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Preface

The present notes are the outcome of lectures I gave at Columbia University in the
fall of 1987, and at the University of Colorado 1988/1989. Although there is necessarily
some overlap with my earlier Lecture Notes on Diophantine Approximation (Springer
Lecture Notes 785, 1980), this overlap is small. In general, whereas in the earlier Notes
I gave a systematic exposition with all the proofs, the present notes present a varirety
of topics, and sometimes quote from the literature wihtout giving proofs. Nevertheless,
I believe that the pace is again leisurely.

Chapter I contains a fairly thorough discussion of Siegel’s Lemma and of heights.
Chapter II is devoted to Roth’s Theorem. Rather than Roth’s Lemma, I use a general-
ization of Dyson’s Lemma as given by Esnault and Viehweg. A proof of this generalized
lemma is not given; it is beyond the scope of the present notes. An advantage of the
lemma is that it leads to new bounds on the number of exceptional approximations in
Roth’s Theorem, as given recently by Bombieri and Van der Poorten. These bounds
turn out to be best possible in some sense. Chapter III deals with the Thue equation.
Among the recent developments are bounds by Bombieri and author on the number
of solutions of such equations, and by Mueller and the author on the number of so-
lutions of Thue equations with few nonzero coefficients, say s such coefficients (apart
from the constant term). I give a proof of the former, but deal with the latter only
up to s = 3, i.e., to trinomial Thue equations. Chapter IV is about S-unit equations
and hyperelliptic equations. S-unit equations include equations such as 2% + 3¥ = 4%, 1
present Evertse’s remarkable bounds for such equations. As for elliptic and hyperelliptic
equations, I mention a few basic facts, often without proofs, and proceed to counting
the number of solutions as in recent works of Evertse, and of Silverman, where the con-
nection with the Mordell-Weil rank is explored. Chapter V is on certain diophantine
equations in more than two variables. A tool here is my Subspace Theorem, of which I
quote several versions, but without proofs. I study generalized S-unit equations, such
as, e.g. taj' £ a3? £---+af» = 0 with given integers a; > 1, as well as norm form
equations. Recent advances permit to give explicit estimates on the number of solutions.
The notes end with an Epilogue on the abc-conjecture of Oesterlé and Masser.

Hand written notes of my lectures were taken at Columbia University by Mr. Ag-
boola, and at the University of Colorado by Ms. Deanna Caveny. The manuscript was
typed by Ms. Andrea Hennessy and Ms. Elizabeth Stimmel. My thanks are due to
them.

January 1991 Wolfgang M. Schmidt
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I. Siegel’s Lemma and Heights
§1. Siegel’s Lemma.
Consider a system of homogeneous linear equations
a1+ -+ a1,z, =0
(1.1)
Am1T1 + + AGmnZn =0

If m < n and the coefficients lie in a field, then there is a nontrivial solution with
components in the field. If m < n and the coefficients lie in Z (the integers), then there
is a nontrivial solution in integers. (Just take a solution with rational components and
multiply by the common denominator.) It is reasonable to believe that if the coefficients
are small integers, then there will also be a solution in small integers. This idea was
used by A. Thue (1909) and formalized by Siegel in (1929; on p. 213 of his Collected
Works).

LEMMA 1. Suppose that in (1.1) the coefficients a;; lie in Z and have |a;;] £ A
(1 £4,j £ n) where A is natural. Then there is a nontrivial solution in Z with

|z:| < 14 (nA)™/(n=m™) ( =1,...,n)

Proof. We follow Siegel. Let H be an integer parameter to be specified later. Let
C be the cube consisting of points

z=(z1,... ,%n)

with
lz;| £ H (i=1,...,n).

There are (2H + 1)™ integer points in this cube, since there are 2H + 1 possibilities for
each coordinate. Let T be the linear map R™ — R™ with

Tz = (anzi+- -+ @nZny--- ,8m1T1 + -+ + AmnZs).
Writing Tz = y = (y1,--- ,Ym ), we observe that the image of C lies in the cube
C': lyjl SnAH (j=1,...,m)
of R™. The number of integer pomnts in C' is (2nAH + 1)". Suppose now that
(2nAH +1)™ < (2H + 1)™. (1.2)

Then T restricted to the integers in the original cube will not be one- to one. So there
exist z',z" in C, with 2’ # 2", such that Tz' = Tz". Put z = z' — z". Then Tz = 0.
So z is a solution to the system with integer coordinates. Note that Ix,l <2H (=

Typeset by ApsS-TEX



1,...,n), because |z}|,|z| £ H (:=1,...,n), so |z;| = |z} — z¥| S |z}| + |z¥]| £ 2H.
Choose H to be the natural number satisfying

(nA)™/(n=m) <o 2 (nA)™/(nmm) 41

Then (2H 4+ 1)" = (2H + 1)™(2H + 1)*™
< (2H 4+ 1) (nA)"

> (2nAH +1)™.

So there exists an z satisfying |z;| £ 2H < 1+ (nA)™/(n=m),

So the proof of Siegel’s Lemma uses the box principle.

Can the exponent be improved? The answer is “no”.

Siegel’s Lemma is almost best possible. Put k£ = n—m, and for large P pick distinct
primes p;; (1 £¢ S k,1 £ 5 < m) with Py < p;j; < P, where 0 < n < 1is given. Put

Pj=pypaj--pk; (12j75m), Py=Pi/pi; 1212k 125 Zm),
Qi =papiz--pim (1 Si Zk), Qij=Qi/pi; 1ZiZk 155 Sm).
Consider the system of m equations in n variables:
Pyizy + -+ Pz — Py =0
Piozy + - + Proxg - Py, =0
Pipzi 4+ -+ Prpzi —Prym =0.

The maximum modulus A of its coefficients has 4 < P¥. The following are solution

vectors:
é] =(Q1,0,... ,0,Q11,Q12)-" ’le)

ék :(0,0, ,Qk,lean?w" ,ka)'

It is clear that every solution of our system of equations is a linear combination
iz, + - + crz, For integer solutions, c; is necessarily a rational number whose
denominator is Q;, and then every component of ¢z, has denominator Q;. Moreover,
if, say, c; is not integral, then (since Q11, @12, ... ,@1m are coprime), a1z, is not integral
and has some component whose denominator is a prime p;;. But since C2Zyy- -+ CkZ,
don’t have p;; in the denominator, a1z, + ¢z, + -+ + ckz, cannot be integral—a
contradiction. Therefore the integer solutions are z=az +--+az, with ¢1,... ¢k
in Z. When z # 0, say ¢; # 0, the first component z; of z has

[21] 2 Qi > (P)™ = P > AT/ = g/,
Therefore every integer solution (z1,... ,Zk, Y1,--- yym) 7# (0,...,0) has

max(|z1],...,|zk]) > pmA™/ (™),



Here n may be taken arbitrarily close to 1.
Another approach is as follows. When m = n — 1, consider the system of equations

AI,‘—I{+1=0 (7.:1,,71—1)

Every nontrivial solution, in fact every nontrivial complex solution, has z,/z; = A"~
Thus if we set
q(z) = max|z;/z;|,

with the maximum over¢,jin1l i, j S nwithz; # 0, then q(z) = AL = gmf(n-m)

But then for integer solutions, max(|zi],... ,|z,|) 2 A™/(n=m),
Exercise 1la. Suppose now that m = 1. For large A, construct an equation
a1z1 + -+ apr, =0

with integral coefficients and |a;| S A (i =1,...,n), such that every nontrivial solution
z with complex components has

q(é) Z c(n)Al/("~1) = cl(n,m)Am/("_’") > 0.

This approach can be carried out for general n,m. See Schmidt (1985).

§2. Geometry of Numbers.

The subject was founded by Minkowski (1896 & 1910). Other references are Cassels
(1959), Gruber and Lekkerkerker (1987), and Schmidt (1980, Chapter IV).

A lattice A is a subgroup of R™ which is generated by n linearly independent vectors
b,...,}, (linearly independent over R"). The elements of this lattice are ¢;b +--- +
C"Qn with ¢; € Z.

/

VAL

;S S

The set éx y--- b iscalled a basis. A basisis not uniquely determined. For example,
21,21 +22,23,. - ,Qn is another basis.
How unique is a basis? Suppose (:7'1, . ,2:1 is another basis. Then

n

(:)’ = ZC"J‘% and ¢;; €7Z

j=1



and

L_’:Zc;féi and cj; € Z.

So the matrices (ci;j) and (c;) are inverse to each other and c¢;j,¢}; € Z, so det (c;;) =
det (c};) = £1. Thus the matrlx (cij) is unimodular, where by definition a unimodular
matrix is a square matrix with integer entries and determinant 1 or —1.

LEMMA 2A. A necessary and sufficient condition for a subset A of R™ to be a
lattice is the following:
(i) A is a group under addition.
(11) A contains n linearly independent vectors.
(ii1) A is discrete.

For a proof, see e.g., Schmidt (1980, Ch. IV, Theorem 8A).

Consider R™ with the Euclidean metric and A a lattice with b ,b asbasis. Let
IT be the set of linear combinations A1h +---+ Anb with 0 £ /\ < 1 (z =5 I : §
Then II is called a fundamental pa'ralleleptped of A.

The fundamental parallelepiped does depend on which basis is chosen. The volume
of I is given by V(II) = |det (b, ,... ,b, )| where the right-hand side involves the matrix
whose rows are respectively made up of the coordinates of b ,...,b with respect to an
orthonormal bases of R™. This volume is independent of the chosen basis of the lattice,
since different bases are connected by unimodular transformations. It is an invariant of

the lattice.

We define
det A = V(II).
Notice that when g'. = (bi1,... ,bin), then
bir bz - bin bin b1 - bma
7 _ g 52'1 b -+ b2n . sl (b1.2 bz +++ bnz
bnl bn2 bnn bln b2n bnn
%1%1 %l%z %l%n
= det =2‘:l =2 == , (2.1)
énl_)l I:’né? o L—)nén

where the inner product of vectors z, y is denoted by z y.
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Every z in R" may uniquely be written as z = z' +z" where g’ € Il and 2" € A.

z = Z &id, = Z{&'}Qi e Z[fi]éi .
=1 = =1
en €A

Here we used the notation that uniquely

= [¢] + {¢}

where [£] is an integer, called the integer part of €, and {{} satisfies 0 < {{} < 1 and is
called the fractional part of €.

e .
Z"is a lattice with basis e ,... ,e wheree, = (0,...,0,1,0 ,0), G =1,...,n),
and with det Z®*=1. If Ais an arbltra.ry lattice with ba,sns b bn then there eXJSts

a linear transformation T such that Te, = b, (i =1,... n) So TZ" =A.
Is T unique? Suppose TZ" = T'Z". Then (T~ lTZ" = 2" sodet ((T')"!'T) = 1
and (7")~!T is unimodular. Call it U. Then T = T'U. Observe that

det A = |det T|.

THEOREM 2B. (Minkowski’s First Theorem on Convex Sets.) Let B C R™ be
a convex set which is symmetric about the origin (i.e., z € B if and only if —z € B) of

volume
V(B) > 2" det A (2.2)

where A is a lattice. Then B contains a non-zero lattice point.

Comments. The volume here is the Jordan volume, i.e., the Riemann integral over
the characteristic function of the set. Every bounded convex set has such a volume. Let
g€ B be a non-zero lattice point in B. Then —g # 0 and —g € B by symmetry, so B

contains actually at least two non-zero lattice points.

Proof. (Mordell, 1934). V(B)/det A is invariant under non-singular linear maps.
Therefore, after applying a linear transformation, we may assume that A = Z". Then
the theorem reduces to: If V(B) > 2", then B contains a non-zero integer point. Let
B, be the set of rational points in B with common denominator m. Then

|B—':' — V(B) as m— oo
m
where | | denotes the cardinality. For m sufficiently large, |B,,|/m™ > 2" and thus
|Bm| > (2m)™. So there are two points a = (a1/m,... ,an/m), b = (by/m,... ,bn/m)
in B, with - -
a; = b; (mod 2m) (E=1,...,n).

Then i
5(2 — 2) €B
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since the midpoint of g and —b is 3(a—b) € B. Let g = 3(a—b). Clearly g is a non-zero
integer point. B B

Exercise 2a. If B is symmetric, convex, and V(B) > 2"k det A where k € N, then
B contains at least k pairs of non-zero lattice points.

A convez body is a compact, convex set containing 0 as an interior point. Such a
body clearly has 0 < V(B) < oo. B

Remark 2C. If B is a symmetric, convex body and V(B) 2 2"det A, then B
contains a non-zero lattice point. It is easy to show that 2C follows from 2B, and vice
versa.

Remark 2D. Theorem 2B is best possible. Take A = Z™, B the cube with |z;| < 1,
(i=1,...,n). Then V(B) = 2™ = 2" det A and there are no non-zero integer points in
B.

Minkowski defines successive minima as follows: Given B, A where B is symmetric,
convex, bounded, and with 0 in its interior, let A\; = inf {\ : AB contains a non-zero lattice
point}. * More generally, for 1 < j Sn,A; =inf{): AB contains j linearly independent
lattice points}. Then

O</\] :)\2 :/\3 : :/\n<00
Here A\; > 0 since B is bounded and )\,, < co since 0 is an interior point.

THEOREM 2E. (Minkowski’s Second Theorem on Convex Bodies.)

-i—'det A S A1 A V(B) £ 2" det A. (2.3)

Example. Let n = 2, A = Z? and B the rectangle |z;| < k, |2z2| £ 1/k where
k 2 1. Then \; = 1/k, Ay = k and M\, V(B) = V(B) = 4 = 2? det A.

A proof will not be given here. There is no really simple proof of the upper bound
in (2.3). A weaker bound is proved in Schmidt (1980, p. 88).

Remark 2F. The constants 2" /n! and 2" are best possible. Let A = Z™ and B the
cube |z;| £ 1. Then V(B) = 2". Now €€, are on the boundary, so Ay = -+ =
An = 1. We have Ay --- A, V(B) = 2" and 2" det A = 2". So we get equality on the
right-hand side of (2.3). Next, let A = Z™ and B the “octahedron” |z|+ -+ -+ |z,| £ 1.
It may be seen that V(B) = 2"/n!. We have again \y = A\, = --- = A\, = 1. Thus
(2"/n!) det A = 2"/n! and A, --- A, V(B) = 2" /n!. We have equality on the left-hand
side of (2.3).

Note that

AMV(B) S 2™ det A (2.4)

*AB is the set of points ,\g with z€ B.
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since Ay S A2 £ --- = \,. Suppose now that V(B) > 2™ det A. Then \; < 1 so
that B = 1B D A1 B contains a non-zero lattice point. Therefore (2.4) implies 2B. It is
easily seen that (2.4) and 2B are equivalent.

Exercise 2b. Suppose B is a symmetric, convex set, A a lattice, A\; the first
minimum. Given g > 0, the number of lattice points in pB is = ((2u/A1) +1)".
§3. Lattice Packings.

A good reference for general packing and covering problems is C. A. Rogers (1964).
Let B C R" be compact and measurable. Given a lattice A, write B4+ A = {b+£:

beB, Le A} / m /

If the translates of B by vectors of A are disjoint (as in the picture), then we call
B + A a lattice packing of B. Having disjoint translates is equivalent to having unique
representations of the vectors of B+ A as b+ £.

The density of such a lattice packing is

V(A + B,r)

§(B,A) = 11_% V) (3.1)
where V(r) is the volume of a ball of radius r, and V(A + B,r) is the volume of the

intersection of A + B with the ball of radius r and center 0.

Exercise 3a. Show that the limit (3.1) always exists under our hypotheses, and
that (with II a fundamental parallelepiped)

§(B,A) = V(IIN (A + B))/V(II) = V(B)/ det A.

We define
8(B)=  sup  é(B,A).

A4 B a lattice
packing

This is invariant under nonsingular linear transformations T', since §(TB,TA) = §(B, A).

Suppose B is convex and symmetric about 0. Suppose B contains no non-zero
lattice point.



8

Claim: Then A + 1B is a lattice packing.

Justification: Suppose él + %21 = éz -+ %éz where él, £ €A, 21, 22 € B. Then by

2
122 b, =¢,—{ and B contains
no non-zero lattice points, so that £, —€ =0,£, = £ ,hence b =b,. Therefore A + g

=/ =2
is indeed a lattice packing.

an argument used above, 3b — b, isin BN A. But 2, =3

63B.A) = VGB) _ V(B) <, (13) —§(B) <1

det A~ 2ndet A T 2

and therefore

V(B) < 278(B)det A.

THEOREM 3A. If B is convex and symmetric about 0 and V(B) > 2"§(B) det A,
then B contains a non-zero lattice point. a

In particular, this happens when V(B) > 2" det A. So 3A is a strengthening of
Minkowski’s Theorem 2B.

Remark 3B. For B convex, symmetric about 0, one can show that §(B) < 1
except for certain polyhedra. E.g., the cube has density é = 1. So do regular hexagons
in the plane.
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This had already been proved implicitly by Gauss in his theory of positive definite binary
quadratic forms. We know the values of 82,83, ... ,ds; see Cassels (1959, Appendix) and
Exercise 3b below. The estimation of é, for large n remains among the central unsolved
problems in the Geometry of Numbers. Blichfeldt (1929) proved that 8, < 2_"/2(1—4-%).
Also, 6, 2 (3 — €)™ if n > no(e). See Cassels (1959, p. 249). More recently, G.A.
Kabatjanskii and V.I. Levenstein (1978) have shown that §, < 27°5997(1-¢) for p >
no(ﬁ).

One may in a fairly obvious way define a general (not necessarily lattice) packing
of a set B, and the maximum general packing density. For a disk in R2, Thue (1892)
had shown that the maximum packing density is in fact achieved for a lattice-packing.
It is not known whether a similar result holds for a ball in R®. It is generally believed
that the densest packing density of a ball in R™ where n is sufficiently large is less than
the smallest lattice packing density.

Now V(B)A} £ 2" det A§(B), so that A\, < 2(det A)'/™(8(B)/V(B))!/". For the

unit ball B, V(B) = V(n) = n"/2/T(1 + %), so that by Stirling’s formula we have the
asymptotic relation

V) = VB~ as om0,

We define Hermate’s constant -y, to be least such that for any lattice A
A S /3 (det A)Y/T
where A\; = A; (unit ball). So

< 452/n < 2n

—V( )Z/n = if n>2.
We have lim(y,/n) £ 5 = 2, by using the trivial estimate §, < 1. If instead we
use Blichfeldt’s estimate, we obtain lim(y,/n) 3?12 The result of Kabatjanskii and

Levenstein quoted above yields lim(7y, /n) < 279197(1e) 1.
Exercise 3b. Show that v, = 462/"/V(n)?/".

Exercise 3c. Let Q(X) =Y j=1ai;XiX; be a positive definite quadratic form
with real coefficients a;; = a;ji. Then there exists a non-zero integer point z with

Q(z) £ yn(det Q)'/™. Moreover, v, is least with this property.

§84. Siegel’s Lemma Again.

A rational subspace of R™ or C" is a subspace spanned by vectors with rational
coordinates. A rational subspace S* of dimension k is spanned by k vectors 8,018, €
Q". Such a space S*¥ may be defined by n—k linear homogeneous equations with rational

coefficients. The integer points in a subspace S* form a set A which is a lattice of S¥
by Lemma 2A.
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The height of S* is defined by
H(Sk) = det A.

An integer point @ = (ai,... ,ax) is called primitive if ged(ay,... ,an) = 1. Then
a is “closest to the origin,” i.e., there is no integer point on the line segment between
0 and a. Either a or —a is a basis of the 1-dimensional lattice of integer points of the

space S! spanned by g.—Thus H(S') = |al.

1o
ne
b
ne

-2g =4

By the definition of Hermite’s constant, there is on S¥ an integer point z # 0 with

2| < 7/ H(SF)VE

LEMMA 4A. Consider the unit cube C in R, ie, |z;|] £1 (i =1,...,n). Let
S* be a k-dimensional subspace. Then C N S* has k—dimensional volume 2 2F.

This result, due to J. Vaaler (1979), will not be proved here.

Let S* be a rational subspace, A the lattice of integer points associated with S*,
ie., A = A(S*). Let B = C n S*. By Minkowski’s Theorem 2C, AfV(B) = 2*det A.
Now V(B) 2 2F so that

Aok < ok det A,
AF < det A = H(S*),
A S H(SK)V/E,

Recall that |z| was the Euclidean norm. Let

|£| = max(|z1],...,|zn|)
be the maximum norm. Our results may be summarized in

LEMMA 4B. Given a rational subspace S* there is an integer point z#0on ol
with
lzl = w2 H(S)E.

Also, there is such a point z' with

'] < H(S)' .

When S* is a rational subspace, then (S*)* is a rational subspace of dimension
m=n—k.

LEMMA 4C. H(S1) = H(S).
The proof is postponed to the next section (see Corollary 5J). To make the lemma
correct for S° and S™ = R™, we set H(S°) = 1.
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Let us go back to a system of linear equations

a1+ -+ aintn, =0

aAm1T1 + -+ GunTn = 0

where 0 < m < n, a;; € Z. If these equations are independent, they define a rational
subspace S* of dimension k¥ = n — m. And (S*)* is spanned by the row vectors

a 8 where g = (ai1y--. ,@in). Then

a,..
H(S*)=H(S*) Sla|--la,l.

The last inequality occurs because a peee»@  can be written as linear combinations

of basis vectors for the lattice, so that det |gl,... ,gm| is an integer multiple of the

determinant of a basis.} Thus
det (A(S*4)) < |det(a,,.. a )| S| a_|
by Hadamard’s inequality, which is a consequence of Lemma 5E below.

LEMMA 4D. (Siegel’s Lemma) Given the system of equations above,
(i) there is a non-trivial integer solution g with

_ 2 \'? -
2l S 7l g, 70 5 (2n) 7 (v aynicemm

if laij| £ A for every i,j.
(ii) Also, there is a non-trivial integer solution z' with

1 < i o 1/(n-m) < m/(n—m)
lz'] = (la,|--la, 1) S (Vn A) ;
In the first inequality we used that vy,_, < %(n —m) < %n ifn—-—m 2 2, and
Ya—m'=1 < %n if n —m =1, so that n 2 2. It is clear that we do not have to restrict
to the case when the m equations are independent.

Remark 4E. If Minkowski’s Second Theorem (2E) is used, (ii) can be strengthened
to get the following: there are n —m linearly independent solutions Ty Z, of our
system of equations such that

lz,llz, -1z, _ | Slal---1la,_|.

The first assertion can be strengthened in the same way, but this is not so obvious.

§5. Grassman Algebra.

!We think of @,...,a_ as vectors with m components in terms of an orthonormal coordinate

Y=

system in S¥L



