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INTRODUCTION

This book contains an informal but systematic account of the logical and
algebraic foundations of mathematical analysis written at a fairly elemen-
tary level. The book is entirely self-contained but will be most useful to
students who have already taken, or are in the process of taking, an
introductory course in basic mathematical analysis. Such a course nec-
essarily concentrates on the notion of convergence and the rudiments of the
differential and integral calculus. Little time is therefore left for con-
sideration of the foundations of the subject. But the foundational issues are
too important to be neglected or to be left entirely in the hands of the
algebraists (whose views on what is important do not always coincide with
those of an analyst). In particular, a good grasp of the material treated in
this book is essential as a basis for more advanced work in analysis. The
fact remains, however, that a quart will not fit into a pint bottle and only so
many topics can be covered in a given number of lectures. In my own
lecture course I deal with this problem to some extent by encouraging
students to read the more elementary material covered in this book for
themselves, monitoring their progress through problem classes. This seems
to work quite well and it is for this reason that substantial sections of the
text have been written with a view to facilitating ‘self-study’, even though
this leads to a certain amount of repetition and of discussion of topics which
some readers will find very elementary. Readers are invited to skip rather
briskly through these sections if at all possible.
This is the first of two books with the common title

Foundations of Analysis: A Straightforward Introduction.
The current book, subtitled

Logic, Sets and Numbers,
was conceived as an introduction to the second book, subtitled

Topological Ideas
and as a companion to the author’s previous book

Mathematical Analysis: A Straightforward Approach.
Although Logic, Sets and Numbers may profitably be read independently of
these other books, I hope that some teachers will wish to use the three books
together as a basis for a sequence of lectures to be given in the first two years ofa
mathematics degree.
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X Introduction

Certain sections of the book have been marked with a f and printed in
smaller type. This indicates material which, although relevant and interest-
ing, I regard as unsuitable for inclusion in a first year analysis course,
usually because it is too advanced, or else because it is better taught as part
of an algebra course. This fact is reflected in the style of exposition adopted
in these sections, much more being left to the reader than in the body of the
text. Occasionally, on such topics as Zermelo—Fraenkel set theory or
transfinite arithmetic, only a brief indication of the general ideas is attem-
pted. Those reading the book independently of a taught course would be
wise to leave those sections marked with a f for a second reading.

A substantial number of exercises have been provided and these should
be regarded as an integral part of the text. The exercises are not intended as
intelligence tests. By and large they require little in the way of ingenuity.
and, in any case, a large number of hints are given. The purpose of the
exercises is to give the reader an opportunity to test his or her under-
standing of the text. Mathematical concepts are sometimes considerably
more subtle than they seem at first sight and it is often not until one has
failed to solve some straightforward exercises based on a particular concept
that one begins to realise that this is the case.

Finally, I would like to thank Mimi Bell for typing the manuscript for me
so carefully and patiently.

June 1980 K. G. BINMORE



1.1
L5
1.7
1.8

2.1
2.4
2.6
2.7
2.10
212
213

3.1
34
3.6
3.10
3.13

4
4.1
44
47
413+

5
5.1

CONTENTS

Introduction

Proofs

What is a proof?
Mathematical proof
Obvious

The interpretation of a mathematical theory

Logic (I)
Statements
Equivalence
Not

And, or
Implies

If and only if
Proof schema

Logic (II)

Predicates and sets

Quantifiers

Manipulations with quantifiers
More on contradictories
Examples and counter-examples

Set operations

Subsets

Complements

Unions and intersections
Zermelo—Fraenkel set theory

Relations
Ordered pairs

page ix

N N W = =

N = O 0000 33

[y

—_
H

14
16
17
18
19

21
21
22
23
25

28
28

+This material is more advanced than the main body of the text and is perhaps best
omitted at a first reading.

v



vi

52
5.3
5.5
5.8

6.1
6.2
6.5
6.6t
6.8+

7.1
7.2
1.3
7.6
7.10
7.13

8.1
8.2
8.4
8.7
8.10
8.13
8.14

9.1
9.2
9.3
9.4
9.7
9.11%
9.13+
9.16
9.19
9.21%

10%
10.1%
10.2+

Contents

Cartesian products
Relations
Equivalence relations
Orderings

Functions

Formal definition
Terminology

Composition

Binary operations and groups
Axiom of choice

Real numbers (I)
Introduction

Real numbers and length
Axioms of arithmetic

Some theorems in arithmetic
Axioms of order

Intervals

Principle of induction
Ordered fields

The natural numbers
Principle of induction
Inductive definitions
Properties of N
Integers

Rational numbers

Real numbers (II)
Introduction

The method of exhaustion
Bounds

Continuum axiom
Supremum and infimum
Dedekind sections

Powers

Infinity

Denseness of the rationals
Uniqueness of the real numbers

Construction of the number systems

Models
Basic assumptions

28
29
30
31

33
33
35
39
40
41

44
44
44
46
49
50
51

54
54
54
56
56
59
60
60

63
63
63
66
66
67
70
71
73
74
75

78
78
79



10.3+
10.41

10.6+

10.10%
10.11%
10.13%
10.16%
10.17%
10.19%
10.20%
10.221
10.23+

11+
11.1%
11.2+
11.3+
11.5¢
11.8+
11.9%
11.12%
11.13+
11.16t
11.20%
11.21%

12
12.1
12.2
12.4
12.14
12.17¢
12.20+
12.23+
12.24%
12.25%
12.261

Contents

Natural numbers

Peano postulates

Arithmetic and order
Measuring lengths

Positive rational numbers
Positive real numbers

Negative numbers and displacements
Real numbers

Linear and quadratic equations
Complex numbers

Cubic equations

Polynomials

Number theory
Introduction

Integers

Division algorithm

Factors

Euclid’s algorithm

Primes

Prime factorisation theorem
Rational numbers

Ruler and compass constructions
Radicals

Transcendental numbers

Cardinality

Counting

Cardinality

Countable sets
Uncountable sets
Decimal expansions
Transcendental numbers
Counting the uncountable
Ordinal numbers
Cardinals

Continuum hypothesis

Notation
Index

98

100
100
101
101
101
102
102
104
107
108

109
109
110
112
118
119
121
122
124
126
127

128
129



1 PROOFS

1.1 What is a proof?

Everyone knows that theorems require proofs. What is not so
widely understood is the nature of the difference between a mathematical
proof and the kind of argument considered adequate in everyday life. This
difference, however, is an important one. There would be no point, for
example, in trying to construct a mathematical theory using the sort of
arguments employed by politicians when seeking votes.

The idea of a formal mathematical proof is explained in §1.5. But it is
instructive to look first at some plausible types of argument which we shall
not accept as proofs.

1.2 Example We are asked to decide whether or not the expression
n3—4an*+5n—1

is positive for n=1, 2, 3,.... One approach would be to construct a table of
the expression for as many values of n as patience allows.

n n*—4n?*+5n—1

1 1
2 1
3 5
4 19
5 49
6 101

From the table it seems as though n®—4n?+5n—1 simply keeps on
getting larger and larger. In particular, it seems reasonable to guess that
n3—4n*+5n—1 is always positive when n=1, 2, 3,.... But few people
would maintain that the argument given here is a proof of this assertion.

1.3 Example In this example the situation is not quite so clear. We

1



2 Proofs

are asked to decide whether or not the expression
x*—3x+2

is negative for all values of x satisfying 1<x<2. Since x2—3x4+2=
(x—=1)(x—2), it is easy to draw a graph of the parabola y=x2—3x+2.

X

y=x2—3x+2

~—"

From the diagram it seems quite ‘obvious’ that y=x%—3x+2 is negative
when 1<x<2 and positive or zero otherwise. But let us examine this
question more closely.

How do we know that the graph we have drawn really does represent the
behaviour of the equation y=x?—3x+2? School children learn to draw
graphs by plotting lots of points and then joining them up. But this
amounts to guessing that the graph behaves as we think it should in the
gaps between the plotted points. One might counter this criticism by
observing that we know from our experience that the use of the graph
always leads to correct answers. This would be a clinching argument in the
field of physics. But, in mathematics, we are not supposed to accept
arguments which are based on our experience of the world.

One might, of course, use a mathematical argument to deduce the
properties of the graph, but then the graph would be unnecessary anyway.

We are forced (reluctantly) to the conclusion that an appeal to the graph
of y=x?—3x+2 cannot be regarded as a proof that x> —3x+2 is negative
for 1<x<2.

14 Example In the diagram below, the point O has been chosen as
the point of intersection of the bisector of the angle 4 and the perpendicular
bisector of the side BC. The dotted lines are then constructed as shown.
With the help of this diagram we shall show by the methods of elemen-
tary geometry that AB=AC — ie. all triangles are isosceles.
The triangles AEO and AFO are congruent and hence

AE=AF 1)
OE=OF. @)
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Also the triangles OBD and OCD are congruent. Thus

OB=0C. (3)
From (2), (3) and Pythagoras’ theorem it follows that
EB=FC. 4)
Finally, from (1) and (4) we obtain that
AB=AC.

The explanation of this well-known fallacy is that the point O should lie
outside the triangle ABC. In other words, the diagram does not represent
the way things ‘really are’, and we have been led into error by depending on
it. The objection that the diagram was not ‘properly drawn’ carries no
weight since it is clearly not acceptable that a mathematical proof should
depend on accurate measurement with ruler and compasses. This means, in
particular, that the classical arguments of Euclidean geometry are not
acceptable as proofs in modern mathematics because of their dependence
on diagrams.

15 Mathematical proof

So far we have seen a number of arguments which are not proofs.
What then is a proof?

Ideally, the description of a mathematical theory should begin with a list
of symbols. This should be a finite list and contain all of the symbols which
will be used in the theory. For even the simplest theory quite a few symbols
will be needed. One will need symbols for variables — e.g. x, y and z. One
will need symbols for the logical connectives (and, or, implies, etc.). The
highly useful symbols ) and ( should not be forgotten and for a minimum of
mathematical content one should perhaps include the symbols + and =.

Having listed the symbols of the theory (and those mentioned above are
Just some of the symbols which might appear in the list), it is then necessary



4 Proofs

to specify how these symbols may be put together to make up formulae and
then how such formulae may be put together to make up sentences.

Next, it is necessary to specify which of these sentences are to be called
axioms.

Finally, we must specify rules of deduction which will tell us under what
circumstances a sentence may be deduced from other sentences.

A mathematical proof of a theorem S is then defined to be a list of
sentences, the last of which is S. Each sentence in the list must be either an
axiom or else a deduction from sentences appearing earlier in the list.

What is more, we demand that all of the processes described above be
specified so clearly and unambiguously that even that arch-idiot of in-
tellectuals, the computer, could be programmed to check that a given list of
sentences is a proof.

Of course, the ideas set out above only represent an ideal. It is one thing
to set a computer to checking a list of several million sentences and quite
another to prepare such a list for oneself. Apart from any other considera-
tion, it would be extremely boring.

1.6 Example The list of sentences given below shows what a formal
proof looks like. It is a proof taken from S. C. Kleene’s Introduction to
Metamathematics (North-Holland, 1967) of the proposition ‘a=a’. This does
not happen to be one of his axioms and therefore needs to be proved as a
theorem.

(1) a=b=(a=c=b=c)

(2) 0=0=(0=0=0=0)

() {a=b=(a=c=b=¢)} = {[0=0=(0=0=0=0)] =

[a=b=(a=c=b=0)]}

4) [0=0=(0=0=0=0)]=[a=b=(a=c=b=c)]

(5 [0=0=(0=0=0=0)]=Vc[a=b=(a=c=b=c)]

(6) [0=0=@(0=0=oO=0)]=Vch[a=b=(a=c=»b=c)]

(7) [0=0=>(0=0=>0=0)]=VaVch[a=b:(a=c=b=c)]

(8) YavbVcla=b=(a=c=b=c)]

) VaVch[a=b=>(a=c=>b=c)]:Vch[a+0=b=»(a+0=c:b=c)]
(10) ¥bVc[a+0=b=(a+0=c=b=c)]

(11) Vch[a+0=b=(a+0=c=b=c)]:Vc[a+0=a=»(a+0=c=-a=c)]
(12) Vc[a+0=a=(a+0=c=a=c)]
(13) Vc[a+0=a=>(a+0=c=>a=c)]=[a+0=a=(a+0=a=a=a)]
(14) a+0=a=(a+0=a=a=q)
(15) a+0=a
(16) a+0=a=a=a
(17) a=a.
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The above example is given only to illustrate that the formal proofs of
even the most trivial propositions are likely to be long and tedious. What is
more, although a computer may find formal proofs entirely satisfactory, the
human mind needs to have some explanation of the ‘idea’ behind the proof
before it can readily assimilate the details of a formal argument.

What mathematicians do in practice therefore is to write out ‘informal
proofs’ which can ‘in principle’ be reduced to lists of sentences suitable for
computer ingestion. This may not be entirely satisfactory, but neither is the
dreadfully boring alternative. In this book our approach will be even less
satisfactory from the point of view of those seeking ‘absolute certainty’,
since we shall not even describe in detail the manner in which mathematical
assertions can be coded as formal lists of symbols. We shall, however, make
a serious effort to remain true to the spirit of a mathematical proof, if not to
the letter.

1.7 Obvious

The word ‘obvious’ is much abused. We shall follow the famous
English mathematician G. H. Hardy in interpreting the sentence ‘P is
obvious’ as meaning ‘It is easy to think of a proof of P’. This usage accords
with what was said in the section above.
A much more common usage is to interpret ‘P is obvious’ as meaning ‘I
cannot think of a proof of P but I am sure it must be true’. This usage
should be avoided.

1.8 The interpretation of a mathematical theory

Observe that in our account of a formal mathematical theory the
content has been entirely divorced from ‘reality’. This is so that we can be
sure, in so far as it is possible to be sure of anything, that the theorems are
correct.

But mathematical theories are not made up at random. Often they arise
as an attempt to abstract the essential features of a-‘real world’ situation.
One sets up a system of axioms each of which corresponds to a well-
established ‘real world” fact. The theorems which arise may then be in-
terpreted as predictions about what happens in the ‘real world’.

But this viewpoint can be reversed. In many cases it turns out to be very
useful when seeking a proof of a theorem to think about the real world
situation of which the mathematical theory is an abstraction. This can often
suggest an approach which might not otherwise come to mind. It is
sometimes useful, for example, to examine theorems in complex analysis in
terms of their electrostatic interpretation. In optimisation theory, insight
can sometimes be obtained by viewing the theorems in terms of their game-
theoretic or economic interpretation.
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For our purposes, however, it is the interpretation in terms of geometry
that we shall find most useful. One interprets the real numbers as points
along an ideal ruler with which we measure distances in Euclidean geo-
metry. This interpretation allows us to draw pictures illustrating prop-
ositions in analysis. These pictures then often suggest how the theorem in
question may be proved. But it must be emphasised again that these
pictures cannot serve as a substitute for a proof, since our theorems should
be true regardless of whether our geometric interpretation is a good one or
a bad one.



2 LOGIC (I)

2.1 Statements

The purpose of logic is to label sentences either with the symbol T
(for true) or with the symbol F (for false). A sentence which can be labelled
in one of these two ways will'be called a statement.

222 Example The following are both statements.

(i) Trafalgar Square is in London.
(i) 24+2=5.

The first is true and the second is false.

2.3 Exercise

Which of the following sentences are statements?

(i) More than 10000 000 people live in New York City.
(ii) Is Paris bigger than Rome?
(iii) Go jump in a lake!
(iv) The moon is made of green cheese.

24 Equivalence

From the point of view of logic, the only thing which really
matters about a statement is its truth value (ie. T or F). Thus two
statements P and Q are logically equivalent and we write

P<=Q

if they have the same truth value. If P and Q are both statements, then so is
P<Q and its truth value may be determined with the aid of the following truth
table.
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In this table the right-hand column contains the truth value of ‘P<=Q’ for
all possible combinations of the truth values of the statements P and Q.

2.5 Example Let P denote the statement ‘Katmandu is larger than
Timbuktu’ and Q denote the statement ‘Timbuktu is smaller than
Katmandu’. Then P and Q are logically equivalent even though it would be
quite difficult in practice to determine what the truth values of P and Q are.

2.6 Not

If P is a statement, the truth value of the statement (not P) may be
determined from the following truth table.

P not P

T F

F T
2.7 And, or

If P and Q are statements, the statements ‘P and Q' and ‘P or Q’
are defined by the following truth tables.

P @ Pandg P Q Porg
T T T T T T
T F F T F T
F T F F T i
F F F F F F

The English language is somewhat ambiguous in its use of the word ‘or’.
Sometimes it is used in the sense of ‘either/or’ and sometimes in the sense of
‘and/or’. In mathematics it is always used in the second of these two senses.

2.8 Example Let P be the statement ‘The Louvre is in Paris’ and Q
the statement ‘The Kremlin is in New York City’. Then ‘P and Q’ is false
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but ‘P and (not Q) is true. On the other hand, ‘P or Q’ and ‘P or (not Q)
are both true.

29

Exercise

(1) If P is a statement, (not P) is its contradictory. Show by means of truth

2

()

tables that ‘P or (not P) is a tautology (i.e. that it is true regardless of
the truth or falsehood of P). Similarly, show that ‘P and (not P) is a
contradiction (i.e. that it is false regardless of the truth or falsehood of
P).

The following pairs of siatements are equivalent regardless of the truth
or falsehood of the statements P, Q and R. Show this by means of truth
tables in the case of the odd numbered pairs.

(i) P, not (not P)

(ii) P or (Q or R), (P or Q) or R

(ili) P and (Q and R), (P and Q) and R

(iv) P and (Q or R), (P and Q) or (P and R)
(v) P or (Q and R), (P or Q) and (P or R)
(vi) not (P and Q), (not P) or (not Q)
(vii) not (P or Q), (not P) and (not Q).

[Hint: For example, the column headings for the truth table in {iii)
should read

P|Q|R|Pand Q| (Pand Q)and R{ Q and R | P and (Q and R)

There should be eight rows in the table to account for all the possible
truth value combinations of P, Q and R.]
From 2(ii) above it follows that it does not matter how brackets are
inserted in the expressions ‘P or (Q or R) and ‘(P or Q) or R’ and so we
might just as well write ‘P or Q or R’. Equally we may write ‘P and Q
and R’ instead of the statements of 2(iii).

Show by truth tables that the statements ‘(P and Q) or R’ and ‘P and
(Q or R) need not be equivalent.
Deduce from 2(iv) that the statements ‘P and (Q; or Q, or @), ‘(P and
Q,) or (P and Q,) or (P and Q3) are equivalent. Write down similar
results which arise from 2(v), 2(vi) and 2(vii). What happens with four or
more Qs?

2.10 Implies

Suppose that P and Q are two statements. Then the statement

‘P implies Q’ (or ‘P=10’) is defined by the following truth table.



