ACTION DIAGRAMS

Clearly Structured
Program Design

JAMES MARTIN
CARMA McCLURE

DIAGRAMS

Structured
Design

JAMES MARTIN
CARMA McCLURE

PRENTICE-HALL, INC. Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

MARTIN, JAMES (date)

Action diagrams.

Bibliography: p.

Includes index.

1. Structured programming. 1. McClure, Carma L.
Il. Title.
QA76.6.M3612 1985 001.642 85-3579
ISBN 0-13-003302-2

Editorial/production supervision: Kathryn Gollin Marshak
Jacket design: Whitman Studios, Inc.
Manufacturing buyer: Gordon Osbourne

Action Diagrams: Clearly Structured Program Design
James Martin and Carma McClure

© 1985 by James Martin and Carma McClure

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 87 6 5 4 3 21

ISBN 0-13-003302-2 01

PRENTICE-HALL INTERNATIONAL (UK) LIMITED London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA INC., Toronto . -
PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro
WHITEHALIL BOOKS LIMITED, Wellington, New Zealand

ACTION DIAGRAMS

A

(ame %C&w

BOOK

ACTION

Clearly
Program

PREFACE

Action diagrams provide a technique that is designed to be as user friendly as
possible for creating system structures and programs. These diagrams can be
used by end users as well as systems analysts and programmers to design pro-
gram logic. Beécause they represent program logic in a simple, easy-to-under-
stand graphic format, they help end users understand complex logic and get it
right. Action diagrams can be used to represent both high-level overviews of
systems and detailed program logic. There is no need to switch diagramming
- techniques midstream in the design proccss as has been the case with earlier
structured design methods. Beinga top-to-bottom design tool, action diagrams
support functional decomposition step by step all the way down to program code
level. .

Action diagrams can be used to represent the program logic for fourth-
generation-language programs (and, of course, for third-generation-language
programs). Although fourth-generation languages such as FOCUS, NOMAD,
RAMIS, MANTIS IDEAL, and NATURAL can greatly simplify programs,
fourth-generation-language programs.can become subtly complex and error-rid-
den. Often, there are mistakes made in the use of loops, selection structures,
and case structures. For this reason, it is highly desirable first to sketch out the
logic of a fourth-generation-language program with action diagrams. Thls can
help to make errors more apparent.

Action diagrams can be data-base oriented. Besides being able to repre-
sent all the basic structured control constructs—sequence, selection, case, rep-
etition—they can also represent data-base actions. The action diagram user can
draw simple data accesses—CREATE, READ, UPDATE, DELETE—per-
formed against one instance of one record type and compound data accesses—
SORT, SELECT, SEARCH, JOIN, and the like—performed against multiple
instances of one or multiple record types. Most of the data-base actions in tra-
ditional data processing are simple, but as relational data bases and nonproce-
dural fourth-generation languages spread, compound data-base actions will be-
come more common. ‘

Action diagrams can be drawn manually, but much benefit derives from

X Preface

using an automated action diagram editor. It can help bring the power of the
computer to bear on the difficult task of progrem design.

This book describes action diagrams. It defines the components of gction
diagrams and gives many examples of them. The book describes an actich dia-
gram editor for personal computers.

The concepts and techniques presented in this book are simple but power-
ful. They are applicable to large and small systems and programs on large and
small computers. Regardless of the computer environment or the program size,
the objective of action diagramming is the same: to create correct programs that
are easy to maintain.

As computers continue to drop in cost, more and more end users will try
their hand at writing software programs. Many have no help other than program-
ming-language manuals. They learn the techniques of program design and cod-
ing by trial and error. As a result, they often write incorrect, unstructured pro-
grams that are never properly verified and are impossible to maintain.

To expect programs to be correct and complete without thinking out the
problem before writing code is as ridiculous as building a skyscraper with plans
no more rigorous than those for a garden shed. All but the simplest programs
need to be designed before they are coded. All computer users need a design
method that is straightforward and simple to use. Action diagrams meet this
need.

If either of us were a DP executive managing a large army of analysts and
programmers, we would dictate that they all use action diagrams with common
action diagramming software, because then they would all speak the same clear,
well-structured language. End-users involved with computing would similarly
be taught to use action diagrams for specifying systems. They would understand
each other’s designs and be able to maintain them. A high degree of clarity
would be imposed upon their thinking, and they would obtain results faster.

James Martin
Carma McClure

CONTENTS

Preface ix

Diagrams and Clear Thinking .7

Making A Mess 1; A Language for Clear Thinking 1;
Trends that Affect Diagramming 2; Action Diagrams 2;
End-User Involvement 3; Benefits of Clear Diagrams 3;
Languages Change Our Thinking Processes 4

Action Diagram Brackets 7

A'Building Analogy 7; Designing with Action Diagrams 8; Brackets 8;
Conditions 9; Case Structure 12; Repetition 14; DO WHILE 15;

DO UNTIL 16; Sets of Data 17; The Escape Structure 19; GOTO 21,
NEXT Iteration 22; Easy-to-Read Format 22; Concurrency 22,
Advantages 25; Summary 29; Exercises 30

Successively Detailed Decomposition 37

Growth of a Design 31; Functional Decomposition 33;

- Ultimate Decomposition 35, Titles Versus Code Structure 37;
Hierarchical Ordering 39; Tree-Structure: Charts 40;
Control Relationships 40; Forms of Tree Structure 40;
Left-to-Right Trees 43; Missing Information 44 ; Nesting 44; Procedures 46,
Procedures Not Yet Designed 48; Common Procedures 48;
CONTRACT and EXPAND 48; Summary 51; Exercises 52

Inputs and Outputs 55

Correlation of Inputs and Outputs 56; Data Flow Diagrams 57,
Summary 63; Exerrises 63

vil

vili

Contents

Data-Base Action Diagrams 65

Simple Data-Base Actions 65; Compound Data-Base Actions 66;
Automatic Navigation 67 ; Simple Versus Compound Data-Base Accesses 67;
Relational Joins 68; Three-Way Joins 72; Summary 72; Exercises 75

Language Dialects and Structured
Programming 77

Fourth-Generation Languages 77;

Conversion of Action Diagrams to Code 80;
Enforcing Cleanly Structured Programs 81; End-User Computing 84;
Examples of Fourth-Generation-Language Code 86

AY

An Action Diagram Editor 1707

What Is Action Diagrammer? 101; Command Menus 103;
Text and Menu Cursors 107;

Line-Oriented and Bracket-Oriented Editor 107;

Color 108; CORTEX Action Diagrammer 108

Using Action Diagrams 17771

Using Action Diagrammer 111,
A High-Level Action Diagram of the Subscription System 112;
Ultimate Decomposition Subscription System Design 117

Linkage to Other Types of Diagrams and
Documentation 779

Other Types of Diagrams 119; Automatic Diagram Conversion 119:
Decision Trees 120; Data Flow and Dependency Diagrams 121;
Data Models 124, Data Navigation Diagram 130;

Rigor in Diagramming 131; Program Documentdtion 134,
Expanding and Shrinking Action Diagrams 135;

Utility of Documentation 135; Functions of Structured Diagrams 136

Appendix: Summary of Notation Used in Action
Diagrams 1739

Answers to Exerciéles 145

Index 1753

1 DIAGRAMS AND CLEAR THINKING

MAKING A MESS One of the problems with computing is that it is so
’ easy to make a mess.

 Even seemingly simple designs quickly grow messy. Unless we use clean, well-
structured design techniques, we can easily make mistakes. When programs
grow large, we sometimes have difficulty understanding our own code. If we
‘have difficulty with our own code, it is much worse attempting to understand
someone else’s code. The maintenance of systems is expensive and error-prone
because of this difficulty.

A LANGUAGE FOR Complex structures and logic can be made much eas-
CLEAR THINKING ier to understand if good diagrams are used. It is said

that a diagram is worth a thousand words; but in de-
scribing program structures, a thousand words can be thoroughly confusing,
whereas a good diagram can reveal the structure with immediate clarity. Good
diagrams are a language for clear thinking.

Since the earliest days of computing, diagrams have played an important
role in representing systems and developing programs. However, the types of
diagrams used have changed. In fact, we can trace the evolution of program-
ming methodologies by noting the changes in diagramming techniques.

In the 1950s and 1960s, flowcharts were used to plan out detailed and
complicated program logic. In the 1970s, structured techniques became wide-
spread, and with these, structured diagramming techniques such as structure
charts were used.

Diagramming techniques are still evolving. When we examine techniques
in common use today, we see that many of them have serious deficiencies.
Flowcharts have fallen out of favor bécause they can give neither a high-level
nor a structured view of a program. Some of the early structured diagramming

2 " Diagrems and Clear Thinking Chap. 1

techniques need to be replaced because they cannot represent all the basic struc-
tured control constructs, such as sequence, selection, and repetition. Because of
this, they are not good tools for the automation of programming or the creation
of programs with a computer ‘‘workbench’’. environment.

TRENDS THAT Today there are several important trends that affect

AFFECT our requirements for diagramming techniques:
DIAGRAMMING

® End users are becoming involved to an increasing extent in creating their own
systems. A variety of end-user languages are in use for this. Diagrams that are
easy to teach to end users (as opposed to DP professionals) are needed.

® The slowness of DP design and programming has become a major concern.
Large improvements are needed in the productivity of system building. These
will be achieved by giving systems analysts, programmers, and end users com-
puterized tools. Dlagrammmg techniques that are efficient with these tools are
needed.

® Fourth-generation languages are coming into widespread use because results are
obtained with them more quickly than with languages such as COBOL or
PL/I. Diagramming techniques that link directly to fourth-generation languages
are needed.

® Perhaps the most important change in the job of systems analysts and program-
mers is the use of computer-aided design (CAD). Designs, often involving
complex logic and data structures, are created, used, and modified at the screen
of a computer. The computer provides as much help as possible in creating the
design, verifying it to eliminate errors, and generating executable code from it.
Diagramming techniques will be a vital part of the CAD software.

® Maintenance (the modification of previously written code) is becoming an in-
creasing problem, not only because of its.cost, but also because it is preventing
systems from being changed when they should be changed. This inability to
change critical systems can do severe financial harm to corporations. Clear,
well-structured diagrams that can be changed on a computer screen should be
linked to all code to aid in the maintenance of that code.

ACTION DIAGRAMS Action diagrams were created with these concerns in
mind. They are simple and clear. They appear so ob-
vious in their structure that people tend to ask, ‘‘“Why weren’t they invented
twenty years ago?’’ We believe that they are the s1mplest and best method of
drawing the structures of structured programs.
Experimentation with end users was done as the diagramming technique
evolved. Non-DP professionals learn the diagrams quickly and find them easy
to use.

Chap. 1 Diagrams and Clear Thinking 3

Action diagrams are easy to edit on the screen of a personal computer.

Unlike other diagrams in common use, action diagrams can represent a
high-level overview of a system and progressively decompose it until executable
code is reached.

Unlike most types of diagrams in common use, action diagrams can rep-
resent all of the basic constructs of structured programming.

Action diagrams work well with fourth-generation languages. If the au-
thors of this book were teaching a sound fourth-generation language to end
users, they would start by teaching action diagrams and the control structures
they represent, then fit the code of the language to the action diagrams. The

' material in this book ought to be basic training in information centers.

With an action diagram editor, programs can be created quickly with far
fewer errors than in conventional programming. The programs can be under-
stood and changed easily.

|

END-USER It is essential to involve end users in the software
INVOLVEMENT development process. Some analysts and program-

mers prefer to work in isolation without end-user in-
terference or discussion. This is dangerous because it is likely to result in soft-
ware that does not meet user needs.

Increasingly, some end users are developing their own software with user-
friendly fourth-generation languages. Where users do not write their own pro-
grams, they should sketch their needs and work hand in hand with an analyst
(perhaps from an information center) who develops the software for them. User-
driven computing is a vitally important trend for enabling users to get their
problems solved with computers.

Diagramming techniques are an essential part of any basic course on com-

J puting. As end users become more involved with system design and fourth-

generation languages, they should be taught diagramming techniques. We sug-
gest that they be taught action diagrams because these have been designed to be
user friendly, easy to learn, easy to use, tailored for use with fourth-generation
languages, and easy to manipulate on a personal computer.
J
BENEFITS OF A standard computerized way of representing system
CLEAR DIAGRAMS and program design enhances team communication
and enables management controls. Action diagrams
combine graphic and narrative notations to increase understanding. Graphics are
especially useful because they tend to be less ambiguous than a narrative de-
scription. Also, because they tend to be more concise, graphics can be drawn
in much less time than it would take to write a narrative document containing
the same amount of information.
When a program is modified, clear diagrams are an essential aid to main-

4 Diagrams and Clear Thinking Chap. 1

-
™

tenagce. They make it possible for a new programmer to understand how an
existing program works and to design changes to that program. When a change
is made, it often affects other parts of the program. Clear diagrams of the pro-
gram sgructure help mnaintenance programmers understand the consequential ef-
fects of changes they make.

When looking for program bugs, clear diagrams are a highly valuable taol
for understanding how the program works and tracking down what might be
wrong. , .

Architects, surveyors, and designers of machine parts have formal dia-
gramming techpiques that they must follow. Systems analysts and program de-
signegs have even a greater need for clear diagrams because their tasks are more
complex and because the wark of different people must interlock in intricate
~ ways, In the past, however, there has been less formality in programming. This

has made systems much more difficult to maintain and change.

For small, one-person projects, an action diagram editor running on a per-
sonal camputer helps to clarify and speed up design and programming. For large
projects, standards are needed for communication among many developers. The
larger the project, the ‘greater the need for precision in diagramming. It is im-
possible for the members of a large project to understand in detail the work of
others. Instead, each team memgber should be familiar with an overview of the
system and see where his con&ﬁent fits into it. He should be able to develop
his component with as Hlttle ongoing interchange with the rest of the team as
possible if he has clear, precisely defined and diagrammed interfaces with the
work of the others. When one programmer changes his design, it should affect

-the designs of other programmers as little as possible. To achieve this requires
formalized techniques for representing the system design. Action diagrams meet
this need.

Certain other types of diagrams are useful for conceptualizing other aspects
of complex systems design. As discussed in Chapter 9, these other diagrams, if
drawn with appropriate standards, can be automatically converted to action dia-
grams and then to code, on the screen of a personal computer.

LANGUAGES Philosophers have often described how the language

CHANGE OUR we use for thinking affects what we are capable of
THINKING thinking. When the world had only Roman numerals,
PROCESSES ordinary people could not multiply or divide. When

Arabic numbers became widely used, the capability
to multiply and divide spread. Diagrams for drawing computer processes are a
form of language. With them we can express more complex processes than we
can by using English. The designer thinks in diagrams, conceptualizes systems
with the aid of diagrams, and refines his design by manipulating the diagrams.
The form of a diagram has a direct effect on this process. If the diagram cannot
express repetition, sequence, selection, conditions, data-base operations, or par-

Chep. 1 Diagrams and Clear Thinking 5

allelism (as is true with some popular types of diagrams for systems analysis),
this, like Roman numerals, tends to limit the thdsking processes of the designer
or user.

A skilled system designer should be fluent with seyeral diagram.types that
heip conceptualize different aspects of systems. Different types of diagrams of
processes for which program code will be created should be autamatically con-
vertible to action diagrams.

The authors have discussed the many types of diagrams in use and have
compared action diagrams with alternate techniques in their book Déggramming
Techntques for Analysts and Programmers [1].

It is desirable for a corporation to standardize diagramming techmqucs and
make this a basic part of its program and system documentation. Having such a
corporate standard aids communication among designeis and programmers and
helps end users to achieve better communication with DP. Without such a cor-
porate standagd, maintenance of programs will be unnecessarily difficult. Today
the diagramming standard should be the basis of diagramming software. This
speeds up the design process, aids communication among des1gners and ea-
forces correct use of the standard technique.

. We believe that action diagrams should be an essential component: o{ such
a standard [2].

REFERENCES
1. James Martin and Carma McClure, Diagramming Techniques for Analysts
and Programmers (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985)

2. James Martin, Recommended Diagramming Standards for Conzgmng, Sa-
vant Research Report (Camnforth, Lancs., England: Savagt, 1984).

2 ACTION DIAGRAM BRACKETS

A BUILDING If we were going to build a one-room@mud hyt, we
ANALOGY - would not need to do much planning before cofistruc-

tion. Only a few gnaterials and tools would be
needed. The constructign process would mvolve a few simple steps done by one
person. If a mistake was made or a change was necessary, the hut would be
easy to modify or rebuild.

At the other extreme, if we were gomg to build a skyscraper, we would
need a detailed architectural plan. Creating this plan would be our fitst step
since no professional builder would attémpt such a project without a sound plan.
Otherwise, how would we determine what building materials were needed, how
many workers to hire, or what jobs to assign to them? If the plan were incom-
plete or incorrect, the cost to change the building or to modify. the construction
schedule could cause seriqus financial problems possible unsafe condmons and
expensive legal consequences.

Building a single-family house falls somewhere in the middle. An experi-
enced builder could probably, construct it without a blueprint, but in most cases
this would be inefficient and sometimes foolhardy. By skipping the design
phase, the builder could begin actual construction soonet., However, the whole
projeét might take longer to complete. Without a sound design, the house could
be of poorer quality because its structure and construction materials would be -
chosen on the basis of availability rather than quality considerations. Also, be-
cause the buyer would not have been given an opportunity to review the plan
and perhaps modify his requirements before construction' began, he might be
less satisfied with the outcome. He might demand many costly changcs that
would greatly reduce the builder’s profit.

We can draw a strong analogy between constructing a buxldmg and con-
structing computer programs. It is as important to design a program as it is to
design a building.

(] Action Diagram Brackets Chap. 2

DESIGNING WITH Diagrams are the language of design. Appropriate
ACTION DIAGRAMS diagrams offer a concise, unambiguous way of de-

scribing a program or system of programs. The
choice of diagramming technique has had a major effect on the efficiency of the
designer and the quality of his design [1].

Action diagrams provide a natural way to draw a high-level overview of a
program structure as well as a detailed view of the program logic. They employ
the lessons of structured programs to make the design as clean and well built as
possible. They build on the diagramming techniques of the past, discarding what
has been shown to be ineffective but keeping the constructs that support struc-
tured programming. All the basic concepts of a well-structured program, such
as modularization, hierarchical organization, functional decomposition, and
structured control constructs, have been included in action diagrams. Regardless
of whether an end user or a professional programmer is creating a program, the
objective should be a structured program. Structured programs are easier to
build, test, debug, and maintain.

- BRACKETS The basic building block of an action diagram is a
bracket:

A bracket encloses a set of actions. An action can be a high-level function,
a procedure, an operation, a program, a program subroutine, or, dropping down
into detail, an individual line of program code.

The following bracket shows high-level functions:

SERVICE A POLICY

APPORTION REMITTANCE
ENDORSE POLICY
ASSIGN POLICY
ALLOCATE BONUS

