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PREFACE

The theory of planar graphs was first discovered in 1736 by Euler when he
found his important formula relating the numbers of vertices, edges and faces
of polyhedrons, which can be represented by planar graphs. Since that time
numerous results have been obtained on planar graphs. One of the most
outstanding results is Kuratowski’s theorem which gives a criterion for a graph
to be planar. Another example is the famous four-color theorem: every planar
graph can be colored with at most four colors so that no two adjacent vertices
receive the same color. In recent years, planar graphs have attracted computer
scientists’ interest, and a lot of interesting algorithms and complexity results
have been obtained for planar graphs. For example, Hopcroft and Tarjan have
reported on a linear time algorithm which tests the planarity of a graph.

Recently it appeared to us that the time was ripe to collect and organize the
many results on planar graphs, which have been our research topics for these
ten years. In our opinion the theory and algorithms are complementary to each
other in the research of planar graphs. For example, Hopcroft and Tarjan’s
algorithm was motivated by Kuratowski’s theorem although it was not expli-
citly used in the algorithm. On the other hand many theoretic results have been
obtained from the algorithmic view point. Thus we have tried to include most
of the important theorems and algorithms that are currently known for planar
graphs. Furthermore we have tried to provide constructive proofs for
theorems, from which algorithms immediately follow. Most of the algorithms
are written in Pidgin PASCAL in a manner that will make their adaptation to a
practical programming language relatively easy. They are all efficient, and
most of them are the best known ones; the complexities are linear or
O(nlog n).

A glance at the table of contents will provide an outline of the topics to be
discussed. The first two chapters are introductory in the sense that they
provide the foundations, respectively, of the graph theoretic notions and
algorithmic techniques that will be used in the book. Experts in graph theory or
algorithms may skip Chapters 1 or 2. The remaining chapters discuss the
topics on planarity testing, embedding, drawing, vertex- or edge-coloring,
maximum independent set, subgraph listing, planar separator theorem,
Hamiltonian cycles, and single- or multicommodity flows. The topics reflect
the authors’ favor as graph theorists and computer scientists. The chapters are
structured in such a way that the book will be suitable as a textbook in a course
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on algorithms, graph theory, or planar graphs. In addition, the book will be
useful for computer scientists and graph theorists at the research level. An
extensive reference section is also included.

Sendai Takao Nishizeki and Norishige Chiba
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CHAPTER 1

GRAPH THEORETIC FOUNDATIONS

1.1. Introduction

A graph can be thought of as a diagram consisting of a collection of vertices
together with edges joining certain pairs of vertices. A planar graph is a
particular diagram which can be drawn on the plane so that no two edges
intersect geometrically except at a vertex at which they are both incident.

First consider the example depicted in Fig. 1.1(a), which consists of six
vertices (drawn by small black cycles) and 12 edges (drawn by straight lines
there). Is the graph planar? That is, can you draw the graph on the plane by
locating vertices and drawing edges appropriately in such a way that no two
edges intersect except at a common endvertex? The drawing in Fig. 1.1(a), as it
1s, has two intersections in the circles drawn by dotted lines. However, one can
avoid them if the vertex v, is located in the exterior of the square v,v,v;v, v,
(drawn by a thick line), as shown in Fig. 1.1(b). Thus the graph is known to be
planar. Next consider the graph depicted in Fig. 1.2(a), known as the complete
graph K; on five vertices. Is K planar? If we suppose so, then one may assume
without loss of generality that v,v,v3v,vs is drawn on the plane as a regular
pentagon. (Look on the plane as flexible rubber, and deform it as desired.) One
may also assume that the edge (v, v;) is drawn in the interior of the pentagon.
Then both the edges (v,, v5) and (v,, v,) must be drawn in the exterior, and
consequently edge (v, vs) must be drawn in the interior, as shown in Fig. 1.3(a).
Then an intersection must occur whether the edge (v, v,) is drawn in the
interior or exterior. Thus K; cannot be drawn on the plane without edge-
crossing, so is nonplanar. Another example of nonplanar graphs is the “com-
plete bipartite graph” Kj; depicted in Fig. 1.2(b). One may assume that edge
(u,, v,) is drawn in the interior of the hexagon u,v,u,v,u3v;, and hence edge
(v1, u3) in the exterior. Then (u,, v;) cannot be drawn without producing an
intersection. Thus Kj; is also known to be nonplanar.

1



2 Planar graphs: Theory and algorithms

U2

(a) (b)
Fig. 1.1. (a) A graph G; and (b) A plane embedding of G.

Fig. 1.2. Kuratowski’s graphs: (a) Complete graph Kj; (b) Complete bipartite graph Kj ;.

As above, not all graphs are planar. However planar graphs arise quite
naturally in real-world applications, such as road or railway maps, electric
printed circuits, chemical molecules, etc. Planar graphs play an important role
in these problems, partly due to the fact that some practical problems can be
efficiently solved for planar graphs even if they are intractable for general
graphs. Moreover, a number of interesting and applicable results are known
concerning the mathematical and algorithmic properties of planar graphs.
Thus the theory of planar graphs has emerged as a worthwhile mathematical
discipline in its own right.

1.2. Some basic definitions

Let us formally define the notion of a graph. A graph G =(V,E) is a
structure which consists of a finite set of vertices V and a finite set of edges E;
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(a) (b)
Fig. 1.3. Partial embedding of (a) K and (b) K;;.

each edge is an unordered pair of distinct vertices. Throughout the book n
denotes the number of vertices of G, that is, n = | V|, while m denotes the
number of edges, that is, m = | E'|. Any edge of the form (u, v) is said to join
the vertices # and v. Our graph G is a so-called simple finite graph, that is, G
has no “multiple edges” or “loops” and sets V and E are finite. Multiple edges
Join the same pair of vertices, while a loop joins a vertex to itself. The graph, in
which loops and multiple edges are allowed, is called a multigraph. The graph,
in which E is defined to be a set of ordered pairs of distinct vertices, is a
directed graph (digraph for short).

If (u, v)EE, then two vertices u and v of a graph G are said to be adjacent; u
and v are then said to be incident to edge (u, v); u is a neighbour of v. The
neighbourhood N(v) is the set of all neighbours of v. Two distinct edges are
adjacent if they have a vertex in common. The degree of a vertex v of G is the
number of edges incident to v, and is written as d(G, v) or simply d(v). In the
graph G depicted in Fig. 1.1(a) vertices v, and v, are adjacent; N(v,) =
{v2, v4, vs, 6}, and hence d(v,) = 4.

We say that G’ = (V, E’) is a subgraph of G = (V, E)if V' C Vand E’ C E.
If V’=V then G’ is called a spanning subgraph of G. If G’ contains all the
edges of G that join two vertices in ¥ then G is said to be induced by V. If V'
consists of exactly the vertices on which edges in E’ are incident, then G is said
to be induced by E’. Fig. 1.4(a) depicts a spanning subgraph of G in Fig. 1.1(b);
Fig. 1.4(b) depicts a subgraph induced by V" = {vi, v2, v4, v5}; Fig. 1.4(c) depicts
a subgraph induced by {(v;, v,), (v}, vs), (v, vs), (v, vs)}.
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We shall often construct new graphs from old ones by deleting some vertices
or edges. If ¥’ C Vthen G — V" is the subgraph of G obtained by deleting the
vertices in ¥’ and all edges incident on them, that is, G — V'’ is a subgraph
induced by V' — V”. Similarly if E’ C EthenG — E'=(V,E — E").If V" = {v}
and E’ = {(u, v)} then this notation is simplified to G — v and G — (u, v).

We also denote by G/e the graph obtained by taking an edge e and
contracting it, that is, removing e and identifying its ends # and v in such a way
that the resulting vertex is adjacent to those vertices (other than u and v) which
were originally adjacent to « or v. For E’ C E we denote by G/E’ the graph
which results from G after a succession of such contractions for the edges in E’.
The graph G/E’ is called a contraction of G.

1 V2 1 2
® v,
v
V6 5
Vye A v,
(a) (b)
Vl V2

(c)
Fig. 1.4. Subgraphs of G in Fig. 1.1(b): (a) Spanning subgraph; (b) Vertex-induced subgraph;
(c) Edge-induced subgraph.

A vyv; walk in G is an alternating sequence of vertices and edges of G,
Vo, €1, Vs . - ., Vi_1, €1, V;, beginning and ending with a vertex, in which each
edge is incident on two vertices immediately preceding and following it. The
number / of edges is called its length. If the vertices vy, v, . . ., v, are distinct
(except, possibly, vy = v;), then the walk is called a path and is usually denoted
by vov; - - - v;. A path or walk is closed if vy = v,. A closed path containing at least
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one edge is called a cycle. A cycle of length 3,4, 5, ..., is called a triangle,
quadrilateral, pentagon, etc. One example of walks in G depicted in Fig. 1.1(b)
is

Vi, (Vl, v2)s V2, (VZs V3), V3, (V3s Vs)’ Vs,

(V5, VZ), V2, (v2a V3), V3, (vib V4), V4,

which is not closed, that is open. One example of cycles is v,v,v3v,v,, a
quadrilateral.

The dual concept of a cycle is a “cutset” which we now define. A cut of a
graph G is a set of edges of G whose removal increases the number of
components. A cutset is defined to be a cut no proper subset of which is a cut,
that is, a cutset is a minimal cut. Fig. 1.5 illustrates these concepts;
{a,b,c,d, e} is a cut but not a cutset; both {a, b, c} and {d, e} are cutsets.

Fig. 1.5. Cut and cutset.

A graph G is connected if for every pair {u, v} of distinct vertices there is a
path between u and v. A (connected) component of a graph is a maximal
connected subgraph. A cutvertex is a vertex whose deletion increases the
number of components. Similarly an edge is a bridge if its deletion increases
the number of components. G is 2-connected if G is connected and has no
cutvertex. A block of G is a maximal 2-connected subgraph of G. A separation
pair of a 2-connected graph G is two vertices whose deletion disconnects G. G
is 3-connected if G has no cutvertex or separation pair. In general, a separating
set of a connected graph G is a set of vertices of G whose deletion disconnects
G. The graph in Fig. 1.4(a) is disconnected, and has three components; the
graph in Fig. 1.4(c) which is not 2-connected has a cutvertex v,, a bridge (v;, v,)
and two blocks; the graph in Fig. 1.4(b) has no cutvertex but has a separation
pair {v,, vs}, so is 2-connected but not 3-connected; G in Fig. 1.1(b) has no
cutvertex or separation pair, so is 3-connected.

If G has a separation pair {x, y}, then we often split G into two graphs G,
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and G,, called split graphs. Let G{ = (V,, E{) and G5 = (V>, E;) be two sub-
graphs satisfying the following conditions (a) and (b):

(a) V=V ubr,VinV,={x,y};
(b) E=E{UE; E{NE}=g, |E{|=2, |Ej|=2.

Define G, to be the graph obtained from G{ by adding a new edge (x, y) if it
does not exist; similarly define G,. (See Fig. 1.6.)

~ 2 7

Sy x X

(a) (b)

Fig. 1.6. (a) A graph G with a separation pair {x, y}, where edge (x, y)
may not exist; (b) Split graphs G, and G,.

Before ending this section, we will define some special graphs. A graph
without any cycles is a forest; a tree is a connected forest. Fig. 1.4(a) is a forest
having three components.

A graph in which every pair of distinct vertices are adjacent is called a
complete graph. The complete graph on n vertices is denoted by K,. K; has
been depicted in Fig. 1.2(a).

Suppose that the vertex set V' of a graph G can be partitioned into two
disjoint sets V; and V), in such a way that every edge of G joins a vertex of V; to
a vertex of V; G is then said to be a bipartite graph. If every vertex of V, is
joined to every vertex of V5, then G is called a complete bipartite graph and is
denoted by K, where s = | V|| and r = | V;|. Fig. 1.2(b) depicts a complete
bipartite graph K ; with partite sets {u;, u,, 43} and {v,, v,, v;}.

1.3. Planar graphs

Let us formally define a planar graph. Draw a graph G in the given space (e.g.
plane) with points representing vertices of G and curves representing edges. G



