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Preface

This text is intended to serve as an introduction to the geometry of the action
of discrete groups of Mobius transformations. The subject matter has now
been studied with changing points of emphasis for over a hundred years, the
most recent developments being connected with the theory of 3-manifolds:
see, for example, the papers of Poincaré¢ [77] and Thurston [101]. About
1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen
manuscript appeared. Sadly, the manuscript never appeared in print, and this
more modest text attempts to display at least some of the beautiful geo-
metrical ideas to be found in that manuscript, as well as some more recent
material.

The text has been written with the conviction that geometrical explana-
tions are essential for a full understanding of the material and that however
simple a matrix proof might seem, a geometric proof is almost certainly more
profitable. Further, wherever possible, results should be stated in a form that
is invariant under conjugation, thus making the intrinsic nature of the result
more apparent. Despite the fact that the subject matter is concerned with
groups of isometries of hyperbolic geometry, many publications rely on
Euclidean estimates and geometry. However, the recent developments have
again emphasized the need for hyperbolic geometry, and I have included a
comprehensive chapter on analytical (not axiomatic) hyperbolic geometry.
It is hoped that this chapter will serve as a ““dictionary” of formulae in plane
hyperbolic geometry and as such will be of interest and use in its own right.
Because of this, the format is different from the other chapters: here, there is
a larger number of shorter sections, each devoted to a particular result or
theme.

The text is intended to be of an introductory nature, and I make no
apologies for giving detailed (and sometimes elementary) proofs. Indeed,



viii Preface

many geometric errors occur in the literature and this is perhaps due, to
some extent, to an omission of the details. I have kept the prerequisites to a
minimum and, where it seems worthwhile, I have considered the same topic
{from different points of view. In part, this is in recognition of the fact that
readers do not always read the pages sequentially. The list of references is
not comprehensive and 1 have not always given the original source of a
result. For ease of reference, Theorems, Definitions, etc., are numbered
collectively in each section (2.4.1,2.4.2,...).

I owe much to many colleagues and friends with whom I have discussed
the subject matter over ‘the years. Special mention should be made, however,
of P. 1. Nicholis and P. Waterman who read an earlier version of the manu-
script, Professor F. W. Gehring who encouraged me to write the text and
conducted a series of seminars on parts of the manuscript, and the notes
and lectures of L. V. Ahlfors. The errors that remain are mine.

Cambridge, 1982 ALAN F. BEARDON



Contents

CHAPTER 1
Preliminary Material

1.1
1.2.
1.3.
L.4.
L5
1.6.

Notation
Inequalities

Algebra

Topology
Topological Groups
Analysis

CHAPTER 2
Matrices

2.1.
2.2
23.
24.
2.5.

Non-singular Matrices
The Metric Structure
Discrete Groups
Quaternions

Unitary Matrices

CHAPTER 3
Mébius Transformations on R”

3L
3.2
3.3
34
3.5
3.6.
3.7
3.8.

The M6bius Group on R"

Properties of M6bius Transformations

The Poincaré Extension

Self-mappings of the Unit Ball

The General Form of a Mébius Transformation
Distortion Theorems

The Topological Group Structure

Notes

[~ NV RS R S

1
14
16
17



CHAPTER 4

Complex Mébius Transformations
4.1. Representations by Quaternions
4.2. Representation by Matrices
4.3. Fixed Points and Conjugacy Classes
4.4. Cross Ratios
4.5. The Topology on .#
4.6. Notes

CHAPTER 5

Discontinuous Groups
5.1. The Elementary Groups
5.2. Groups with an Invariant Disc
5.3. Discontinuous Groups
5.4. Jgrgensen’s Inequality
5.5. Notes

CHAPTER 6

Riemann Surfaces
6.1. Riemann Surfaces
6.2. Quotient Spaces
6.3. Stable Sets

CHAPTER 7
Hyperbolic Geometry

Fundamental Concepts
7.1. The Hyperbolic Plane
7.2. The Hyperbolic Metric
7.3. The Geodesics
7.4. The Isometries
7.5. Convex Sets
7.6. Angles

Hyperbolic Trigonometry
7.7. Triangles
7.8. Notation
719. The Angle of Parallelism
7.10. Triangles with a Vertex at Infinity
7.11. Right-angled Triangles
7.12. The Sine and Cosine Rules
_7.13. The Area of a Triangle
7.14. The Inscribed Circle
Polygons
1.15. The Area of a Polygon
7.16. Convex Polygons .
7.17. Quadrilaterals
7.18. Pentagons
7.19. Hexagons

Contents

SARXERR

116
116
117
122

126

126
129
134
136
138
141

142
144
145
146
146
148
150
151

153
154
156
159
160



Contents

The Geometry of Geodesics

7.20.
7.21.
122,
7.23.
7.24.
1.25.
7.26.

The Distance of a Point from a Line

The Perpendicular Bisector of a Segment

The Common Orthogonal of Disjoint Geodesics
The Distance Between Disjoint Geodesics

The Angle Between Intersecting Geodesics

The Bisector of Two Geodesics

Transversals

Pencils of Geodesics

1.2%.
7.28.
7.29.
7.30.

The General Theory of Pencils
Parabolic Pencils

Elliptic Pencils

Hyperbolic Pencils

The Geometry of Isometries

130
7.32.
7.33.
1.34.
7.35.
1.36.
7.37.
7.38.
7.39.
7.40.

The Classification of Isometries
Parabolic Isometries

Elliptic Isometries

Hyperbolic Isometries

The Displacement Function

Isometric Circles

Canonical Regions

The Geometry of Products of Isometries
The Geometry of Commutators

Notes .

CHAPTER 8
Fuchsian Groups

8.1.
8.2,
8.3.
8.4.
8.5.
8.6.

Fuchsian Groups

Purely Hyperbolic Groups
Groups Without Elliptic Elements
Criteria for Discreteness

The Nielsen Region

Notes

CHAPTER 9
Fundamenta) Domains

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.
9.9.

Fundamental Domains

Locally Finite Fundamental Domains

Convex Fundamental Polygons

The Dirichiet Polygon

Generalized Dirichlet Polygons

Fundamental Domains for Coset Decompositions
Side-Pairing Transformations

Poincaré’s Theorem

Notes

xi

162
164
165
166
166
166
167

168
169
170
170

m
172
172
173
174
176
1”7
1
184
187

E8EREER



X1

CHAPTER 10

Finitely Generated Groups

10.1. Finite Sided Fundamental Polygons

10.2. Points of Approximation

10.3. Conjugacy Classes

10.4. The Signature of a Fuchsian Group

10.5. The Number of Sides of a Fundamental Polygon
10.6. Triangle Groups

10.7. Notes

CHAPTER 11
Universal Constraints on Fuchsian Groups

11.1. Uniformity of Discreteness

11.2.  Universal Inequalities for Cycles of Vertices
11.3. Hecke Groups

11.4. Trace Inequalities

11.5. Three Elliptic Elements of Order Two

11.6. Universal Bounds on the Displacement Function
11.7. Canonical Regions and Quotient Surfaces

11.8. Notes

References

Index

Contents

253
253
258
263
268
274
276
286

287
287
288
293
295
301
308
324
327

329

335



CHAPTER 1
Preliminary Material

§1.1. Notation

We use the following notation. First, Z, @, R and C denote the integers, the
rationals, the real and complex numbers respectively: H denotes the set of
quaternions (Section 2:4).

As usual, R" denotes Euclidean n-space, a typical point in this being
x = (xy,...,x,) with )

Axl = (3 + -5 F xB)V2,

Note that if y > 0, then y''? denotes the positive square root of y: The
standard “asis of R" is e,,..., e, where, for example e, = (1,0,...,0).
Certain subsets of R" warrant spemal mention, namely

= {xeR" |x| < 1},

= {xeR" x, > 0},
and

= {xeR": |x| =1}

In the case of C (identified with R?) we shall use A and dA for the unit
disc and unit circle respectii(ely

The notation x - x? (for example) denotes the function mapping x to x>
the domain will be clear from the context. Functions (maps or transforma-
tions) act on the lejt: for brevity, the image f(x) is often written as Jx (omitting
brackets). The composition of functions is written as fg: this is the map

X f(g(x)).
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Two sets A and B meet (or A meets B) if A N B ¥ . Finally, a property
P(x) holds for almost all n (or all sufficiently large ») i it fails to hold for only
a fimite set of n.

§1.2. Inequalities

All the inequalities that we need are derivable from Jensen's inequality: for a
proof of this, see [90], Chapter 3.

Jensen’s Inequality. Let u be a positive measure on a set X with p(X) = 1,
let f: X — (a, b) be u-integrable and let ¢ (a, b) = R be any convex function.
Then .

¢( Lfdu) < L(«ﬁf) d. 2.1

Jensen’s inequality includes Holder's inequality

fxfg dp < (J;f 2 d#)m (La’ dﬂ)”z

as a special case: the discrete form of this is the Cauchy-Schwarz inequality

lz ab| < (Z Ia‘lz)l/z(z 1B, 1372

for real a; and b,. The complex case follows from the real case and this can, of
course, be proved by elementary means.

Taking X = {x;,...,x,} and ¢(x) = ¢, we find that (1.2.1) yiclds the
general Arithmetic-Geometric mean inequality

ViVt Sy o Y

where u has mass y; at x; and y; = ¢f (x).

In order to apply (1.2.1) we need a supply of convex functions: a sufficient
condition for ¢ to be convex is that ¢'® > 0 on (g, b). Thus, for example,
the functions cot, tan and cot? are all convex on (0, n/2). This shows, for
instance, that if 8,, ..., 8, are all in (0, n/2) then

(122)

cot(o, + n + 0_—,.) < cot 8, + n + cot 9..

As another application, we prove that if x and y are in (0, x/2) and
X + y < n/2 then

tan x tan y < tan? (x_-_;—_y) (1.2.3)



§1.4. Topology

Writing w = (x + y)/2, we have

tan x + tan y

[—tanxwany W+

_ 2tanw
T 1 —-tan®w

As tan is convex, (1.2.1) yields
tanx +tany > 2tanw

..and the desired inequality follows immediately (noting that tan? w < 1 so
both denominators are positive).

§1.3. Algebra

We shall assume familiarity with the basic ideas concerning groups and (to a
lesser extent) vector spaces. For example, we shall use elementary facts about
the group S, of permutations of {1, 2, ..., n}: in particular, S, is generated
by transpositions. As another example, we mention that if 6:G—~ H is a-
homomorphism of the group G onto the group H, then the kernel K of 8 is a
normal subgroup of G and the quotient group G/K is isomorphic to H.

Let g be an element in the group G. The elements conjugate to g are the
clements hgh~! in G (heG) and the conjugacy classes {hgh~':he G}
‘partition G. In passing, we mention that the maps x — xgx ! and x — gxg ™!
(both of G onto itself) play a speclal role in the later work. The commutator
ofgand his

[9. ) = ghg™'h™":

for our purposes this should be viewed as the composition of g and a
conjugate of g~ *.

Let G be a group with subgroups G, (@i belongmg to some indexing set).
We assume that the union of the G, generate G and that different G, have only
the identity in common. Then G is the free product of the G, if and only if

each g in G has a unique expression as g, - - - g, where no two consecutive g; -
belong to the same G;. Examples of this will occur later in the text.

§1.4. Topology

We shall assume a knowledge of topology sufficient, for example, to discuss
Hausdorff spaces, connected spaces, compact spaces, product spaces and
homeomorphisms. In particular, if f is a 1-1 continuous map of a compact



4 1. Preliminary Material

space X onto a Hausdorff space Y, then f is a homeomorphism. As special
examples of topologies we mention the discrete topology (in which every
subset is open) and the topology derived from a metric p on a set X. An
isometry f of one metric space (X, p) onto another, say (Y, o), satisfies

C(fx’ fy) = p(x, §%)

and is necessarily a homeomorphism.

Briefly, we discuss the construction of the quotient topology mduced bya
given function. Let X be any topological space, let Y be any non-empty set
and let f: X — Y be any function. A subset V of Y is open if and only if f ~1(V)
is an open subset of X : the class of open subsets of Y is indeed a topology
J; on Y and is called the quotient topology induced by f. With this topology,
f is automatically continuous. The following two results on the quotient
topology are useful.

Proposition 1.4.1. Let X be a topological space and suppose that | maps X
onto Y. Let 7 be any topology on Y and let J; be the quotient topology on Y
induced by f.

D Iff: X > (Y, ) is continuous, then I < .
2) If f: X = (Y, J) is continuous and open, then = J,

PROOF. Suppose that f: X — (Y, 7) 1s continuous. If Visin &, then f ~}(V)
is in open in X and so Visin J;. If in addition, f: X — (¥, ) is an open
map then V in Z; implies that f~ (V) isopenin X and so f(f " !V)isin 7.
Asflssur_]ectlve,f(f"V)— VsoJ; c J. O

Proposition 1.4.2. Suppose that f maps X into Y where X and Y are topological
spaces, Y having the quotient topology J;. For each map g: Y — Z define
g1: X = Z by g, = gf. Then g is continuous if and only if g, is continuous.

PROGF. As f 18 continuous, the continuty of g implies that of g;. Now suppose
that g, is continuous. For an open subset ¥ of Z (we assume, of course, that
Z 1s a topological space) we have

@) ' M=)

and this is open in X. By the definition of the quotient topology, g~ (V) is
open in Y so g is contmuous. O

An alternative approach to the quotient topology is by equivalence rela-
tions. If X carries an equivalence relation R with equivalence classes [x],
theri X/R (the space of equivalence classes) inherits the quotient topology
induced by the map x+— [x]. Equally, any surjective function f: X — Y
induces an equivalence relation R on X by xRy if and only if f(x) = f(»)
and Y can be identified with X/R. As an example, let. G be a group of homeo-
morphisms of a topological space X onto itself and let f map eazh x in X
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to its G-orbit [x] in X/G. If X/G 1s given the induced quotient topology, then
f: X =+ X/Gis contmuous In this case, f is also an open map because if V
is open in X then so is.

Uvy=Ua.

8eG

Finally, the reader will benefit from an understanding of covering spaces
and Riemann surfaces although most of the material in this book can be read
independently of these ideas. Some of this is discussed briefly in Chapter 6:
for further information, the readeris referred to (for example) [4], [6],
[28], [50], [63] and [100].

§1.5. Topological Groups

A topological group G is both a group and a topological space, the two
structures being related by the requirement that the maps x+— x~! (of G
onto G) and (x, y}— xy (of G x G onto G) are continuous: obviously,
G x G is given the product topology. Two topological groups are isomorphic
when there is a bijection of one onto the other which is both a group 1so-
morphism and a homeomorphism: this is the natural identification of
topological groups.

For any y in G, the space G x {y} has a natural topology with open sets
A x {y} where 4 is open in G. The map x— (x, y) is a homeomorphism
of G onto G x {y} and the map (x, y) — xy 1s a continuous map of G x {y}
onto G. It follows that x+— xy is a continuous map of G onto itself with
continuous inverse x - xy~ ! and so we have the following elementary but
useful result. .
Proposition 1.5.1. For each y in G, the map x +— xy is a homeomorphism of G
onto uself; the same 15 true of the map x — yx.

A topological group G 1s discrere u the topology on G is the discrete
topology: thus we have the following Corollary of Propesition 1.5.1.

Corollary 1.5.2. Let G be a topological group such that for some g in G, the
set {g} 1s open. Then each set {y} (y € G) 1s open and G 1s discrete.

Given a topological group G, define the maps

#(x) =
and

¥lx) = xax 'a"! =[x, d],
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where a is some element of G. We shall be interested in the iterates ¢" and
¥" of these maps and with this in mind, observe that ¢ has a unique fixed
point, namely a. The iterates are related by the equation

$"(x) = ¥ (x)a,
because (by induction)
#"* (x) = [y"(x)ala[¥"(x)a] "
= *(x)aly"(x)] "
= ¢.+ l(x)a_

In certain circumstances, the iterated commutator Y"(x) converges to the
identity (equivalently, the iterates ¢”(x) converge to the unique fixed point
a of ¢) and if the group in question is discrete, then we must have ¢*(x) = a
for some n. For examples of this, see [106], [111: Lemma 3.2.5] and Chapter 5
of this text.

Finally, let G be a topological group and H a normal subgroup of G.
Then G/H carries both the usual structures of a quotient group and the
quotient topology.

Theorem 1.83. IfH isa normal subgroup of a topological group G then G/H
with the usual structures is a topological group.

For a proof and for further information, see [20], [23], (391, [67], [69]
and [94].

§1.6. Analysis

We assume a basic knowledge of analytic functions between subsets of the

complex plane and, in particular, the fact that these functions map open

sets of open sets. As specific examples, we mention Mébius transformations

and hyperbolic functions (both of which form a major theme in this book).
A map f from an open subset of R" to R" is differentiable at x if

JO)=Jx) + (y — )4 + |y — x|&(y),

where A is an n x n matrix and where &(y) - 0 as y — x. We say that a
differentiable f is conformal at x if A is a positive scalar multiple u(x) of an
orthogonal matrix B. More generally, f is directly or indirectly conformal
according as det B is positive or negative. If f is an analytic map between
plane domains, then the Cauchy-Riemann equations show that f is directly
conformal except at those z where f*)(z) = 0



