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PREFACE

The first international conference on the theory of groups held in Korea, “Groups —
Korea 1983”, was reported on in the Springer—Verlag Lecture Notes in Mathematics, Volume 1098.
“Groups — Korea 1988” is the second such conference. It was held in the Commodore Hotel, Pusan,
in August 1988. There were 16 invited one-hour lectures and 17 contributed half-hour seminar-type
talks. They are listed in Appendix A. The participants are listed in Appendix B.

“Groups — Korea 1988” was financially supported by the Korean Educational Ministry,
the Korea Science and Engineering Foundation, the Korean Mathematical Society, the Pusan Cham-
ber of Commerce & Industry, and the Pusan National University. We record our thanks to these
institutions, and to their officers, to whose support the success of the conference owes much. We
are also grateful to Dr Jost—Gert Glombitza, of the Deutsche Forschungsgemeinschaft, and to the
Deutsche Forschungsgemeinschaft itself, for supporting the five invited speakers from the Federal
Republic of Germany. Our thanks also go to the President of the Pusan Chamber of Commerce
& Industry, Mr Chung Whan Choi, for special financial contributions, and to Dr Jung Rae Cho,
a member of the organizing committee, who typed all manuscripts for the proceedings with great
care. Finally, we thank all the staff of the Commodore Hotel, who proved very helpful before and
after the conference, and showed wonderful hospitality during the conference itself.

A.C. Kim
B.H. Neumann
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PROCEEDINGS OF ‘GROUPS - KOREA 1988’
PUSAN, August 1938

INFINITE FACTORIZED GROUPS

Bernhard Amberg

A group G is called factorized if it can be written as the product of two of its subgroups A and
B:
G=AB={abla€ A and b€ B}.

In the past thirty-five years an increasing number of facts about factorized groups have been dis-
covered particularly for infinite groups. The following survey is a slightly extended version of [14]
(see also Robinson [71] and N.S. Chernikov [48]). The notation is standard and may for instance be
found in [68] and [70].

I. Existence of Factorizations.

Every group G has at least one factorization G = AB, where one of the two subgroups A and
B is trivial and the other is the whole group. It is also clear that every infinite group which has all
its proper subgroups finite, cannot have any other non-trivial factorization. Thus, in particular, the
Priifer groups of type p™ and also the so-called Tarski p-group have only the trivial factorization
(A Prifer group of type p™ for the prime p is a group which is isomorphic with the multiplicative
group of complex p"-th roots of unity for n = 0,1,2,3, - --; all proper subgroups of such a group are
cyclic of order p" for some n and they form a chain. A Tarski p-group is an infinite group which
has all its proper subgroups cyclic of order p for a very large prime p; the existence of such has been
established by Ol’shanskij and Rips).

It is well-known that an abelian group which has no non-trivial factorization must be a cyclic
p-group or a Priifer group of type 'p°° for some prime p (see [75], 13.1.6). Using this it is not difficult
to see the following:

Every uncountable soluble group and every infinite nilpotent group which is not a Prifer group
of type p™° always has at least one non-trivial factorization.

In [67] Rédei considers the structure of groups which are the product of two cyclic subgroups.
The groups which are the product of two locally cyclic, torsion-free subgroups are described in Sysak

82).

For some simple groups all possible factorizations are known. For instance in [83] Thiel has found
all the factorizations of the groups PSL(2,K), PSL(3,K) and PSU(3,K), where K is a locally finite
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field. For finite K this is also contained in It6 [58] and Blaum [28]. There are many more papers on
the factorizations of the various finite simple groups.

II. The Main Problem.

The main problem about factorized groups is the following question:

Let G = AB be a gwen factorized group and suppose that the structure of the two subgroups A
and B s known. What can then be said about the structure of the factorized group G = AB? If,
for instance, A and B have a certain group theoretical property X, when does 1t follow that G has a
certain group theoretical property ¢

Statements of this type can be trivial: for instance, if A and B are finite (finitely generated,
countable), then G = AB is finite (finitely generated, countable). For many other group theoretical
properties X almost nothing can be said. In particular it is difficult to find examples and counterex-
amples. In the following we consider some group theoretical properties X for which some interesting
theorems can be proved.

First we remark that the above problems usually become trivial when one of the two subgroups
A and B is subnormal in G = AB. This can be seen from the following simple lemma.

Lemma. Let the group theoretical property X be inherited by subgroups, epimorphic images and
extensions. If the group G = AB 1s the product of two X-subgroups A and B, one of which is
subnormal in G, then G is an X-group.

Proof. Suppose that the subgroup A is subnormal in G and induct on the length of some
subnormal series from A to G. If A is normal in G, then

GJA = ABJA= B/(AN B)

is an X-group. Since also A is an X-group, G is an X-group.

If A is not normal in G, then A is normal in some subnormal subgroup S of G which has a
subnormal series in G' with length less than that of A. Then G = SB and since BN S is an X-group,
also

(SNB)/(ANB) = (SNB)/(ANBNS) = (SN B)A/A = (SN AB)/A = S/A

is an X-group. Since A is an X-group, also S is an X-group. By induction it follows that G = SB
is an X-group. This proves the lemma.

The most satisfying result about products of groups is the following famous theorem.

(1) (1t6 [57)). If G = AB where A and B are abelian subgroups of the group G, then G is metabelian.

This is proved by a surprisingly short commutator calculation (see also [75]. 13.3.2, or [56],
p.674). This calculation so far could not be extended to products of nilpotent groups (of class 2).
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However, in a slightly more general situation, the (almost) solubility of the group G = AB can still
be obtained. A group G is almost soluble (almost central) if it contains a soluble (central) subgroup
of finite index.

(2) (Chernikov [35]). If G = AB where A and B are almost central subgroups of the group G, then
G is almost soluble.

The proof is by induction on the sum of the finite indices |A/Z(A)| and |B/Z(B)| of the centers
Z(A) and Z(B) of A and B; the beginning of the induction is It&’s theorem. It can also be shown
that the solubility length of the soluble subgroup of G of finite index is bounded by a function of
|A/Z(A)| and |B/Z(B)|. However it remains open whether the group G = AB is in fact almost
metabelian. — In this connection Wilson has shown in [92] that every residually finite product of two
almost abelian subgroups is almost metabelian. (A group G is residually finite if the intersection
J(G) of all subgroups of finite index in G is trivial).

There is another non-simplicity criterion which holds for arbitrary factorized groups. Recall that
a group is an FC-group if all its elements have only finitely many conjugates in the group. A group
G is hyperabelian if it has an ascending invariant series leading from 1 to G with abelian factors.

(3) (Zajtsev [97] and [99] and Chernikov [47]). Let the infinite group G = AB be the product
of an abelian subgroup A and an FC-subgroup B with non-trivial center Z(B). Then the normal
closure C = Z(B)® of Z(B) has an ascending G-invariant series with abelian factors; in particular
AC = A(BN AC) is hyperabelian and G has a non-trivial abelian normal subgroup.

The most famous theorem on products of finite groups is the following.

(4) (Wielandt [87] and Kegel [60]). If G = AB where A and B are finite nilpotent subgroups of the
group G, then G 1s soluble.

The proof makes use of many techniques of finite group theory (see also [75], 13.2.9, and [56],
p.674). Some extensions of the Kegel-Wielandt theorem to certain classes of locally finite groups
can for instance be found in Kegel [61], Amberg [7] and Chernikov [34]. However, it seems to be
unknown at present whether the theorem of Kegel and Wielandt holds for arbitrary infinite groups.

Using the classification of finite simple groups it was possible to prove a famous conjecture of
Szép (see also Kazarin [59]).

(5) (Fisman and Arad [50]). If G = AB where A and B are finite subgroups with non-trivial centers
Z(A) and Z(B), then G is not simple.

In the situation of the Kegel-Wielandt theorem it is not known how the solubility length of the
(finite) soluble group G = AB depends on the nilpotency classes a and § of the nilpotent subgroups
A and B. Is it perhaps o + 37 Some indications in this direction are contained in the following
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result (for an extension to certain locally finite groups see Amberg [7]).

(6) (Pennington [65]). If G = AB where A and B are finite nilpotent subgroups of the group G with
nilpotency classes a and 3, then the (a + 3)-th term G(@+P) of the derived series of G is a m-group
where m = TANTB.

Here, as usual 7Y denotes the set of primes p for which there exists an element of order p in the

group Y.
In view of all the above results one is tempted to ask the following question.

Problem. Let the group G = AB be the product of the subgroups A and B which contain nilpotent
normal subgroups A; of A and B; of B with classes a and 2 and finite indices |4 : A;| and |B : B|.
Does then G have a soluble normal subgroup of finite index with derived length a function of a and

B?

II1. Periodic Groups.

A group is periodic if all its elements have finite order, it is locally finite if its finitely generated
subgroups are finite. The product of two periodic (locally finite) groups need not be periodic (locally
finite), as the following example shows.

(7) (Suchkov [79] and [80]). There ezists a countable group G = AB where A and B are locally
finite subgroups of G, but G 1s not periodic. In fact, G contains every countable free group and also
2-subgroups which are not locally finite.

Construction. The construction is as follows. Let Z be the set of integers. For each k in Z and
n=20,1,2,--- we define the following subsets of Z:
Uk
A%

{z]2€Z, 3"(2k—1)+1< z<3"(2k+1)}
{z12€Z, 3" 2%k +1<2<3"-2k+ 1)}

It is easy to see that each of these sets contains 2 - 3" elements and that for each n the U,(,k) for
various k and also the V,Sk) for various k form partitions of Z. It is also clear that for n > 0

Rl e

n

3k 3k+1 (3k+2
v = yBRyGERD  y8ke2)
The following are subgroups of the symmetric group S(Z) on Z:

{919€5(2), UPg=UP, kez)
{919€5(2), Vi¥g=VH, kez)

An
Bn

Then A, and B, are for each n isomorphic with certain cartesian products of symmetric groups
Sq.3n of degree 2-3™. By the above relations (*) for each n > 0 we have A,_; C Ap and B,—; C By.
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It follows that - -
A=J4, ad B=|JB.
n=0 n=0

are locally finite subgroups of S(Z). Now it is not difficult to prove the following
Lemma. A,_1B,_1 C B,A, and B,_1A,_, C A, B, forn>0.

The lemma implies that AB = BA = G is a group. To see that it contains elements of infinite

order we consider
U(gk) ={2k,2k+1} and Vo(k) = {2k + 1,2k + 2}.

Define the element ag € Ay by
(2k)ag = 2k +1 and (2k + 1)ag = 2k for each k € Z,
and define the element by € By by
(2k +1)bg = 2k +2 and (2k + 2)by = 2k + 1.

Then
(2k)aobo = 2k +2 for each k € Z,

so that the element agby € AB = G has infinite order.

This construction will now be slightly modified to produce an example G* = A*B* which is
countable. Since A and B are locally finite, we can find finite subgroups Af of A and Bj of B such
that ag € Aj and by € Bj. Write

AyBy = {biay, -, brar |a; € A, bje Bfori=1,--- k}.
Since A and B are locally finite, the subgroups
A} = (A}, a1, -,ax) and B} = (B, by, -, bk)

are finite. Clearly
Aj C Al, Bj C B, AjB; C BiAj.

In this way we construct an ascending series of finite subgroups with
Ay C A C A CA3C -+ and ByCBICB;CB;C---

such that
A{Bj C B{A] C A3B; C B3A5C ---.
Then - -
A=Jar ad B =B
1=0 1i=0

are locally finite subgroups, and A*B* = B*A* = G is a countable group with the desired proper-

ties, since it contains the element agbo of infinite order.
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It is shown in [80] that G* even contains every countable free group and 2-subgroups which are
not locally finite.

On the other hand soluble products of two periodic groups are always periodic. This follows
from the following theorem. A group G is a w-group if the orders of all its elements contain only
primes from the set of primes .

(8) (Sysak [81]) If G = AB 1s a hyperabelian group where A and B are m-subgroups of G for a set
of primes w, then G is a w-group.

This result has an interesting consequence.
Corollary. If G = AB s a soluble group where A and B are subgroups of finite exponent , then G

has finite exponent.

Proof. Let G*, A* and B* be cartesian products of countably many copies of G, A and B
respectively. Then G* = A*B* is soluble and the subgroups A* and B* have finite exponent. By
Theorem 8 G* is periodic. But this implies that the group G must have finite exponent.

Some further results on products of abelian subgroups of finite exponent can be found in Brisley
and MacDonald [29], Holt and Howlett [54] and Howlett [55].

In [81] Sysak constructs a locally soluble group G = AB where A and B are p’-groups for the
complementary set p’ of the prime p, but G is not a p’-group. The following questions remain open.

Problems. (a)Is every locally soluble product of two periodic subgroups periodic? Is every product
of two soluble and periodic subgroups periodic?

(b) Let X be a class of groups which is closed under the forming of subgroups, epimorphic images
and extensions. Is every soluble product G = AB of two X-subgroups A and B likewise an X-group?
(Note that Suchkov’s example shows that for non-soluble groups G = AB and the class X of periodic
groups the answer to the last question is negative).

IV. Minimum and Maximum Conditions.
The following lemma is elementary (see Amberg [2] or [3]).

Lemma. Let the group G = AB be the product of its subgroups A and B.

(a) If A and B satisfy the mazimum condition on subgroups, then G satisfies the mazimum condition

on normal subgroups.

(b) If A and B satisfy the minimum condition on subgroups, then G satisfies the minimum condition

on normal subgroups.
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Proof. (of (a), the proof of (b) is similar). If N; is an ascending chain of normal subgroups of G,
then
ANN; =ANN;y; and BNAN; = BN AN;;, for almost all 2.

By the modular law
AN; = AN; N AB = A(BN AN;) = A(BNAN;4+1) = ANip1
for almost all i. Therefore
N; = N;(ANN;) = Ni(AN Ni41) = Nig1 N AN; = ANijp1 N Nig1 = Niga

for almost all . This proves the lemma.

The lemma raises the question whether every product of two subgroups G = AB with maximum
(minimum) condition on subgroups always has the maximum (minimum) condition on subgroups.
This question is open even when A and B are soluble. However it has a positive answer when the
whole group G is soluble. We first consider the minimum condition.

A soluble group G satisfies the minimum condition on subgroups if and only if it is a Chernikov
group (*) i.e. there exists a normal subgroup J(G) of G such that the factor group G/J(G) is finite
and J(G) is the direct product of finitely many Priifer groups of type p® for finitely many primes
p. (In any group G denote by J(G) the intersection of all subgroups of finite index in G and call
this the finite residual of G).

In [76] Sesekin has shown that the product G = AB of two abelian subgroups A and B with
minimum condition is a (metabelian) Chernikov group. In Amberg [2] and [3] it is shown that every
hyper-(almost-abelian) product G = AB of two Chernikov groups is a Chernikov group and that
J(G) = J(A)J(B); for soluble groups G this was proved by Kegel already around 1965 but not
published. The most general result on products of Chernikov groups obtained so far concerns.so-
called locally graduated groups. A group G is locally graduated if every non-trivial finitely generated
subgroup of G has a non-trivial finite epimorphic image. The class of these groups is very large and
contains the locally finite, the locally soluble, the residually finite and the linear groups.

(9) (Chernikov [32]). If the locally graduated group G = AB is the product of two Chernikov
subgroups A and B, then G is a Chernikov group, so that

J(G) = J(A)J(B).

A similar theorem holds for products of periodic groups with minimum condition on p-subgroups
for every prime p. A soluble group G is periodic with minimum condition on p-subgroups for every
prime p if and only if the finite residual J(G) is the direct product of Priifer groups of type p*,
for each prime p only finitely many (but possibly infinitely many primes), and G/J(G) has finite
maximal p-subgroups for each prime p (see [63], 3.18). In particular we note

(*)named after S.N.Chernikov
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(10) (Amberg [8] and [9], Chernikov [38] and [48]). If the soluble group G = AB is the product of
two periodic subgroups A and B with minimum condition on p-subgroups for every prime p, then G
1s periodic with minimum condilion on p-subgroups for every prime p and

J(G) = J(A)J(B).

We turn now to the maximum condition. A soluble group G satisfies the maximum condition on
subgroups if and only if it is polycyclic, i.e. there exists a finite series G; of G

1=Gop<aG1<d4Gya--14G, =G

such that the factors G;/G;_; are cyclic. The number of infinite cyclic factors G;/G;_; in any such
series is an invariant of G, called its torsion-free rank or Hirsch-number ro(G). — A group G is
almost polycyclic if it contains a polycyclic normal subgroup N of finite index in G. In this case put
To(G) = ro(N).

It was shown around 1972 by Amberg and independently by Sesekin that every product of two
finitely generated abelian groups is (metabelian and) polycyclic (see [77], [2] and [3]). In the last
two papers it is even shown that every soluble product G = AB of two polycyclic subgroups A and
B, one of which is nilpotent, is always polycyclic. Finally the condition that A or B is nilpotent,
was removed in [64] and [95]. The proof in [64] even holds for an almost soluble group G.

(11) (Lennox and Roseblade [64], see also Zajtsev [95]). If the almost soluble group G = AB 1s the
product of two (almost) polycyclic subgroups A and B, then G is (almost) polycyclic.

(11+) (Amberg [2], [4] and [12]). If G = AB is almost polycyclic, then the torsion-free rank ro(G)

of G satisfies
To(G) = T()(A) -+ To(B) - T'Q(A n B)

Comments on the proof of Theorem 11.

In order to explain the main reduction arguments that are used in proving theorems about
(almost) soluble factorized groups we discuss briefly the proof of the following special case of Theorem
11:

(*) If G = AB is a soluble group where A and B are polycyclic and A or B is nilpotent, then G 1is
polycyclic (Amberg [2] and (3]).

Assume that the group G in (*) is not polycyclic. Let G = AB be a counterexample with
minimal derived length, and let K # 1 be the last non-trivial term of the derived series of G. Then
G/K = (AK/K)(BK/K) is polycyclic, so that the abelian normal subgroup K of G cannot be
finitely generated.
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In this situation it is convenient to consider the so-called factorizer of K in G; this is the subgroup
X =X(K)=AKnNBK
It is not difficult to see that it has the ‘triple factorization’
X =K(ANBK)=K(BNAK)=(ANBK)(BnN AK).

Since K is not finitely generated, X is also a counterexample. Therefore we may suppose without

loss of generality that
(a) G=AK =BK = AB

Clearly C = (AN K)(BN K) is normal in AKX = BK = G. Since AN K and BN K are finitely
generated, C is abelian and finitely generated. Therefore also G/C = (AC/C)(BC/C) is not
polycyclic. Since this group is also a counter example with a triple factorization of type () we may

in addition suppose that
(B) ANK=BNK=1

Therefore A and B are complements of the normal subgroup K of G. In particular A and B are
isomorphic and therefore both nilpotent.

In this situation one usually tries to apply cohomological arguments to show that A and B are
conjugate, which immediately implies A = B = (, a contradiction. For this, in particular some
‘vanishing theorems’ of D. Robinson play a decisive role (see [69] and [73]). These guarantee the
vanishing of the first cohomology group H!(A, K) under certain conditions.This is for example the
case when A is nilpotent, K is a noetherian A-module and K = [K, A] (see [69 or [73]).

In the original proof of (*) a contradiction was obtained in the following way. By an earlier
result of Kegel [62] a finite triply factorized group of type (a) with three nilpotent factors 4, B
and K is likewise nilpotent; see also Theorem 21 below. Thus every finite epimorphic image of the
counterexample G = AB is nilpotent. Since A and B are polycyclic, G = AB is a finitely generated
soluble group. Now a well-known result of Robinson and Wehrfritz yields that G is nilpotent and
hence polycyclic (see [70] p.459). This contradiction proves (*).

In the proof of the general statement of Theorem 11 one needs much deeper results about finitely
generated modules over polycyclic groups, in particular the theorem of Roseblade in [74] that a
simple module over a polycyclic group is finite. Thus the Theorem of Lennox-Roseblade-Zajtsev

cannot be regarded as an elementary result.
The following problems remain open.

Problems. (a) Is every product of two polycyclic groups always polycyclic?
(b) Is every product of two Chernikov groups always a Chernikov group?
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V. Nilpotent-by-Polycyclic Groups.

A group G is called nilpotent-by-polycyclic if it contains a nilpotent normal subgroup with poly-
cyclic factor group. In such a group G also the Fitting subgroup Fit G is a nilpotent characteristic
subgroup of G with polycyclic factor group G/Fit G (Fit G denotes the product of all nilpotent nor-
mal subgroups of G). It follows that an extension of a nilpotent-by-polycyclic group by a polycyclic
group is likewise nilpotent-by-polycyclic.

Theorems 11 and 114+ may be used to prove the following theorem.

(12) (Amberg, Franciosi, de Giovanni [21]). Let the soluble group G = AB of derived length n
be the product of a nilpotent-by-polycyclic subgroup A and a polycyclic subgroup B. Then G is
ntlpotent-by-polycyclic and, if G is not abelian, the torsion-free rank of the Fitting factor group of G
satisfies

ro(G/Fit G) < (2n — 3)(ro(B) + ro(A/Fit A)).

Comments on the proof.

The proof of the rank inequalities uses Theorem 11+ as well as some facts about the automor-
phism group of finitely generated abelian groups that depend ultimately on algebraic number theory,
in particular on Dirichlet’s Unit Theorem. (For the case when A and B are abelian, see Heineken
[52]). The following proof of the fact that G is nilpotent-by-polycyclic is easier and depends mainly
on Theorem 11:

Assume that G is not nilpotent-by-polycyclic. Let G = AB be a counterexample with minimal
derived length and let i # 1 be the last term of the derived series of G. Then there exists a nilpotent
normal subgroup L/K of G/K with polycyclic factor group G/L. Let F = Fit A be the Fitting
subgroup of A and ¢ the nilpotency class of F'.

1. The case FNK = 1.
In this case
ANK ~(ANK)F/FCA/F and (ANBK)/(ANK)~(ANBK)K/K C BK/K

are polycyclic, so that also ANBK is polycyclic. By Theorem 11 the factorized group BK = B(AN
BK) is also polycyclic. In particular K is finitely generated. As a soluble group of automorphisms
of a polycyclic group also G/Cg(K) is polycyclic (see [68], Part 1, p.82). Then also G/(LNCg(K) is
polycyclic. Since K is contained in the center of LN Cg(k) and (LNCg(K))/K C L/K is nilpotent,
also L N Cg(K) is nilpotent. Therefore G is nilpotent-by-polycyclic.

2. The general case.

Note that FNK is normal in AK and that /(FNK) is a nilpotent normal subgroup of A/(FNK)
with polycyclic factor group A/F. Consider the factorized group AK = A(B N AK) and its factor
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group
AK/(FNK) = (A/(FNK))(BNAK)(FNK)/(FNK)).

By the first case AK/(F N K) and also its subgroup F K /(F N K) are nilpotent-by-polycyclic. Since
FNK = Z.(F)N K is contained in the c-th term Z.(F K) of the upper central series of FK, also
FK is nilpotent-by-polycyclic. Since AK/FK ~ A/(AN FK) is polycyclic, also AK is nilpotent-
by-polycyclic.

Put H = AKNL. Then K C H C L and since L/K is nilpotent, H is a nilpotent-by-polycyclic
subnormal subgroup of G. Let

H=HyxHi<d Hyq-- -4 H =G

be the §tandard series of H in . Since A normalizes H, it is well-known that A also normalizes
each H;. Then A C Ng(H;) and so Ng(H;) = A(BN Ng(H;)). Consider the factorized group

Ng(Hi)/Hi = (AH;/H;)((B N Ng(H;))H;/H;).
The group AH;/H; is an epimorphic image of
A/(ANH)=A/(ANL)~ AL/L C G/L,

and hence it is polycyclic. By Theorem 11 the group Ng(H;)/H; is also polycyclic. Hence, if H; is
nilpotent-by-polycyclic for some i, also Ng(H;) and its subgroup H;;; are nilpotent-by-polycyclic.
Since Hy = H is nilpotent-by-polycyclic, also G = H; is nilpotent-by-polycyclic.

Remarks. (a) For non-soluble groups Theorem 12 becomes false in general. This can be seen from
the alternating group of degree 5 which can be written as a product G = AB where A is a cyclic
group of order 5 and B is an alternating group of degree 4, but G is not soluble.

(b) Let p be a prime and A = Aut B be the automorphism group of a Prifer group B of type
p®. Then A is an uncountable abelian group. Consider the holomorph G = AB. Then B = Fit G
and G/Fit G is not a Chernikov group, since it is uncountable. Therefore in Theorem 12 ‘polycyclic’
cannot be replaced by ‘Chernikov’. However, it is not difficult to show that a soluble product of a
hypercentral-by-Chernikov group and a Chernikov group must be an extension of a locally nilpotent
group by a Chernikov group.

Problem. Determine the structure of (soluble) groups G = AB where A is a subgroup satisfying
some generalized nilpotency condition and the subgroup B satisfies some finiteness condition.

VI. Minimax Groups.

A group G is a minimaz group if it has a finite series G; such that
1=GodG14G24---4G, =G

whose factors Gi41/G; satisfy the maximum or minimum condition on subgroups. It is easy to see
that a soluble group G is a minimax group if it has such a series in which each factor G;4+1/G; is
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cyclic or a Prifer group of type p™ for some prime p. The number of infinite factors in any such
series is an invariant of the group G which is called its minimaz rank m(G).

Problem. Is every product G = AB of two (soluble) minimax subgroups A and B a minimax

group?
If the group G = AB is soluble, this question has a positive answer.

(13) (Wilson [88] and [90]). If G = AB is a soluble group where A and B are minimaz subgroups
of G, then G is a minimaz group and the minimaz rank of G satisfies

m(G) = m(A) + m(B) — m(AN B).

The special case of this theorem, where A or B is nilpotent, was previously proved by Amberg
and Robinson in [26] and by Zajtsev in [96]; the case when A and B are abelian was already treated
in [93].

The proofs of these results reduce quickly to the situation of a triply factorized group
G = AB = AK = BK

where A and B are minimax subgroups and K is an abelian normal subgroup of G with AN K =
BNK=1.

Regard K as an A-module. The map é from A to K assigning to each element a of A the unique
element of (a=!B) N K is surjective and is easily checked to be a derivation, that is

(a1a2)8 = (a18)az + azé  for all ay, az in A.

Theorem 13 follows immediately from a fact proved in [90] that if § is a surjective derivation from a
soluble minimax group A to an A-module K, then K, regarded as a group, is minimax (This even
holds when the derivation é is only nearly surjective, that is the set A has a finite complement in
K). To see this, after some reductions one has to show that there are no infinite simple modules
K for a soluble minimax group A with the property that there is a (nearly) surjective derivation
from A to K. Note that all soluble minimax groups which are not polycyclic have infinite simple
modules, but apart from some ideas in a paper of Brookes [30] there is little known about these.
(See however Theorem 19 below). In the proof also some cohomological results are used.

For the proof of the rank formula for the minimax rank in Theorem 13 number theoretical
arguments such as Dirichlet’s Unit Theorem are decisive.

Corresponding to Theorem 12 there is the following result. Recall that the Gruenberg radical
K (G) of the group G is the subgroup generated by all its abelian ascendant subgroups.
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(14) (Amberg, Franciosi, de Giovanni [21]). If the soluble group G = AB of derived length n is
the product of a hypercentral-by-minimaz subgroup A and a minimaz subgroup B, then G is an
extension of ils Gruenberg radical by a minimaz group, and, if G is not abelian, the minimaz rank

of the Gruenberg factor group satisfies
m(G/K(G)) < (2n — 3)(m(B) + m(A/H)),

where H 1s any hypercentral normal subgroup of A with minimaz factor group A/H.

VII. Finite Rank.
There are several types of groups of finite rank which are considered.

(a) A group G has finite torsion-free rank if it has a series of finite length n in which each non-
periodic factor is infinite cyclic. The number of infinite cyclic factors in any such series is an invariant
of G called its torsion-free rank ro(G).

(b) A group G has finite abelian section rank if every elementary abelian section (p-factor) of G is
finite for every prime p.

(c) A group G has finite Prifer rank r = r(G) if every finitely generated subgroup of G can be
generated by r elements and r 1s the least such number.

For soluble groups the relations between the various classes are indicated in the following diagram.
Simple examples show that even for abelian groups all the inclusions are proper.

o finite torsion-free rank
o finite abelian section rank

o finite Prufer rank

o minimax

7N

min = Chernikov o o  max = polycyclic

Problem. If the group G = AB is the product of two (soluble) subgroups A and B of finite rank
in some sense, does then GG have finite rank in this same sense?

This problem was first considered in Amberg [4]. The example of Suchkov in Theorem 7 shows
that an arbitrary product of two groups with finite torsion-free rank can have infinite torsion-free
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rank. On the other hand, Sysak has announced that every soluble product G = AB of two subgroups
A and B with finite torsion-free rank has likewise finite torsion-free rank. If A and B are abelian,
this was known already from [93]. Robinson in [72] considered the case when A or B is nilpotent.
Some more general special cases when A and B satisfies some weak nilpotency requirements were
treated in Amberg [12], Chernikov [42] and Zajtsev [98]. Also it is shown in [25] that every factorized
group G = AB of finite torsion-free rank satisfies

ro(G) < ro(A) + ro(B) — ro(AN B).

It seems to be unknown at present whether in the general case we have an equality here. The
difficulty is to prove that the rank equality holds for the torsion-free rank in the case that the group
G has the form G = AB = AT = BT where T is a periodic normal subgroup of G.

Every soluble group G with finite abelian section rank has a finite series
1=Go<aG1<a4G2<--4G =G

whose factors Gt 1/G; are infinite cyclic or abelian torsion groups whose primary components satisfy
the minimum condition. The number of Priifer p-groups in any such series is finite and an invariant
of G which is called its p*-rank. The following theorem solves the above problem for soluble groups

with finite abelian section rank.

(15) (Wilson [91]. If the soluble group G = AB 1is the product of two subgroups A and B of finite
abelian section rank, then G has finite abelian section rank.

The special case of this when A and B are abelian was treated by Zajtsev in [93], Robinson
considered the case when A or B is nilpotent in [72]. Some further more general special cases of
Theorem 15 can be found in Amberg [4] and [13] and Chernikov[44]. Using the arguments of Wilson
(88] it is possible to prove the following additional information on the structure of the factorized
group in Theorem 15 (see Amberg and Miiller [25]).

(15+4) If G = AB is a soluble group with finite abelian section rank, then for every prime p and for
p =0 the ranks rp,(G) satisfy

mp(G) = rp(A) + 1p(B) — rp(A N B).

From Theorem 15 it follows easily that also every soluble product G = AB of two subgroups A
and B with finite Priifer rank likewise has finite Priifer rank (see [13] or [91]). Morover, the Priifer
rank of G is bounded by a function of the Priifer ranks of A and B (see [13]). For finite G this was
already shown by Zajtsev in [95] (see also Robinson [72] and Amberg and Robinson [26]).

Again the proofs of these results involve cohomological methods as well as some facts about
finitely generated modules over locally almost-polycyclic groups: see Theorem 19 below. In the
proof of Theorem 15 theorems about surjective derivations are decisive.



