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TRANSLATOR’S PREFACE

The present volume is the second in a new series of
translations of outstanding Russian textbooks ‘and
monographs in the fields of mathematics, physics and
engineering, uader my editorship. It is hoped that
Professor Tolstov’s book will constitute a valuable addi-
tion to the English-language literature on Fourier series.
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Vi  TRANSLATOR'S PREFACE .

The following two changes, made with Professor
Tolstov’s consent, are worth mentioning:

I. To enhance the value of the English-language
edition, a large number of extra problems have been
added by myself and Professor Allen L. Shields of the
University of Michigan. We have consulted a variety
of sources, in particular, 4 Collection of Problems in
Mathematical Physics by N. N. Lebedev, 1. P. Skals-
kaya, and Y. S. Uflyand (Moscow, 1957), from which
most of the problems appearing at the end of Chapter
9 have been taken.

2. To keep the number of cross references to a
minimum, four chapters (8 and 9, 10 and 11) of the
Russian original have been combined to make two
chapters (8 and 9) of the present edition

I have also added a Bibliography, containing suggestions
for collateral and supplementary reading. Finally, it
should Le noted that sections marked with asterisks
contain material of a more advanced nature, which can be
omitted without loss of continuity.
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TRIGONOMETRIC
FOURIER SERIES

I. Periodic Functions

A function f(x) is called periodic 1fthere exists a constant 7 > 0 for which

Jx +7) = /), (1.1)

for any x in the domalﬂp_f_fdeﬁmt]on off(x) (It 1s understood that both x
and x + 7 lie in this domain.) Such a constant T is called a period of the
function f(x). The most familiar periodic functions are sin x, cos x, tan x,
etc. Periodic functions arise in many applications of mathematics to
problems of physics and engineering. rIt is clear that the sum, difference,
product, or quotient of two functions of penod T is again a functlon of
periodT.

If we plot a periodic function y = f(x) on any closed interval ¢ < x <
a + T, we can obtain the entire graph of f(x) by periodic repetition of the
portion of the graph corresponding to a < x < a + T (see Fig. 1).

0F 7 is a period of the function f(x), then the numbers 27, 37T, 4T, . ..
are also periodsy This follows immediately by inspecting the graph of a
periodic function or from the series of equalities!

f(x) =f(x 4+ T) = f(x + 2T) = f(x + 3T) =

1 We suggest that the reader prove the validity not only of these equalities but also of
the following equalities:
f)=f(x = T)=fx = 2T) = f(x = 3T) =
!
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which are obtained by repeated use of the condition (1.1). Thus, if T is a
period, so is kT, where k is any positive integer, i.e., if a period exists, it is
not unique.

T

i Jf N—

VARV

Next, we note the following property of any function f(x) of period 7:

FIGURE !

If f(x) is integrable on any interval of length T, then it is integrable on any
other interval of the same length, and the value of the integral is the same,
ie.,
a+T fb+T
{ " dx = [T 1) dx, (1.2)

Jfor any a and b.

This property is an immediate consequence of the interpretation of an
integral as an area. In fact, each integral (1.2) equals the area included
between the curve y = f(x), the x-axis and the ordinates drawn at the end
points of the interval, where areas lying above the x-axis are regarded as
positive and areas lying below the x-axis are regarded as negative. In the
present case, the areas represented by the two integrals are the same, because
of the periodicity of f(x) (see Fig. 2).

FIGURE 2

Hereafter, when we say that a function f(x) of period T is integrable, we
shall mean that it is integrable on an interval of length 7. It follows from
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the property just proved that f(x) is also integrable on any interval of finite
length.

2. Harmonics
The simplest periodic function, and the one of greatest importance for the
applications, is
y = Asin (wx + @),

where 4, w, and ¢ are constants. (This function is called a harmonic of
amplitude | A|, (angular) frequency o, and initial phase . The period of such
a harmonic is 7 = 2r/w, since for any x

Sy |

)

A sin [(JL + z—n)“)-}— qo] = A sin [(wx + @) + 2n] = A sin (wx + ).

The terms “amplitude,” “frequency,” and ““initial phase’ stem from the
following mechanical problem involving the simplest kind of oscillatory
motion, i.e., simple harmonic motion: Suppose that a point mass M, of mass
m, moves along a straight line under the action of a restoring force F which is
proportional to the distance of M from a fixed origin O and which is directed
towards O (see Fig. 3). Regarding s as positive if M lies to the right of O and

- 0 F

+
o s —

FrGuUre 3

N

negative if M lies to the left of O, i.e., assigning the usual positive direction to

the line, we find that F = — ks, where k& > 0 is a constant of proportionality.
Therefore
d?s

m -dﬁ = — kJ
or

ds

£ B¢ =

pr + w2s = 0,

where we have written w2 = k/m, so that w = V'k/m.

It is easily verified that the solution “of this differential equation is the
function s = A sin (wr + ¢), where 4 and ¢ are constants, which can be
calculated from a knowledge of the position and velocity of the point M at
the initial time ¢+ = 0. This function s is a harmonic, and in fact is a periodic
function of time with period T = 2n/w. Thus, under the action of the
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restoring force F, the point M undergoes oscillatory motion. The amplitude
|A]| is the maximum deviation of the point M from O, and the quantity 1/T
i1s the number of oscillations in an interval containing 2= units of time
(e.g., seconds). This explains the term ““frequency”. The quantity ¢ is the
initial phase and characterizes the initial position of the point, since for
t = 0 we have 55 = sin o.

We now examine the appearance of the curve y = A sin (wx + ¢). We
assume that o > 0, since otherwise sin (— wx + ¢) is merely replaced by
—sin (wx — ¢). The simplest case is obtained when 4 = |, ® = 1, ¢ = 0;
this gives the familiar sine curve y = sin x [see Fig. 4(a)]. For 4 = 1,
o = 1, ¢ = /2, we obtain the cosine curve y = cos x, whose graph is the
same as that of y = sin x shifted to the left by an amount =/2.

(c)

(d)

FIGURE 4

Next, consider the harmonic y = sinwx, and set wx = z, thereby
obtaining y = sin x, an ordinary sine curve. Thus, the graph of y = sin wx
is obtained by deforming the graph of a sine curve: This deformation
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reduces to a uniform compression along the x-axis by a factor o if o > 1,
and to a uniform expansion along the x-axis by a factor /o if o < 1. Figure
4(b) shows the harmonic y = sin 3x, of period T = 27/3.

Now, consider the harmonic y = sin (wx + ¢), and set ox + ¢ = wz, s0
that x = z — ¢/w. We already know the graph of sin wz. Therefore, the
graph of y = sin (wx + ¢) is obtained by shifting the graph of y = sin wx
along the x-axis by the amount —¢/w. Figure 4(c) represents the harmonic

s ¥ig
y = sin (3,\ + 3)

with period 27/3 and initial phase /3.

Finally, the graph of the harmonic y = A4 sin (wx + ¢) is obtained from
that of the harmonic y = sin (wx + ¢) by multiplying all ordinates by the
number A. Figure 4(d) shows the harmonic

y = 2sin (3x + ;—r)

These results may be summarized as follows:

The graph of the harmonic y = A sin (ox + @) is obtained from the graph
of the familiar sine curve by uniform compression (or expansion) along
the coordinate axes plus a shift along the x-axis.

Using a well-known tormula from trigonometry, we write
A sin (wx + @) = ‘A(cos X sin @ + sin wx cos ¢).
Then, setting
a= Asineg, b = A cos o, (2.1)
we convince ourselves that every harmonic can be represented in the form

acos wx + b sin wx. (2.2)

—_——_

Conversely, every function?ithe,form(ZQ) jls a_harmonic. To prove this,

it is sufficient to solve (2.1) for 4 and B. The result is

s b b
A= +Va? + b2 sin =4 ___ 2 , cosog=2=_——22_,
PTATVa T p TTA  Va+ b
from which ¢ is easily found.
From now on, we shall write harmonics in the form (2.2). For example,
for the harmonic shown in Fig. 4(d), this form is

2 sin (3); + %) = 1/3 cos 3x + sin 3x
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It will also be convenient to explicitly introduce the period 7 in (2.2).
If we set 7 = 2/. then, since 7 = 2%, w, we have

and therefore, the harmonic with period T = 2/ can be written as

a cos n—[\ + bsin E[)i (2.3)

3. Trigonometric Polynomials and Series

Given the period 7 = 2/, consider the harmonics

R + b, sin X
/ A /

(k=1,2,...) (3.1)

T
ay cos

with frequencies w; = 7k// and periods T, = 2rn/w, = 2//k. Since
F=21 = kT

the number 7" = 2/ is simultaneously a period of all the harmonics (3.1), for
an integral multiple of a period is again a period (see Sec. 1). Therefore,
every sum of the form

/

Su(x) = A4 + Z (aL cos =2 kx + by sin m)’

where A is a constant, is a function of period 2/, since it is a sum of functions
of period 2/. (The addition of a constant obviously does not destroy
periodicity; in fact, a constant can be regarded as a function for which any
number 1s a period.) The function s,(x) is called a trigonometric polynomial
of order n (and period 2/).

Even though it is a sum of various harmonics, a trigonometric poly-
nomial in general represents a function of a much more complicated nature
than a simple harmonic. By suitably choosing the constants A, ay, by,
a,, by, ... we can form functions y = s,(x) with graphs quite unlike the
smooth and symmetric graph of a simple harmonic. For example, Fig. 5
shows the trigonometric polynomial

y = sin x + 4 sin 2x + % sin 3x.

The infinite trigonometric series

< mkx . mkx
A+ g](ak Cos —1— + b/\ sin T)
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(if 1t converges) also represents a function of period 2/. The nature of func-
tions which are sums of such infinite trigonometric series is even more
diverse. Thus, the following question arises naturally: Can anv given

6? 2T 4
| \\

FIGURE §

function of period 7 = 2/ be represented as the sum of a trigonometric
series? We shall see later that such a representation is in fact possible for a
very wide class of functions.

For the time being, suppose that f{x) belongs to this class. This means
that f(x) can be expanded as a sum of harmonics, 1.e., as a sum of functions
with a very simple structure. The graph of the function y = f(x) is obtained
as a ““superposition’ of the graphs of these harmonics. Thus, to give a
mechanical interpretation, we can represent a complicated oscillatory motion
f(x) as a sum of individual oscillations which are particularly simple. How-
ever, one must not imagine that trigonometric series are applicable only to
oscillation phenomena. This is far from being the case. In fact, the’
concept of a trigonometric series is also very useful in studying many
phenomena of a quite different nature.

If

=/ Tk x)
f(x) = Z (ak cos &% 4 by sin —— ] ) 3.2)
then, setting =x// = t or x = t//x, we find that

(1) =f(ﬂ) A+ Z(a,, cos kt + by sin k1), (3.3)
k=1

where the harmonics in this series all have period 2. This means that if a

function f(x) of period 2/ has the expansion (3.2), then the function ¢(r) =

f(tl/=) is of period 27 and has the expansion (3.3). Obviously, the converse

is also true, i.e., if a function ¢(f) of period 2w has the expansion (3.3), then

the function f(x) = @(wx/l) is of period 2/ and has the expansion (3.2).
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Thus, it is enough to know how to solve the problem of expansion in trigono-
metric series for functions of the *“‘standard” period 2x. Moreover, in this
case, the series has a simpler appearance. Therefore, we shall develop the
theory for series of the form (3.3), and only the final results will be converted
to the ““language” of the general series (3.2).

4. A More Precise Terminology. Integrability. Series of Functions

We now introduce a more precise terminology and recall some facts from
differential and integral calculus. When we say that f(x) is integrable on the
interval [a, b], we mean that the integral

j%ﬂﬁ (.1)

(which may be improper) exists in the elementary sense. Thus, our inte-
grable functions f(x) will always be either continuous or have a finite number
of points of discontinuity in the interval [a, b], at which the function can be
either bounded or unbounded.

In courses on integral calculus, it is proved that if a function has a finite
number of discontinuities, then if the integral

[ 17000 dx

ta

exists, so does the integral (4.1). (The converse is not always true.) In
this case, the function f(x) is said to be absolutely integrable. 1f f(x) is
absolutely integrable and ¢(x) is a bounded integrable function, then the
product f(x)o(x) is absolutely integrable. The following rule for integration
by parts holds:

Let f(x) and (x) be continuous. on [a, b], but perhaps non-differentiable at
_a finite number of points. Then, if f'(x) and o'(x) are absolutely inte-
grable,? we have

~b

[ oo ax = [ srio]

a

b b
-~ ‘ S(x)p(x) dx. (4.2)

Another familiar result 1s the fact that if the functions f,(x), f>(x). .. ., fu(X)
are integrable on [a, ], then their sum is also integrable, and

{Wiﬂm%u:iﬁmﬂw. (4.3)
ta Lz

. k=1"4

2 Instead of absolute integrability of both derivatives, we can weaken this requirement
to absolute integrability of just one of the derivatives. However, the stronger form of the
requirement is sufficient for what follows.



