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Preface

Design of modern digital hardware systems and of complex software systems is almost
always connected with parallelism. For example, execution of an object-oriented pro-
gram can be considered as parallel functioning of the co-operating objects; all modern
operating systems are multitasking, and the software tends to be multithread; many
complex calculation tasks are solved in distributed way. But designers of the control
systems probably have to face parallelism in more evident and direct way. Controllers
rarely deal with just one controlled object. Usually a system of several objects is to be
controlled, and then the control algorithm naturally turns to be parallel.

So, classical and very deeply investigated model of discrete device, Finite State
Machine, is not expressive enough for the design of control devices and systems.
Theoretically in most of cases behavior of a controller can be described by an FSM,
but usually it is not convenient; such FSM description would be much more complex,
than a parallel specification (even as a network of several communicating FSMs).

The engineers and researchers became aware of practical necessity of developing of
parallel discrete models about forty years ago. There were (and are) two main ap-
proaches to such models. One is a direct development of the FSM, being enhanced by
parallelism and hierarchy. Another one is based on the parallelism “from the very
beginning”. The most famous and popular model of this second kind is Petri nets. A
big family of more or less detailed behavioral specifications of parallel systems is
based on this formalism.

Design and, especially, analysis and verification of systems, which behavior is
specified by the parallel models, is a remarkably more complex task, than design and
analysis of strictly sequential systems.

In this book, we are concerned about the formal analysis and verification of the
parallel systems, specified by the Petri nets and the extended Petri net models. Be-
sides, some results presented here are related to the FSM networks (but, again, we
model them by means of Petri nets) and to the sequent automata (a kind of parallel
descriptions other than Petri nets). To formulate some general affirmations, we use a
general model of a parallel discrete system, which covers all specific models studied
in the book.

We have focused on the approach of reduced exploration of state spaces. This ap-
proach is selected here as the basic one, because the state exploration provides the
most detailed information about system behavior among other analysis approaches,
and, on the other hand, such exploration does not have to be full to decide many im-
portant properties of the systems (especially with restricted structure).

The analysis methods of such kind are thoroughly developed; our work was in-
spired by the results of many authors, first of all of A. Valmari and P. Godefroid. For
inspiration of another kind (the interesting parallel models and the methodology of
research) we are grateful to A. Zakrevskij. The original results presented in this book
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are mostly connected to generalization of the known methods or, vice versa, to apply-
ing them to specific subclasses of parallel systems, which sometimes allows to obtain
more information than in general case.

We intended this book to be useful to CAD researches and designers of parallel
control systems. Content of the book is mostly theoretical, but it was written bearing
in the mind possible practical applications. It may also be useful for the students of
electrical engineering and computer science.

March 2007 Andrei Karatkevich
Zielona Goéra
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Main symbols

FRET~NQEEC 5QR

au

FSM or parallel automaton

incidence matrix of a Petri net

siphon

event

set of edges of a graph

set of arcs of a Petri net

graph

set of input (external) events

elementary conjunction; implicant of a Boolean function
cycle in a graph

marking or global state

deadlock

initial marking or initial global state

macroplace

FSM network

set of output events

place or local state

Boolean variable corresponding to place or local state p;
set of places or set of local states

set of input places

set of output places

path in a graph

code of local state p; (an elementary conjunction)
partial order relation

sequent

sequent automaton

transition

set of transitions

persistent set

stubborn set
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elementary disjunction

set of nodes of a graph

weight (of an arc)

set of input variables

set of output variables

set of internal variables or events

set of events

step of concurrent simulation

Boolean variable corresponding to event e;
initial label of a parallel automaton transition
terminal label of a parallel automaton transition
priority relation

firing sequence

Petri net

left part of a sequent

right part of a sequent

Main operators and functions

enabled(M) set of transitions enabled in M

M (p)
M(P)
(M)
P(p)
V(G)

x.

[z]

||

number of tokens in place p or activity of local state p at M
sum of tokens in places belonging to P at M

set of markings or global states, reachable from M

set of local states parallel to p

set of nodes of graph G

set of predecessors of node (place or transition) z of a Petri net
set of successors of node (place or transition) z of a Petri net
cluster of Petri net containing node z

length of firing sequence o

Main abbreviations

BDD
CAD
CNF
DNF
EFC
FSM
HPN
IPN
JPVM
LS
OPN
OPT
PN

binary decision diagram
computer aided design
conjunctive normal form
disjunctive normal form
extended free choice
finite state machine
hierarchical Petri net
interpreted Petri net
Java Parallel Virtual Machine
live and safe
operational Petri net
”optimal simulation”
Petri net



PNSF
PSS
PDG
RRG
SCC
SFC
SM
TC
UML
XML
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Petri Net Specification Format
”parallel selective search”
program dependency graph
reduced reachability graph
strongly connected component
Sequential Function Chart
state machine

terminal component

Unified Modelling Language
Extensible Markup Language

IX
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1. Introduction

Design of modern discrete devices and systems often deals with parallel pro-
cesses and structures. For that reason practically all modern hardware design
languages and formalisms used for system specification (such as VHDL, Verilog)
allow describing concurrency. Design of complex, VLSI-based electronic devices
is possible only with the help of CAD systems, so the design and verification
methods have to be (and mostly are) formalized. Formalization and automatiza-
tion of system design requires developing of formal models for parallel discrete
systems and low-level description languages based on these models.

Specifications of devices and systems described in VHDL, Verilog or other
popular languages of logical control, as LD, IL or ST [159], are very difficult
for formal verification, because it is practically impossible to create adequate
and at the same time simple formal models for such specifications (if these
languages are used without restrictions). The problem can be solved by -using
of restricted specifications based on models which are easy to analyze and have
enough expressive power.

There are two main directions of developing such models, each having its
good and bad aspects. Both of them are, in a sense, extensions of the finite state
machines (FSM) - the basic model of sequential discrete devices, which is, of
course, in its "pure” version not convenient for practical needs of specifying of
complex systems.

One direction is the composition of FSMs in various ways. The simplest im-
plementation of this approach is the FSM network - a system of communicating
automata [23, 147]. Studies on the automata networks have started in 1960-s,
but rapid development of the methods of behavior specification by means of such
networks began in 1980-s. Adding hierarchy to FSM networks leads to obtaining
the model known as HCFSM (Hierarchical Concurrent Finite State Machines)
[71]. One of the most popular and well-adapted to HCFSM languages has been
developed within a frame of the universal specification language UML (Unified
Modelling Language [209]), describing hierarchical objects and dependencies be-
tween them. We talk about the Statechars, invented by D. Harel [56, 83]. There
exist several other models and languages based on automata networks such as

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 1-8, 2007.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2007



2 1. Introduction

SMV [177], Promela [89, 90], CFSM [18], Requirements State Machine Language
and visualState [200]. Probably the best implementation of this approach is the
Ptolemy project, developed in Berkeley university [52, 157].

Another direction is the Petri nets and Petri net-based models and languages.
A 7pure” Petri net can describe a structure of parallel algorithm in convenient
way, but it cannot describe interaction with the outer world (controlled ob jects).
In order to develop Petri net models useful for discrete system design, the nets
have to be enhanced at least by input and output signals. Often also such ele-
ments, as internal signals, time dependencies, operations on integers and other
non-binary data are used. Probably the first successful attempt to create a Petri
net-based language for control specification was the model known as GRAFCET.
Its first version was developed in France by the working group called ”Logical
Systems” from AFCET (Association Francaise de Cybernétique Economique et
Technique) in the 1970s [51, 205]. In 1988 it was adopted by the International
Electrotechnical Commission as an international standard under the name of
”Sequential Function Chart” (SFC)[159]. Translators have been developed to
implement GRAFCET on programmable controllers. In the late 1970s and the
early 1980s intensive researches in similar direction have started in the USSR
(Institute of Engineering Cybernetics, Minsk [236, 238, 239, 240]; Institute of
Control Sciences, Moscow [232, 233]) and in Poland (Technical University of
Zielona Géra (3, 224]); parallel automata models [4, 240] and PRALU language
[245, 249] arose, the methods of implementation and verification of such descrip-
tions were designed!. Later various kinds of colored, interpreted, object and
hybrid Petri nets and similar models have been developed, studied and applied
(see e.g. [12, 34, 67, 94, 95, 100, 137, 143, 195, 196]). Most of these models allow
hierarchical description, which is necessary for modern system design. In this
case a net place or (more rarely) a net transition may be considered at lower
level as a net.

These two approaches are equivalent in their expressiveness, each of them
has its ardent supporters, the Petri net models and FSM-based models can be
transformed into each other [148], and the question, which of them is ”better”
for system design, is still discussed. Both of them are used in CAD systems
(see, for example, [56, 253]; however, Petri net models, being popular among the
researchers, are definitively less popular among industrial CAD designers), and
there is practical need to develop analysis methods for the models of both kinds.

A control system can be implemented using one or several microcontrollers,
FPGA devices, specialized or general-purpose computers and so on. At the level
of control algorithm specification and its verification there is no difference, which
way of implementation will be used at further steps of design. So, in this book
analysis and verification tasks are considered independently of the implementa-
tion details.

! These researches were preceded by studying the sequent descriptions [4, 80, 234,
237, 250], probably inspired by the theory of logical inference introduced by Gentzen
[204]. Now sequent descriptions (sequent automata) are used as one of the interme-
diate specifications during implementation of parallel automata [5, 243, 248, 249].



1.1 Analysis of Parallel Discrete Systems 3
1.1 Analysis of Parallel Discrete Systems

Methods of formal verification are a necessary part of any methodology of
computer-aided design of hardware or software systems - and, in most cases,
the verification is a bottleneck of the designs. Verification of parallel safety-
critical systems differs from the verification of sequential designs, because there
are some additional important properties, guaranteed or easy to check in case
of sequential systems. The main conditions of a ”"good” parallel system are the
next: [200, 245, 249

e lack of redundancy (lack of unreachable local states? and operations which
are never executed);

e deadlock-freeness (in some cases the specified deadlocks must be reachable
in a system; generally, detection of global and local deadlocks - situations, in
which some or all parts of the system cannot react on input events because
of mutual blocking - is one of the main analysis tasks) and a wider property,
liveness (which implies lack of redundancy); often (for the cyclic systems)
the condition of reversibility is added;

e safeness - no operation can be re-initialized during its execution;

e determinism - for parallel systems it additionally means, that parallel branches
never destroy conditions and results of each other.

Of course, a designer may choose and formalize some specific conditions for
specific designs. Checking of most conditions can be reduced to solving of reach-
ability problem (reachability of a specified state or one of the states belonging to
a specified class). Reachability is usually not a property difficult to check for a
sequential system such as FSM, but for parallel systems the situation is different.

Analysis and formal verification of the parallel systems is a much more com-
plex task than verification of a single FSM. The main problem is caused by the
fact, that the parallel systems may have huge number of reachable states (it
may depend exponentially on the of system size; for example, number of states
of an FSM, equivalent to a parallel automaton with n states, may be maximally
3"/3 /n [249]. A parallel system may even have the infinite state space, such as
an unbounded Petri net). That’s why analysis by reducing of a parallel system
to sequential one or by generating its state space in explicit form is practically
impossible even for relatively simple systems (a parallel automaton with several
dozens of local states may have milliards of global spaces). Model checking, a
popular technology of formal verification based on state space analysis (using
some tricks to prune the state space and, in most cases, representing state space
in compact form like BDD), is practically used to verify properties of state spaces
of size as large as about 1000 states maximum (accirding to [177]; however, in
the earlier publication [45] the specific examples with an extremely large num-
ber of states - about 106, 102° and even 10'2° - are mentioned, successfully

2 For parallel systems the global states (state of the whole system) and local states
should be distinguished; formal definitions will be given later.



