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Preface

This volume consists of five different papers on Higher Algebraic K-theory. These
are based on several series of lectures delivered during the “First seminar on
Algebraic K-theory” at the “Universidad Nacional Autonoma de México” in
1985. Their purpose is to introduce students to this important field by explaining
the basic concepts, surveying the main ideas and results, and describing some of
the most recent developments.

Each series of lectures has its own perspective (algebra, algebraic geometry
or number theory) and is somewhat independent of the other ones. For instance,
a basic notion like the cohomology of groups is presented several times. On the
other hand, their combination should give a fairly comprehensive overview of
the field. Occasionally, results explained in one series of lectures are used (and
then explicitly referred to) in another one.

Proofs are not always given, but we hope that the reader will find this volume
enjoyable and useful as an introduction to the vast literature.

I would like to thank the Universidad Nacional Autonoma de México and
the director of the Faculty of Sciences, Dr. Félix Recillas, for their support and
encouragement without which this meeting would not have taken place. Also all
my thanks go to Carolina Bello and Ingeborg Jebram for typing this manuscript.

Emilio Lluis-Puebla.
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Introduction to Algebraic K-Theory

Emailio Lluis-Puebla

Departamento de Matematicas, Facultad de Ciencias, Universidad Nacional Auténoma
de México

These notes contain a series of ten lectures delivered at the “Universidad Na-
cional Auténoma de México” on its “Primer Seminario de K-Teoria Algebraica”.
They provide an introduction to the subject as well as to the other expositions
in this volume.

In Chapter I we review some important concepts from Homological Algebra
starting from the elementary concepts and assuming a knowledge of the reader
of Group and Ring Theory only. In Chapter II we present the (Co)Homology of
Groups in a very elementary way underlying the relevant results used to establish
its relation with Algebraic K-Theory.

In Chapter III we define the basic concepts of (classical) Algebraic K-Theory
and establish its relation with the Homology of Groups.

Contents
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1.1 Modules.
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1.3 Torsion and Extension Functors.
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II1. Classical Algebraic K-Theory.
III.1 KoA
1.2 K, A
III.3 Ko4
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I. Some Homological Algebra
I.1. Modules

Let A be a ring (not necessarily commutative) with 1 # 0.

Definition 1.1. A left A-module or module over A is a pair (M, u) where M is
an additive abelian group and p: Ax M — M is a function written (o, z) — az
such that the following axioms are verified:

i) a(z+y) =az+ay
i) (e +B)z = az+ Pz
i) (af)z = a(fz)
iv) lze ==z (a,B € Az, y € M).

p is called a scalar multiplication of M and the elements of A are called scalars.

For example, take A = Z, hence any abelian group can be considered as a
Z-module. Also if A is a field k, a k-module is just a vector space over k. So the
concept of A-module is a proper generalization of the concepts of abelian group
and vector space.

Similarly we can define a right A-module using the scalar multiplication (on
the right) u : M x A — M and writing appropriately the axioms. If A is com-
mutative then every left A-module is a right A-module and vice versa.

This objects (the A-modules) are not so special in the sense that (in categor-
ical language) every small abelian category can be considered inside a module
category over and adequate ring.

How do we relate two A-modules? We relate two sets using functions; we
relate two groups using functions that preserve the group structure. So we will
relate two modules by means of functions that preserve the A-module structure
called homomorphisms.

Definition 1.2. Let M and N be two A-modules. A function f : M — N is
called a A-module homomorphismif f(z+y) = f(z)+ f(y) and f(az) = a(f(z))
foralla € A; z,y e M.

In Module Theory we also talk about the kernel and the image of a homo-
morphism f: M — N defined as follows:

ker f = {z € M|f(z) = 0}
im f = {f(z) e Nlz e M} .

Also, we define N to be a submodule of a A-module M if N is a subgroup of
M and for all « € A, aN = {az|]z € N} C N.

The composition of homomorphisms turns out to be a homomorphism; the
image under a homomorphism of a submodule is a submodule; the inverse image
of a submodule under a homomorphism is a submodule; and, in particular the
kernel and the image of a homomorphism are submodules.
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We also have the concept of quotient module whose elements are the distinct
cosets of a submodule in a module. In particular we define the cokernel of a
module homomorphism f : M — N as the quotient module: coker f = N/im f.

We will relate several A-modules by means of a collection of homomorphisms
as follows:

Definition 1.3. We will say that a sequence of A-modules

. i_llf'—-iM,'L*MH.lﬁi})...
is semieract in M; if im f;_; C ker f;. If it is semiexact in each module we will
call it a semiezact sequence.

This definition is equivalent to say that the composition fo f;_; is the trivial
homomorphism denoted by 0, 1.e. f;o fi_1 = 0. We will say that the sequence of
(1.3) is ezactin M; if it is semiexact and im f;_1 D ker f;, i.e. if im fi_; = ker f;.
If it is exact in each M; it is called an ezact sequence. Of course, every exact
sequence is a semiexact sequence but the converse is not true.

An exact sequence of the form

0— M-LMLm" —0

where 0 denotes the trivial module is called a short ezact sequence. It is immedi-
ate that f is an injective homomorphism called monomorphism and g is an onto
homomorphism called epimorphism. The following notation is used to represent
a short exact sequence:

ML MM

It is just a mask of a submodule and a quotient module of a A-module M in the
exact sequence
N»—» M -»M/N .

There is a category Mod, whose objects are the A-modules and whose mor-
phisms are the homomorphisms of A-modules. Mod, is studied by analyzing the
behavior of certain functors defined on it. The most important are hom and ®
and certain functors derived from them.

Let hom (M, N) denote the set of all homomorphisms from the A-module
M to the A-module N.If A is not commutative then hom, (M, N) is always an
abelian group and if A is commutative hom4(M, N) is a A-module.

The following theorem can be considered as the beginning of Homological
Algebra.

Theorem 1.4. a) IfN’i»NLN” 1s an ezact sequence of A-modules then there
s an ezact induced sequence

0 — homy (M, N')LhomA(M,N)w—ivhomA(M, N") .
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b) If M ZsM5M" is an ezact sequence of A-modules then there is an ezact
induced sequence

homa(M’, N)&~homy(M, N)& homa(M", N) — 0 .

We can expect that the case when 1. is onto be of interest. It really is. The
class of A-modules that satisfy . to be onto whenever ¥’ is onto are called
projective A-modules. By imitating the case of k-modules (£ a field) i.e. vector
spaces, we say that a A-module is free if it has a basis. It turns out that every
free module is projective and that every A-module is a quotient of a free module.
Dually we can define the concept of an injective A-module as the one who makes
»* an epimorphism whenever ¢ is a monomorphism. It turns out that every
module is isomorphic to a submodule of an injective module, being this a very
important fact.

For M a right A-module and N a left A-module we define an abelian group
M ®4 N, called the tensor product of M and N over A, as the free abelian group
generated by the symbols z ® y, z € M, y € N modulo the subgroup generated

by the expressions

(z+2)Qy—(zQy+2' ®y)
2@ +y)-(20y+z0Y)
TA®Y— Ay AeA z,z' €eM; yy €N .

If Ais commutative M ®4 N is a A-module.
We have a theorem similar to 1.4:

Theorem 1.5. a) If N’LNf»N” s an ezact sequence of A-modules then there
1s an exact induced sequence

M@ N"™ME Mo, N'EY @aAN"—0 .

b) If M-S MEM" is an ezact sequence of A-modules then there is an ezacl
induced sequence

M4 NEEM s N2 M 94 N — 0 .

Observe that (homy—,_) is a functor of two variables from the category of
A-modules Mod4, to the category of abelian groups Ab. It is covariant on the
second variable and contravariant on the first one.

Also _®, — is a functor of two variables from Mod, to Ab and is covariant
on both variables.

One extremely important relation that ties the functors hom and ® is given
by the following isomorphism

homy: (M ®, N,U) = hom, (M, homy (N, U))
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where M and N are A-modules (right and left respectively) and N and U are
A’-modules (both right).
Exercise 1.6. Prove that if
0O—-M ->M-—-M'"—-0
is a short exact sequence that splits then so are
0->M®  N—>M®N—->M @ N-—0

and
0 — homy(M",N) — homy (M, N) — homy(M',N) — 0 .

I.2. Resolutions and Homology

Let {Cy }nez be a family of A-modules and {8, : C;;, — Cn_1}nez a family of
A-module homomorphisms such that 8, 0 9,41 = 0. A chain complez or chain
over A is the pair C = {C,,, 8,) and we write it as follows:

On-1

n

Ont2 Ant1 O,
RN e B BN o B

This means that a chain is just a decreasing semiexact sequence of A-modules.
A morphism ¢ : C — D between two chains is a family of A-module homomor-
phisms {¢,, : C, — D, } such that the following diagram commutes:

8» 8n—l

C: e b Cn = n—1 ===¥ Cn—2 —_—
l’P l'Pn lvn-l lpn—z
D: -« — D, i'n" D, q;‘—’_l D, , —

The main concept in Homological Algebra is the following: Let C be a chain
complex. Then the n-th homology module of C, denoted H,(C), is the quotient
module H,(C) = ker 0, /im O 41.

H,(C) measures the inexactness of the chain C. For example, if C is exact
then im 0,41 = kerd,, hence H,(C) = 0. We have associated to a chain C a
graded module H.(C) = {H,(C)} which we call the homology of the chain C.
A chain morphism induces a well defined morphism (of degree 0) ¢, : H,(C) —
H.(D) between graded modules. Then H.(-) is a covariant functor from the
category of chain complexes to the category of graded A-modules.

If we consider semiexact families {C"},cz with increasing index we obtain
dual concepts; we have cochains, cochain morphisms, cohomology of a cochain,
etc.

Given two chain complexes C,D and two morphisms between them
¢,¢' : C — D when do they induce the same homomorphism between H.(C)
and H,(D)?
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To answer this question we introduce the concept of homotopy.
Definition 2.1. Let C = {C,,0,} and D = {D,, 0} be two chain complexes

and ¢, ¢’ : C — D two chain morphisms. We will say that ¢ is homotopic to ¢’
if there exists a family of A-module homomorphisms

h={h,:Ch — Dpy1|n€Z}

such that 8}, 0hn +hn_100, = pn — ¢}, for all n € Z in the following diagram

] 3 An-
C: — Cn+l e Cn — Cn—l -
‘°'n+1ll¢n+1 "':/ p:‘u‘en“ﬂ-}/ "r-—lllvn—x
Di cve — Dugg —s Dy = Dp4q —
3! a! a'
n+1 n n—1

The family h = {h,} is called a chain homotopy and we will say that ¢ is
homotopic to ¢’'. In symbols

hip~¢' :C—D .
It is easy to check that ~ is an equivalence relation.
We will say that a chain morphism ¢ : C — D is a homotopy equivalence if
there is a chain morphism ¢’ : D — C such that ¢’ o p ~ 1¢ and po ¢’ ~ 1p.
In this case we will say that C and D are of the same homotopy type.

Theorem 2.2. If p ~ ¢’ : C — D then H.(¢) = H.(¢') : H.(C) — H.(D).

Proof. Let h : ¢ ~ ¢' be the homotopy. Let z € H,(C) be arbitrary, let z €
Z,(C) such that p(z) = z where p: Z,(C) — H,(C) is the projection. Then

¢n(2) = op(2) = Opy1h(2) + hn-10n(2) = 041 hn(2)
because 0,(z) = 0. Since 0, 1hn(2) € Bn(D),
(Ha(9)] (z) = [Hu ()] (2) -

Then Hp(p) = Hp(¢') for all n € Z, i.e. p(z) and ¢'(z) are homologous. 0

The converse of this theorem is not true.

If p=0:C — C is the trivial morphism and ¢’ = l¢ : C — C is the
identity morphism then a homotopy h : ¢ ~ ¢’ is called a contraction and
we have 0], 0hy, + hp_1 00, =1, n € Z. This implies by theorem 2.2 that
H,.(C) = 0 and that C is exact.
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Since the category of chain complexes is an abelian category we can form
short exact sequences of chain complexes displayed vertically as follows:

O — ¢ — D — E — 0

'
Pntl Pt
0 — Cn+l = n+1 =% En+l — 0
l3n+1 l8:.+1 l8x+1
Pn P'"
0o — G, D, - E, — 0

We have the following basic theorem:

Theorem 2.3. Let C >+ D —» E be a short exact sequence of chain complexes.
Then there is a homomorphism K, : Hy(E) — H,_1(C) for each n € Z such
that the following sequence s exact:

. — H,(C) — Hp(D) — H,(E)=>
L Hn_1(C) — Hp_1(D) — Hn_1(E)=20

Consider a positive exact chain complex of projective (free) A-modules P =
{P,,0,}, that is, such that H,(P) = 0 for n > 1 and let us assume it satisfies
that Ho(P) = M. We will write it as follows

Pi...—P22p, 2 PPt 0

and call it a projective (free) resolution of a A-module M.

Proposition 2.4. Let M be a A-module. Then there exists a projective resolution
of M.

Proof. Since every A-module is quotient of a free A-module there is a short exact
sequence
0 — Mot5Fo-M — 0

where F} is a free A-module. Since M is a quotient of a free A-module Fy, there
is a short exact sequence
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0 — My25F"5My — 0
where F} is free. By induction we obtain a short exact sequence
0— M2 F MM,y — 0

with F,, free. Define a sequence

a An
Fioiimos P 28 F,2NF  — ..

by
M ifn=-1 Mo fn=20

Fo,=¢F, ifn>0 Oph =1 pn_10m, ifn>0

0 ifn<-1 0 ifn<0
Since py, is a monomorphism and 7, is an epimorphism we have that

im 041 = im p, = kern, = ker 0, .

Then the sequence is exact and clearly Ho(F) = M. Since every free module is
projective we are done. O

Definition 2.5. A positive chain complex C = {C,,0,} is called acyclic if
H,(C) = 0 for n > 1 (ie. C is exact till Cy, Ho(C) may be different of 0).
Equivalently, the seqence

NN SN JF YR o W ¥ o T30 - ¥ (¢, QU |

is exact.

We can say, in view of 2.5, that a projective resolution of a A-module M is
a projective and acyclic chain P = {P,, 3,} such that Ho(P) = M.

The following lemma is considered as the fundamental lemma in Homological
Algebra. It tells us how we can construct chain morphisms and homotopies from
a projective chain into an acyclic chain.

Lemma 2.6. Let C = {Cpn,0,} and D = {D,,8,} be two chain complezes.
Let ¢ = {p; : Ci — D;}icn be a family of A-module homomorphisms such that
8l opi = pi—1 00; for i < n. Suppose that C; is projective for i > n and that
Hi(D) =0 fori > n. Then {p;}i<n extends to a chain morphism ¢ : C — D
and is unique up to homotopy.

Definition 2.7. Let P be a projective resolution of a A-module M
P:....—P,— P, 1—...— P, — Pb-M —0 .

A reduced projective resolution Ppr of M is a projective resolution of M in which
M has been suppressed, i.e.
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Py:...m—> Py — Py —>...— P25 P,— 0 .

Observe that we have not lost any information about P since M = coker 0;.
We consider the projective resolutions as a generalization of a A-module pre-
sentation, i.e. a generalization of the concepts of generators and relations. The
advantage of Py is that it consists only of projective A-modules.

Now, lets compare two projective resolutions of a A-module.

Theorem 2.8. Let P and P’ be projective resolutions of a A-module M. Then
there exist a chain morphism ¢ : P — P’ such that €', = €. Furthermore, ¢ is
unique up to homotopy and is a homotopy equivalence.

Proof. By lemma 2.6 applied to n = —1 we obtain a chain morphism ¢ : P —
P’ such that €'¢, = €. Furthermore, ¢ is unique up to homotopy (h-; = 0).
Similarly there exists ¢’ : P — P. By 2.6, the composition ¢’¢ : P — P and
the identity 1p : P — P are homotopic, i.e. ¢’p ~ 1p. Analogously p¢’ ~ 1p:.
Then ¢ is a homotopy equivalence. O

By the previous theorem we can say that two projective resolutions of a A-
module M are of the same homotopy type or that they are unique up to homotopy
equivalence.

Ezample 2.9. Consider Z-modules. The subgroups of a free group are free. Then,
any abelian group G admits a free resolution of length < 1:

0—>L1——*L0—>G—>0 .
For example, the Z-module Z /p, p a prime, admits the following resolution
0 —Z-5Z —Z/p—0

where p is multiplication by p.

1.3. Torsion and Extension Functors

One L.
Let Ppp ... — Pni»P,,_l s PR Pli»Po — 0 be a reduced projective

resolution of a right A-module M. Let N be a left A-module and consider the
tensor product Py ® 4 N which is the sequence

Py®sN:...— P, @, N=& n_1®AN3..__1§>1

— Py N2B o, N —0 .
Py ®4 N is a semiexact sequence since, for all n > 1,

(Bn-1®41)0(0n ®41)=(8n-100,)®41=0®4,1=0 .
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Then we can form
H.(Pym®a N) = {H, (Pym ®a N)}nzo

and have the following

Definition 3.1. For each n > 0, let Tor/ (M, N) denote H,(Py ®4 N) and call
it the n-th Tor group over A of M and N.

It is easy to see that Tor(M, N) is independent of the choice of the resolu-
tion. It only depends on n, M and N.

Let f : M — M"” and ¢ : N — N” be A-module homomorphisms. Let Py
and Py be reduced projective resolutions of M and M" respectively. By lemma
2.6 there is a chain morphism ¢ : Pyy — Ppg that extends f. Then ¢ ® g is a
chain morphism that induce

(p®9g)e: Ho (P ®4 N) — H. (Pyy @4 N")

le.
(p ® g)e : Tor2(M,N) — (M" ,N") .

It does not depend on ¢ but only on n, f and g. It is easy to prove the following

Proposition 3.2. Tor:}(_,_) 1s a covariant bifunctor from the category of A-
modules to the category of abelian groups.

We leave to the reader the proof of the following

Exercise . Let M’ »» M — M" be a short exact sequence of A-modules. Let
Pjy and Pyy. be reduced projective resolutions of M’ and M” respectively. Then
there is a reduced projective resolution Py of M such that

P]I‘,[l — PM - PA’!H
is an exact sequence of reduced projective resolutions that splits.

Let N’ »» N — N” be a short exact sequence of left A-modules and Py a
reduced projective resolution of a right A-module M. Then

Ppr ®4 N' >+ Py @4 N = Py @4 N”
is a short exact sequence of chains. By theorem 2.3 there is a homomorphism
kn : Hy (P @4 N") — Hy_1 (Py @4 N')
such that the following sequence is exact:

.—-——an(PM ®4 N’) — H, (PM 4 N) —*Hn(PM ®a N”)

Kn

—Hp 1 (P @A N')— Hnooy (P ®sN') — Hyoy (P ®aN") — ...



