 2a has an
inverse 1 — 2’ this leads to » = 0. If ¥ does not have an identity then we can
replace this argument by one using quasi-inverses. Thus let 2’ be a r.q.. for za.
Then 0 = u — uza — (u — uza)?’ = u — u(za + 2’ — 2a2’) = u. This contra-
. dicts uz = 0. Hence z € (0:3) where M is any irreducible A-module; conse-
quently z € R. Hence 83 C R.

The result (2) and its left analogue imply that the radical and the left radical
(which is defined to be the intersection of the (0:3%’) where I is an irreducible
left %-module) coincide. We prefer to state this explicity as follows:

Theorem 2. Let R be the radical of a ring A. Then

(1) R = N{O:3V) | W', srreducible left-module}.

(2 ® = N{Y’ | Y, modular mazimal left ideal of A}.
(8) R contains every g.r. left ideal.

CoroLLARY. The radical contains all nil one-sided ideals.

We note one further left-right symmetnc element characterisation of the -
radical.

ProrosiTioN 1. Let ¥ be a ring with radical R. Then R = {zlbnioq.r.jorall
a, b€ Al
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Proor. Since ¢ is an ideal, if z € R then so does bza for all a, b € ¥. Bince R
is & q.r. right ideal bza is q.r. Convemly,letzbea.nelemnto&ilsuchthatbza
is q.r. for all @, b € . Let IR be an irreducible #-module. The argument used
in Theorem 1 (2) shows that bz € (0:I) for all b € UA. If 0 = u € M, then
M = u¥ and Mz = u¥z = {0} so that z € (0:9). Hence z € N.

7. Rapicar oF ReraTEDp Rines

We consider now the following type of problem: Let % be a given ring and
let B be a ring which is related to % in some natural manner. Obtain the radical
of B as a function of the radical of . We shall consider this problem here for the
following types of rings 8: (1) 8 an ideal in ¥, (2) 8B the ring obtained by adjoin-
ing an identity to ¥ in the usual way, (3) 8 = ¥, the n-rowed matrix ring with
elements in the given ring %, (4) B = %] the ring of polynomials in an inde-
terminate \ with coefficients in . Later (§3.7) we shall consider the same prob-
lem for rings of the form e¥e, where e is an idempotent element (¢ = ¢) in 4.
We note first the following

ProrosrrioN 1. (1) The radical R of a ring N is a radical ring. (2) Let S be a
homomorphism of a ring % with radical N ondo a ring B with radical R'. Then
“the image R* < R'.* Hence if B is semi-simple, then R is in the kernel of S.

Proor. (1) If z € R, 2z is q.r. and its q.i. is in K. Hence R is a radical ring by
Theorem 6.1 (2). (2) Since R is & q.r. ideal in ¥, R° is a q.r. ideal in A° = B.
Hence ®° < radical of 8.

ProrosITiON 2. Let U be a semi-simple ring and B a right ideal in . Consider-
ing B as a ring (subring of %), let R(B) be its radical. Then R(B) = {z|z € B,
Z8 = {0}}. In other words, R(B) 1s the left annihslator of B.in B.

Proor. R(B)PY is a right ideal in . Since R(V)B < R(V), the elements of
R(B)B are q.r. Hence N(V)Y is in the radical of A. Hence R(V)B = {0},
which means that R(B) is contained in the left annihilator of 8. On the other
hand, the left (right) annihilator in 8 of any ring 9 is a nil ideal and is there-
fore contained in the radical. Hence R(B) is the left annihilator of B in B.

TeroreM 1. Let ¥ be a ring with radical R andkt% be an tdeal in U. Consider-
ing B as a ring, its radical R(B) = B a R. In particular, if A is semi-simple,
then so is B.

Proor. Assume first that 9 is semi-simple. Then the radical (%) is the left
annihilator of B in B. Hence R(VB) is the intersection with B of the left annihi-
lator of B in . Hence R(VY) is an ideal in U. Evidently R(B) is q.r. so that the

3 We shall often write images under a ring homomorphism 8 as z° ete.
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semi-simplicity of % forces R(B) = {0}. Now let % be arbitrary. Then
(B + R)/R is an ideal in the semi-simple ring %/R. Hence the ring (B + R)/R
is semi-simple. Since (B + R)/R = B/(B n R), the Iatter is semi-simple. By
Proposition 1 (2), R(B) C R n B. On the other hand, R n B is a q.r. right ideal
in 8. Hence R n B € R(B). Thus R(B) = R n B.

It should be noted that the homomorphieimage of 8 semi-simaple ring need not
be semi-simple. The simplest example of this type is obtained from the ring of .
integers. We note first that the ring J of integers is semi-simple, since, if p is a
prime, the principal ideal (p) is primitive in J and Ny(p) = {0}. On the other
hand, if ¢ > 1, the homomorphic image J/(p*) contains the nil ideal (p)/(p°)
and hence is not semi-simple.

Let % be an arbitrary ring and J the ring of integers. Then it is welt known
that we can construct.aring #* = % + J such that % n / = {0} and the identity
of J is the identity of %*. It is clear that every ideal of ¥ is an ideal in *. We
now prove

TaxoreM 2. Let % be a ring, J the ring of rational integers. Let A* = % + J,
A nJ = (0] and let the identity of J be the identity of *. Then % and A* have the
same radicol.

Proor. If we employ the natural homomorphism of %* onto %*/¥ = J and
use the semi-simplicity of J we see that the radical of %*, R(%*) C 9. On the
other hand, R(¥) = R(A*) n A. Hence R(A) = R(A*).

H ¥ is any ring, the ring of all # X n matrices with elements taken from %
will be denoted as ¥, . The processes of taking the radical and forming the ma-
trix ring commute. Thus we have

TuroreM 3. If R is the radical of a ring X, then the radical R(A,) of U, 16 R,
Proor. Consider a matrix of the form

Zu Zi2 v 0 24

0 0 - - - 0
Lowle 5.2 v o
0 0 - - -0

where zn1 isr.q.r. Then (1 — 2)% = % 5o that we can find 2j; such that 2y o 21; =
0 and also 21;, ¢ = 2 - - - n, such that 21; — 2us4s = —2y. Then if

’ ’ ’
211 2 v . 2
% o - - - 0
Z' = |- . b e MR S 5
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Z o Z' = 0so0 that Z is r.q.r. Now let 3, be the set of elements Z of %, with all
elements of the jth row being elements of & and all elements of the other rows
gzero. Each §; is a right ideal and an argument similar to the one just used for
j = 1shows that & is q.r. Hence §; & R(¥.) for each j = 1, - - - , n. Therefore
Re = i+ Se+ -+ + S & R(A,). On the other hand, let

Wy Wi = °* * U

Wa1 Wed °*° ° ° Wan

belong b0 R(¥.). If a is any element of ¥, let 4,, be the matrix with @ in the
(p, ) position and 0’s elsewhere. Let a and b be arbitrary in ¥. Form

3 A0 WBy = ding (00,5, -+, 0, ).

By hypothesis W is in R(%,); hence > 4,,WBa is in R(X.). Let (wi;) be its
quasi-inverse. This implies aw,d © w1y = 0 = w1 © awyd 80 that awyb is
q.r. for all a, b € %. By Proposition 6.1, w,, € R. Hence R(A,) & R.. Finally
RAn) = Ra .«

We consider next the ring %[\] of polynomials ay 4+ a\ 4+ @\’ + -+« + a,\"
in the indeterminate A with eoefficients a; in the ring %, It does not seem to be
an easy matter to determine the radical of %[\]. At the present time we have
only a partial answer (Theorem 4), due to Amitsur, to this problem. We reqmre
first the following

LaMmMA. Let B be a non-zero ideal in A\ and let p(N) = ao + e\ + -+ - + a\",
a, # 0, be a polynomial of least degree belonging to B. Suppose r(A) is a polynomial
such that dar(\) = 0, u > 1. Then oy 'p(\)r(A) = 0.

Proor. The condition a’7(A) = 0 is equivalent to the set of conditions alyr; =
0, r; the #th coefficient of r(k). Hence it suffices to prove the lemma for r(A) = r
of 0 degree. In this case a"'p()\)r has a,r as coefficient of \". Since this poly-
nomial belongs to B and since n is the least degree for non-gero polynomisals in 8,
a5 'p)r = 0. '

We can now prove

Tusorzw 4. If % has no non-zero nil ideals, then M[\] is semi-simple.

Proor. Assume R(¥\]) = {0} and let M be the set of non-sero polynomials
of least degree belonging to % (A\]). The leading coefficients of these polynomials
and O form an ideal M = {0} in A. We wish to show that R is a nil ideal. Let
p(A\) = a0 + aA + -+ + a.\" € M. Then we know that P)Xa, is quasi-
regular. Hence there exmts a polynomial g(\) such that



