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Preface

Determinantal rings and varieties have been a central topic of commutative algebra
and algebraic geometry. Their study has attracted many prominent researchers and
has motivated the creation of theories which may now be considered part of general
commutative ring theory. A coherent treatment of determinantal rings is lacking however.

We are algebraists, and therefore the subject will be treated from an algebraic point
of view. Our main approach is via the theory of algebras with straightening law. Its
axioms constitute a convenient systematic framework, and the standard monomial theory
on which it is based yields computationally effective results. This approach suggests
(and is simplified by) the simultaneous treatment of the coordinate rings of the Schubert
subvarieties of Grassmannians, a program carried out very strictly.

Other methods have not been neglected. Principal radical systems are discussed in
detail, and one section each is devoted to invariant and representation theory. However,
free resolutions are (almost) only covered for the “classical” case of maximal minors.

Our personal view of the subject is most visibly expressed by the inclusion of Sections
13-15 in which we discuss linear algebra over determinantal rings. In particular the
technical details of Section 15 (and perhaps only these) are somewhat demanding.

The bibliography contains several titles which have not been cited in the text. They
mainly cover topics not discussed: geometric methods and ideals generated by minors of
symmetric matrices and Pfaffians of alternating ones.

We have tried hard to keep the text as self-contained as possible. The basics of
commutative algebra supplied by Part I of Matsumura’s book [Mt] (and some additions
given in Section 16) suffice as a foundation for Sections 3-7, 9, 10, and 12. Whenever
necessary to draw upon notions and results not covered by [Mt], for example divisor
class groups and canonical modules in Section 8, precise references have been provided.
It is no surprise that multilinear algebra plays a role in a book on determinantal rings,
and in Sections 2 and 13-15 we expect the reader not to be frightened by exterior and
symmetric powers. Even Section 11 which connects our subject and the representation
theory of the general linear groups, does not need an extensive preparation; the linear
reductivity of these groups is the only essential fact to be imported. The rudiments on
Ext and Tor contained in every introduction to homological algebra will be used freely,
though rarely, and some familiarity with affine and projective varieties, as developped in
Chapter I of Hartshorne’s book [Ha.2], is helpful.

We hope this text will serve as a reference. It may be useful for seminars following
a course in commutative ring theory. A vast number of notions, results, and techniques
can be illustrated significantly by applying them to determinantal rings, and it may even
be possible to reverse the usual sequence of “theory” and “application”: to learn abstract
commutative algebra through the exploration of the special class which is the subject of
this book.

Each section contains a subsection “Comments and References” where we have col-
lected the information on our sources. The references given should not be considered
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assignments of priority too seriously; they rather reflect the authors’ history in learning
the subject and give credit to the colleagues in whose works we have part\lcipated. While
it is impossible to mention all of them here, it may be fair to say that we could not
have written this text without the fundamental contributions of Buchsbaum, de Concini,
Eagon, Eisenbud, Hochster, Northcott, and Procesi.

The first author gave a series of lectures on determinantal rings at the Universidade
federal de Pernambuco, Recife, Brazil, in March and April 1985. We are indebted to
Aron Simis who suggested to write an extended version for the IMPA subseries of the
Lecture Notes in Mathematics. (By now it has become a very extended version).

Finally we thank Petra Diivel, Werner Lohmann and Matthias Varelmann for their
help in the production of this book. We are grateful to the staff of the Computing
Center of our university, in particular Thomas Haarmann, for generous cooperation and
providing excellent printing facilities.

Vechta, January 1988 WINFRIED BRUNS UDO VETTER
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1. Preliminaries

This section serves two purposes. Its Subsections A and B list the ubiquitous basic
notations. In C and D we introduce the principal objects of our investigation and relate
them to their geometric counterparts.

A. Notations and Conventions

Generally we will use the terminology of [Mt] which seems to be rather standard
now. In some inessential details our notations differ from those of [Mt]; for example we
try to save parentheses whenever they seem dispensable. A main difference is the use of
the attributes “local” and “normal”: for us they always include the property of being
noetherian. In the following we explain some notations and list the few conventions the
reader is asked to keep in mind throughout.

All rings and algebras are commutative and have an element 1. Nevertheless we
will sometimes list “commutative” among the hypotheses of a proposition or theorem in
order to signalize that the ring under consideration is only supposed to be an arbitrary
commutative ring. A reduced ring has no nilpotent elements. The spectrum of a ring A,
Spec A for short, is the set of its prime ideals endowed with the Zariski topology. The
radical of an ideal I is denoted Rad I. The dimension of A is denoted dim A, and the
height of I is abbreviated ht I.

All the modules M considered will be unitary, i.e. 1z =z for all z € M. Ann M is
the annithilator of M, and the support of M is given by

SuppM = {P € Spec A: Mp # 0}.

We use the notion of associated prime ideals only for finitely generated modules over

noetherian rings:
Ass M = {P € Spec A: depth Mp = 0}.

The depth of a module M over a local ring is the length of a maximal M-sequence in the
maximal ideal. The projective dimension of a module is denoted pd M. We remind the
reader of the equation of Auslander and Buchsbaum for finitely generated modules over
local rings A:

pd M + depth M = depth A if pdM < o

(cf. [Mt], p. 114, Exercise 4). If a module can be considered a module over different rings
(in a natural way), an index will indicate the ring with respect to which an invariant
is formed: For example, Annyg M is the annihilator of M as an A-module. Instead of
Matsumura’s depth;(M) we use grade(/, M) and call it, needless to say, the grade of I
with respect to M; cf. 16.B for a discussion of grade. The rank rk F of a free module F is
the number of elements of one of its bases. We discuss a more general concept of rank in
16.A: M has rank r if M ® Q is a free Q-module of rank 7, @ denoting the total ring of
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fractions of A. The rank of a linear map is the rank of its image. The length of a module
M is indicated by A(M).

The notations of homological algebra concerning Hom, ®, and their derived functors
seem to be completely standardized; for them we refer to [Rt]. Let A be a ring, M and
N A-modules, and f: M — N a homomorphism. We put

M* = Homu(M, A)
and
f* =Homu(f,A): N* - M*.

M* and f* are called the duals of M and f.
For the symmetric and exterior powers of M (cf. [Bo.1] for multilinear algebra) we
use the symbols

AM and  S;(M)
resp. Sometimes we shall have to refer to bases of F*, AF and AF"*, given a basis
€1,...,6en of the free module F. The basis of F'* dual to ey, ...,e, is denoted by e}, ..., e5.
For I = (41,...,%) the notation e; is used as an abbreviation of e;; A --- A e;,, whereas
e; expands into e} A---Ae] . (The notation e; will be naturally extended to arbitrary
families of elements of a module.)

We need some combinatorial notations. A subset I C Z also represents the sequence
of its elements in ascending order. For subsets I,...,I,, C Z we let

0'(11,...,],,)
denote the signum of the permutation I ... I,, (given by iuxtaposition) of I; U...UI, rela-
tive to its natural order, provided the I; are pairwise disjoint; otherwise o(/,...,I,) = 0.
A useful formula:
0(11,. ..,In) = 0’(11,. . .,[n._])O'(Il U... UIn_l,In).
For elements iy,...,i, € Z we define
o(iry..sin) = o({in}, ..., {in}).
The cardinality of a set I is denoted |I|. For a set I we let

S(m,I)={J: J C I,|J| = m}.

Last, not least, by

| FSEI SO )

we indicate that 7 is to be omitted from the sequence 1,...,n.
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B. Minors and Determinantal Ideals

Let U = (u,;) be an m X n matrix over a ring A. For indices ai,...,a¢, b1,...,b;
such that 1 <a; <m,1<b; <n,i=1,...,t, we put
u01b1 g e ualbg

[al,...,atlbl,...,bt] = det

Ugehy " Uaeb,

We do not require that a,,...,a; and by,...,b, are given in ascending order. The
symbol [aj,...,a¢|b1,...,b] has a twofold meaning: [ay,...,a¢|b1,...,b] € A as just
defined, and

[al,...,at]bl,...,bt] € Nt)( Nt
as an ordered pair of t-tuples of non-negative integers. Clearly [a,...,a¢|b1,...,b:] =0

if t > min(m,n). For systematic reasons it is convenient to let

(00] = 1.
Ifa; <---<ay;and by <--- < b, we say that [a1,...,a¢|b1,...,b] is a t-minor of U. Of
course, as an element of A every [aj,...,a4|b1,...,bs] is a t-minor up to sign. We call ¢
the size of [a1,...,a¢|b1,...,be].

Very often we shall have to deal with the case ¢ = min(m,n). Our standard assump-
tion will be m < n then, and we use the simplified notation

(@155 5 0 5@) = [Lys s« y]01 5 500 ¢ 5Gmg)s
The m-minors are called the mazimal minors, those of size m — 1 the submazimal
minors. (In section 9 the notion “maximal minor” will be used in a slightly more general
sense.)
The ideal generated by the ¢t-minors of U 1s denoted
L(U).
The reader may check that I,(U) is invariant under invertible linear transformations:

L(U) =1(VUW)

for invertible matrices V, W of formats m x m and n X n resp.
Sometimes we will need the matriz of cofactors of an m x m matrix:

Cof U = ( Cij ),

Cij = (—1)”’"[1,...,;,...,m|1,...,'i\,...,m].
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C. Determinantal Rings and Varieties

Let B be a commutative ring, and consider an m x n matrix

X1 -0 Xia
x=| z
Xml an

whose entries are independent indeterminates over B. The principal objects of our study

are the residue class rings
R4(X) = B[X]/1:(X),

B[X] of course denoting the polynomial ring B[X;;: i =1,...,m,j = 1,...,n]. The ideal
I;(X) is generated by the t-minors of X, cf. B. Whenever we shall discuss properties of
R.(X) which are usually defined for noetherian rings only (for example the dimension or
the Cohen-Macaulay property), it will be assumed that B is noetherian.

Over an algebraically closed field B = K of coefficients one can immediately associate
a geometric object with the ring R;(X ). Having chosen bases in an m-dimensional vector
space V and an n-dimensional vector space W one identifies Homg (V, W) with the mn-
dimensional affine space of m x n matrices, of which K[X] is the coordinate ring. Under
this identification the subvariety defined by I,(X) corresponds to

Lio1(V,W)={f € Homg(V,W): tkf <t-1}.

We want to associate the letter » with “rank”, and so we replace t by » + 1. Furthermore
we put L(V, W) = Homg (V, W).

It is not surprising that the geometry of L,.(V, W) reflects certain properties of the
linear maps f € L.(V,W). Let us consider the following two elementary statements
which will lead us quickly to some nontrivial information on L,.(V,W): (a) The map f
can be factored through K". (b) Let U C V be a vector subspace of dimension » and
Ua supplement of V, i.e. V =U @ U; if SFIU is injective, then there exist unique linear
maps g: U — U, h: U — W such that f(u & @) = h(u) + h(g(@)) for allu € U, T € U
(in fact, h = f|U).

Statement (a) shows that the morphism

L(V,K") x L(K",W) — L.(V, W),

given by the composition of maps, is surjective. Being an epimorphic image of an irre-
ducible variety, L,.(V, W) is irreducible itself. An application of (b): It is easy to see that
the subset

M={f€L.(V,W): f|U injective }

is a nonempty open subvariety of L.(V,W): One chooses a basis of V containing a
basis of U; then M is the union of subsets of L,.(V, W) each of which is defined by the
non-vanishing of a determinantal function. By property (b) we have an isomorphism

L(U,U) x (L(U,W) \ L,_1(U,W)) — M.
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Since the variety on the left is an open subvariety of L(ﬁ ,U) x L(U, W), we conclude at
once that

dim L,(V, W) = dim M = dim (L(U,U) x L(U,W)) = (m — r)r + rn

=mr+nr —r%

Furthermore M is non-singular. Varying U one observes that all the points f € L,.(V, W)\
L,_;(V,W) are non-singular:

(1.1) Proposition. (a) L.(V,W) is an irreducible subvariety of L(V,W).
(b) It has dimension mr + nr — r2.
(c) It is non-singular outside L._,(V,W).

The only completely satisfactory information on R,.;(X) we can draw from (1.1),
is its dimension:

dimR,;1(X) = mr + nr — r?

Part (a) only shows that the radical of I, ;(X) is prime, and unfortunately there seems
to be no easy way to prove that I.,;(X) is a radical ideal itself (over every reduced
ring B of coefficients). Once this is known one can of course directly reverse (c): The
generators of the ideal of L.(V, W) have all their partial derivatives in I.(X), and the
Jacobi criterion (or the definition of non-singularity, depending on ones point of view)
implies in conjunction with (c) that L,_;{(V, W) is the singular locus of L, (V, W).

Proposition (1.1) and its proof have been included not only in order to enrich these
introductory considerations by some substantial results. We shall encounter algebraic
versions of the ideas underlying its proof several times again.

It would be very difficult (for us, at least) to investigate the rings R,(X) without
viewing them as the most prominent members of a larger class of rings of type B[X]/I
which we call determinantal rings. Their defining ideals I can be described as follows:
Given integers

1<y <~ <up<m, 0<rm <--<rp<m,

and
1<vn <:---<wvg <, 0<s <+ <8¢<m,
the ideal I is generated by the

(r; + 1)-minors of the first u; rows

and the

(8j + 1)-minors of the first v; columns,
i=1,...,p, 7 =1,...,q. Later on we shall introduce a systematic notion for determi-
nantal rings which is hard to motivate at this stage.

In order to relate the general class of determinantal rings just introduced to the ge-
ometric description of R, ;(X) given above, one chooses bases dy,...,d,, and ej,...,e,
of V and W resp., K being an algebraically closed field, V and W vector spaces of
dimensions m and n. Let

k
Vi=) Kd; and W;=) Ke
1=1

e},...,er is the basis dual to ey,...,e,, cf. A above).
1 n
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Then the ideal I above defines the determinantal variety

{f € Homg(V,W): 1k f|Vy, <y, thkf* W5 <s;, i=1,...,p, j=1,...,¢}.
The reader may try to find and to prove the analogue of (1.1) for the variety just defined.
It will of course be included in the main results of the Sections 5 and 6.

D. Schubert Varieties and Schubert Cycles

In the sections 4-9 we shall treat a second class of rings simultaneously with the
determinantal rings: the homogeneous coordinate rings of the Schubert varieties (gener-
alized to an arbitrary ring of coefficients) which we call Schubert cycles for short. There
are two reasons for our treatment of Schubert cycles: (i) They are important objects of
algebraic geometry. (ii) Their combinatorial structure is simpler than that of determi-
nantal rings, and most often it is easier to prove a result first for Schubert cycles and to
descend to determinantal rings afterwards. Algebraically one can consider every determi-
nantal ring as a dehomogenization of a Schubert cycle (cf. 16.D and (5.5)). In geometric
terms one passes from a (projective) Schubert variety to an (affine) determinantal variety
by removing a hyperplane “at infinity”.

The first step in the construction of the Schubert varieties is the description of the
Grassmann varieties in which they are embedded as subvarieties. While a projective
space gives a geometric structure to the set of one-dimensional subspaces of a vector
space, a Grassmann variety does this for the set of m-dimensional subspaces, m fixed.
Let K be an algebraically closed field, V an n-dimensional vector space over K, and
€1,...,€n a basis of V. In a first attempt to assign “coordinates” to a vector subspace
W, dimW = m, one chooses a basis w;,...,w,, of W and represents wj,...,w,, as
linear combinations of eq,...,ey,:

n
’LU,':Z:I?,']'EJ', i=1,...,m.
Jj=1
Unfortunately the assignment W — (z;;) is not well-defined, since (z;;) depends on the
basis wy,...,w,, of W. Exactly the matrices
T’(l;‘j), T € GL(TTL,IX—),
represent W. However, the Plicker coordinates
p=([a1,.-,am]: 1 <a; < - <am<n)
formed by the m-minors of (z,;) remains almost invariant if (z;;) is replaced by T - (z;;);

it is just replaced by a scalar multiple: The point of projective space with homogeneous
coordinates p depends only on W! Thus one has found a well-defined map

P:{WCV:dimW =m} — PY(K), N:(:;)—l.

It is called the Plicker map.
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This construction can of course be given in more abstract terms. With each subspace
W, dim W = m, one associates the embedding

iw: W — V.

Then the m-th exterior power 5
m m m
/\iwz /\ W — /\ 1%

maps AW onto a one-dimensional subspace of AV which in turn corresponds to a point
P P

m
in P(AV) 2 PVN(K).
It is easy to see that the Pliicker map is injective. Let p = P(W) = ’P(W). For
reasons of symmetry we may assume that the first coordinate of p is nonzero. Then we
can find bases wy,...,w, and wy,...,W,, of W and w resp. such that

n n
w; =e€; + E Tijej, W;=¢€;+ E Tij€e;, i=1,...,m.
j=m+1 j=m+1

Looking at the m-minors [1,... ,?, ...,m, k] of the m xn matrices of coefficients appearing
in the preceding equations one sees immediately that w; = w; for ¢ = 1,...,m, hence
W=W.

It takes c0n51derably more effort to describe the image of P. The map P is induced

by a morphism P of affine spaces; P assigns to each m xn matrix the tuple of its m-minors.
Let X be an m x n matrix of indeterminates, and let Yj;,,  a,.)» 1 < a1+ <am < n,

denote the coordinate functions of A¥*!(K). Then the homomorphism of coordinate
rings associated with P is given as

¢: K[Ya, . an:1<a1 < <am <n] — K[X],

y'[al,..,,am] == [ala R 7am]7
[@1,...,am] specifying an m-minor of X now. We denote the image of ¢ by
G(X);

it is the K-subalgebra of K[X] generated by the m-minors of X. By construction it is
clear that the affine variety defined by the ideal Ker ¢ is the Zariski closure of ImP,
whereas the corresponding projective variety is the closure of ImP. Much more is true:

(1.2) Theorem. (a) P maps the set of m-dimensional subspaces of V bijectively
onto the projective variety with homogeneous coordinate ring G(X).
(b) P maps the mn-dimensional affine space of m x n matrices over K surjectively onto
the affine variety with coordinate ring G(X).

Part (a) obviously follows from (b). In order to prove (b) one first has to describe
the variety belonging to G(X) as a subvariety of AY+!(K). This problem will be solved
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in (4.7). Secondly one has to show the surjectivity of P, a question which will naturally
come across us in Section 7, cf. (7.14).

The projective variety appearing in (1.2),(a) is usually denoted by G,,(V') and called
the Grassmann variety of m-dimensional subspaces of V. (A different choice of a basis for
V only yields a different embedding into P~ (K); all these embeddings are projectively

equivalent.)

The argument which showed the injectivity of P helps us to determine the dimension
of G, (V): the open affine subvariety of G,,(V') complementary to the hyperplane given
by the vanishing of Y}; ... ), is isomorphic to the affine space of dimension m(dim V —m),
hence

dim G, (V) = m(dimV —m).

(Note that we are using (1.2) here!) Varying the hyperplane one furthermore sees that
G, (V) is non-singular. The non-singularity of G,,(V') can also be deduced from another
basic fact. The group GL(V') of automorphisms of V acts transitively on G,,(V'), since
two m-dimensional subspaces of V differ by an automorphism of V' only. On the other
hand this action is induced by the natural action of GL(V) on P(AV) (via AV); so
GL(V) operates transitively as a group of automorphisms on the Grassmann variety
G (V).

(1.8) Theorem. G,,(V) is a non-singular variety of dimension m(dimV — m).

To define the Schubert subvarieties one considers the flag of subspaces associated
with the given basis e;,...,e, of V taken in reverse order:

Vi= ). Keiy 0=VC..CVu=V.
i=n—j3+1

Let 1 <a; <--- < am < n be a sequence of integers. Then the Schubert subvariety
Qa1,--..,am) of G, (V) is defined by

Qa1 ... am) ={W € GL(V): dmWNV,, >¢ for i=1,...,m}.

The varieties thus defined of course depend on the flag of subspaces chosen. But the
automorphism group of V acts transitively on the set of flags, and its action induced on
G, (V) makes corresponding Schubert subvarieties differ by an automorphism of G,,(V)
only. Hence Q(ay,...,a,) is essentially determined by (ay,...,a,,). It is indeed justified
to call Q(ai1,...,am) a variety:

(1.4) Theorem. Q(a1,...,anm) is the closed subvariety of G,,(V) defined by the
vanishing of all the coordinate functions

Yioi,bm)s bi<n—am_it+1+1 forsome i, 1<i<m.
PrOOF: The proof is simpler if we dualize our notations first. Let ¢; = n — a;

and W; = E{::l Keg. Then V = V,_; & W, and there is a projection 7;: V — W;
Ker7; = V,,_;. By definition

Qa1 . am) ={W € GL(V): dimn,,(W)<m—-1i for i=1,...,m}.
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After the choice of a basis wy,...,wnm, the subspace W is represented by the matrix
(Tuv)y Wy = D0_; Tuv€y- One obviously has

dim 7., (W) <m—1 = Ln—it1(zuw: 1 <v <) =0,

and in case this condition holds, every m-minor which has at least m —i+1 of its columns
among the first ¢; columns of (z,,), vanishes. Thus all the coordinate functions named in
the theorem vanish on Q(a1,...,am). Conversely, if I,_i+1(Zuv: 1 <v <¢;) # 0, then
there is an m-minor of (z,,) different from zero and having at least m — ¢ + 1 of its
columns among the first ¢; ones of (z,,). —

For arbitrary rings B of coefficients the Schubert cycle associated with Q(ay, ... ,am)
is the residue class ring of G(X) with respect to the ideal generated by all the minors
[b1,...,bm] such that b; < n — aym—i4+1 + 1 for some i.

E. Comments and References

The references given below have been included to manifest the geometric significance
of determinantal and Schubert varieties. We have restricted ourselves to books (with one
exception) since any selection of research articles would inevitably turn out superficial
and random. (After all, the AMS classification scheme contains the keys “Determinantal
varieties” and “Schubert varieties”.)

The classical source for “the geometry of determinantal loci” is Room’s book [Rm]. It
gives plenty of information on the early history of our subject. The decisive treatment of
Schubert varieties has been given by Hodge and Pedoe in their monograph [HP]. Among
the recent books on algebraic geometry those of Arabello, Cornalba, Griffiths, and Harris
[ACGH], Fulton [Fu], and Griffiths and Harris [GH] contain sections on determinantal
and/or Schubert varieties. Kleiman and Laksov’s article [KmL] may serve as a pleasant
introduction.



