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PREFACE

Microminiaturization is one of the fastest growing fields in the analytical sciences.
Over the past ten years a diverse range of micrometer-scale devices has been
fabricated in silicon and in glass, and more recently in different types of plastic. The
scope of applications for the new microminiature analytical devices (biochips,
microchips, “lab-on-a-chip”) spans analytical chemistry and the biomedical sci-
ences. Devices for genetic testing have attracted particular attention from the
microminiaturization community, and a fully integrated genetic analyzer that
would accept a minute sample of whole blood and produce a result without
further human intervention will soon be a reality. Lab-on-a-chip devices would act
as personal laboratories that could be used for a broad range of home testing and
directly contribute to health maintenance and quality of life. Today, the microchip
devices are making major contributions to the drug discovery process. In this
application, a capability for rapid high-throughput multiplexed analysis using low
volumes of sample and reagent is paramount, and the microchip devices offer a
convenient and cost-effective approach to this type of analytical process. Microar-
ray devices (DNA chips, gene chips, microspot chips) comprising surface arrays of
micrometer-sized patches of antibodies, cDNA, or oligonucleotides are also having
a major impact in biomedical research; particularly in gene expression studies,
mutation detection, and protein analysis. The ability of microanalyzers to accom-
plish complicated analytical tasks, particularly with samples containing cells, is
increasing. These new devices (biochips) contain microelectrodes, microfluidic
elements, and other microfabricated features that orchestrate a variety of sample
manipulation and analytical steps.

Against this background, the objective of this book is to provide up-to-date
coverage of some of the emerging avenues of research and development in the field
of microchip devices. The book contains descriptions of chip fabrication (microma-
chining, hot-embossing, patterning), system development, microarrays (polypyt-
role-based, nylon, glass), assays, cell isolation, and manipulation using microfilters
and bioelectronic devices, and applications ranging from clinical testing (PCR
chips, portable laboratories) to plant genome analysis to biohybrid organs. This
book is intended to be a starting point for anyone interested in the possibilities and
potential of the diverse opportunities afforded by microminiaturized analysis in a
chip format.

Jing Cheng
Beijing, The People’s Republic of China

Larry |. Kricka
Philadelphia, Pennsylvania, USA
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Microchips, Bioelectronic
Chips,and Gene Chips

Microanalyzers for the Next Century

Larry J. Kricka

INTRODUCTION

An important direction in the development of analytical techniques is toward
microminiaturized analyzers. Generic names for these new micrometer-featured
devices include “micro-total analytical system” (u-TAS) (Manz et al., 1990a), lab-
on-a-chip (Colyer et al., 1997; Moser et al., 1995), biochip, o1, simply “chip.” In some
cases devices have been named based on their particular application, for example,
PCR chips, gene chips, while for others the device is named for a characteristic
structural feature, for example, microspot or microarray (Table 1). The common
theme for all of these devices is the microminiaturization of an analytical process
or part of an analytical process into a device built on a small piece of glass, plastic,
or silicon (Beattie et al., 1995a; Becker and Manz, 1996, Berg and Bergveld, 1995;
Berg and Lammerink, 1998; Collins and Jacobson, 1998; Hacia et al., 1998a; Kopp et
al., 1997; Kricka, 1998a,b; Manz, 1998; Ramsay, 1998).

Several factors can be identified as underpinning the renewed interest in mi-
crominiaturization of analyzers. First, a range of analytical problems has emerged
for which microminiaturization has obvious benefits, and these include high-
throughput massively parallel testing for drug discovery (Devlin, 1997), small
hand-held portable analyzers for point-of-care testing (e.g., clinical testing or
biowarfare monitoring) (Kost, 1995), and lightweight analyzers for use on space
exploration missions where payload is limited. Second, miniaturization offers a
route to cost reduction in analytical processes because the amount of reagent used
per assay can be drastically reduced compared to conventional analysis. Similarly,
in drug discovery, where there is often only a limited amount of candidate drug
compound, a reduction in the volume of sample tested translates into a larger
number of tests with that particular compound. Finally, an important advantage of
microminiaturization is the ability to integrate all of the steps in a complex mul-
tistep analytical process onto a single device. This finds a natural parallel with
integrated electronic circuits produced on silicon wafers for the electronics indus-
try. In these devices, thousands to millions of individual components are integrated
into a single chip (e.g., an Intel Pentium III is produced using a 0.25-um manufac-
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Table I  Nomenclature of Analytical Microchip Devices

Biochip? VF chip Oligonuclectide chip
Biologic chip Lab-chip PCR chip

DNA chip Laboratory on a chip® ProteinChip®

DNA MassArray™ Lab-on-a-chip SpectroChip™
Expression chip LifeGEM™ Sperm chip
FeverChip® LivingChip™ UniGEM™

Gene chip Mesoscale device® U-TAS

Gene chip™ Microarray

Genosensor Microspot®

9This term was originally used to refer to biological versions of electronic microchips (Tucker, 1984).
bThis term was originally used in the context of computer-based experiments (Steber, |987).
‘Mesoscale refers to an intermediate scale, between that of large and small dimensions.

turing process and the CPU includes over 9.5 million transistors) (http://devel-
oper.intel.com/design/PentiumIIl/prodbref/).

This chapter provides an introduction to microchip analyzers, their fabrication
and applications, and discusses future trends in this emerging analytical science.

HISTORICAL PERSPECTIVE

Current microanalyzers owe much to the early work of the micromachinists who
were intrigued with the possibility of using silicon as a material for constructing
different types of mechanical and microelectromechanical (MEMS) devices. They
showed that it was possible to construct complex micrometer-sized devices such
as cogs, movable mirrors, spanners, and more complex devices including an elec-
tric motor from micromachined silicon components (Amoto, 1989; Angell ef al.,
1983; Mallon, 1992; Petersen, 1982; Stix, 1992). Practical devices based on microma-
chined components have emerged including sensors for measuring blood pressure
and fuel flow in automobile engines, and a device that triggers airbags in automo-
biles. The latter has enjoyed considerable success and is based on a microfabricated
silicon beam that bends under acceleration forces. Deflection of the beam is de-
tected, and this triggers release of the airbag (Bryzek et al., 1994).

One of the earliest microanalyzers was fabricated by Terry and colleagues. They
constructed a gas chromatograph (GC) on the surface of a 2-inch silicon wafer that
was then bonded to a glass plate (Terry et al., 1979). There was then a hiatus of
several years before interest was renewed in microanalytical devices. The next
important landmarks in microanalyzer technology were in the early 1980s, with the
development of the microphysiometer and the i-STAT analyzer. The micro-
physiometer is based on micromachined silicon, 50 pm square x 50 um deep wells
that incorporate a light-addressable pH sensor (McConnell et al., 1992; Owicki and
Parce, 1990; Parce et al., 1989). This device was designed to assess cell metabolism
for toxicity studies of new drug compounds. The i-STAT analyzer utilizes a dispos-
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able cartridge that contains an array of microelectrodes and immobilized enzyme
electrodes on a silicon microchip for whole blood analysis (e.g., blood gases,
electrolytes, glucose, hematocrit) (Lauks et al., 1992). By the end of the 1980s,
research-and-development efforts directed toward microanalytical devices experi-
enced a growth spurt. Some of the diverse range of analyzers, devices, tests, and
procedures are listed in Table 2.

ADVANTAGES AND LIMITATIONS OF MICROANALYZERS

There are a series of compelling reasons why microanalyzers will find widespread
use for analysis (Table 3). Microminiature analyzers are small and compact and
thus suitable for use in non-laboratory settings (e.g., point-of-care testing) where
hand-held portable analyzers are required. Miniaturized arrays of different re-
agents on planar surfaces (e.g., plastic, glass, or silicon) permit simultaneous test-
ing of a sample for specific components. The volume of sample required for
analysis is reduced in microanalyzers (e.g., nL—pL volumes), and this is beneficial
in a clinical setting as it reduces the amount of blood that must be drawn from a
patient. There is also a reduction in the volume of reagent required per test, and
this provides an economic benefit.

Table2  Micromachined Analyzers, Devices,and Assays

Analyzers and devices
Biocapusule {Desai et dl, 1998)
Capiltary electrophoresis analyzer (Jacobson and Ramsey, 1995; Seiler et ai, 1993)
Controlled release system (Sheppard et al., 1996}
Blood gas analyzer (Arquint et al, 1994 Shoji and Esashi, [995)
Flectrochemiluminescence detector (Arora et dl., 1997)
Electrolyte analyzer (Moritz et of, 1993)
Flectroporation system (Murakami et af, 1993)
Flow-injection analyzer (Manz et al,, 1991 Suda et al, 1993)
Gas chromatograph (Terry and Hawker, 1983; Terry et al, 1979)
Haemorheometer (Tracey et dl, 1995)
In vitro fertilization chamber (Kricka et al., 1995}
Liquid chromatograph (Manz et af, |990b; Ross et dl, 1998: Xue et al, 1997ab)
Thermal cycler (Northrup et al, 1996, Wilding et al, 1994)

Test or procedure
Antibody analysis (Rodriguez et al, 1997)
Cell movement and responses (Oakley and Brunette, 1995)
Cell traction force (Galbraith and Sheetz, 1997)
DNA aralysis (Shalon et al, 1996; Sheldon et al, 1993)
DNA sequencing (Drobyshev et al., |997: Southern, 1996)
Expression monitoring (Schena et al, 1995; Lockhart et al. 1996; Wodicka et al. 1997)
Immunoassay (Koutny et al., 1996; von Heeren et al., 1996;Song et df,, 1994)
Mutation testing (Gingeras et al., 1996, Hacia, [999; Hacia et al, 1997)
Nerve regeneration (Zhao et al., 1997)
Nucleic acid hybridization (Beattie et al, 1995b; Fodor 1993; Southern et af, 1999)
PCR (Belgrader et df, 1998; Cheng et al. |996a Kopp et al, 1998 Waters et al, 1998ab)
Semen testing (Kricka et al., 1997)
Serum protein analysis (Colyer et al, 1997)
Topographic guidance of cells (Qakley et al, 1997)
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Table 3  Advantages and Disadvantages of Microanalyzers

Advantages D]sposab|e
Portable Fast response time
Low power consumption
Low production costs Disadvantages
Mass production Human interface
Diverse range of applications Obtaining a representative sample
Integration of steps in an analytical process Exceeding the analytical detection limit

Fabrication of microanalyzers derives benefit from the manufacturing processes
used in the microelectronics industry that are geared to high-volume production.
Many different designs can be simultaneously fabricated on the same wafer and
then tested. This allows rapid design cycles and the potential for more design
iterations than would be normally possible for a macroscale device.

Microanalyzers can improve analytical reliability through multiple test sites for
simultaneous parallel assays. This degree of redundancy provides an analytical
safeguard that cannot be easily achieved in macroscale analyzers, where duplicate
assays represent the normal extent of repetitive assay of a specimen. Encapsulation
of microscale devices provides extended operation over a wider range of environ-
mental conditions of humidity and temperature than can be achieved with a
conventional analyzer.

One of key advantage of microanalyzers is the opportunity to integrate all of the
steps in a complex multistep analytical process into a single device. The scale of a
microchip is such that it is feasible to design structures to perform individual tasks,
including sample addition, processing, analysis, and read-out of the results, all on
a microchip that is 2 x 2 cm or smaller. An even greater degree of integration is
achieved by further combination of analytical steps into individual microstructures
on the microchip (e.g., cell separation and nucleic acid amplification). Added to
this is the availability of a large number of microminiaturized components (e.g.,
lasers, pumps, valves) that enhance the capabilities of the device. Table 4 lists some
miniaturized components that are available for incorporation into microchip ana-
lyzers. This, of course, also includes the electronic circuitry to operate and control
the analytical process, which would easily fit onto the surface of the type of devices
currently being developed.

Microminiaturization does have some disadvantages. As the size of a sample is
successively decreased, an immediate concern relates to how representative the
sample is of the specimen from which it was derived. This is a problem for
inhomogeneous biological specimens that contain a diversity of constituents {e.g.,
cells, proteins, lipids). For example, a submicroliter blood sample is unlikely to
contain rare cells such as trophoblasts in maternal circulation, which may only be
present at one per million or one per ten million cells. This problem can be
overcome by developing flow-through sampling in which larger volumes of sam-
ple are flowed through a low volume-microminiature device. Another issue that
arises as the volume of the sample is reduced is that of detectability. If an analyte
is present at only 1 femtomole/L in the original specimen, then a 1 uL sample
contains 600 molecules (1 x 10715 x 10-6 x 6 10%). Further reduction of the sample
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Table 4 Microminiaturized Components

Accelerometer Microbeam Pump

Air turbine Microbearing Refrigerator
Anemometer Microbridge Relay

Cables Microflexible arm Resonator
Cantilever Micromotor Robot
Diaphragm Microphone Screw

Flow sensor Micropipette SFM and STM tips
Fuse Microturbine Sieve

Gears Mirror Solenoid
Hinge Peltier heater/cooler Tweezer
Laser Pirani pressure gauge Vacuum tube
Membrane Pressure sensor Valve

size to 1 nL produces a sample that contains one thousand times fewer molecules,
that is, less than one molecule, and this would not be detectable (Petersen et al.,
1998).

FABRICATING MICROCHIPS

Microfabrication methods used to make the different types of microanalyzers are
summarized in Table 5 (Qin et al., 1998). In many cases the basic technology has
been adapted from the microelectronics industry (e.g., photolithography for glass
and silicon devices) or from the printing industry (e.g., ink jet printing). The size
of the features that can be fabricated are in the micrometer range for photolithog-
raphic, molding, and printing methods and in the nanometer range for patterning.
An important current direction in microfabrication is the manufacture of plastic
microchips (Becker and Dietz, 1998; Ford et al., 1999; Friedrich and Vasile, 1996;
Friedrich et al., 1997; McCormick et al., 1997). These may be easier to manufacture
and at lower cost than glass or silicon-glass chips and, additionally, may provide
greater flexibility in design.

Fabrication of microanalyzers also requires ancillary processes for assembling
the microcomponents (e.g., anodic and thermal bonding), and methods to intro-
duce direct-access ports into structures formed by bonding microparts together
(e.g., mechanical, ultrasonic, and laser drilling) (Shoji and Esashi, 1995). Handling
and manipulating very small microchips is difficult, but this can be overcome by
packaging the microchip into a substantially larger holder or by mounting one or
more microchips onto a platform.

ON-CHIP DETECTION METHODS

Fluorescent detection methods currently dominate microchip analyses. Laser-in-
duced fluorescence (LIF) is widely used with capillary electrophoresis chips to
detect separated components (Cheng et al., 1996b; Effenhauser et al., 1993; Harrison
et al., 1993). Confocal fluorescence microscopy is the most common detection
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Table 5  Materials and Fabrication Processes

Materials
Acrylic copolymer (McCormick et al., 1997)
Glass (Effenhauser et af, 1393)
Photoresist (Gorowitz and Saia, 1984)
Polyacrylamide (Proudnikov et af, [998)
Polycarbonate (Jenoptik Mikrotechnik, Jena, Germany)
Poly(dimethylsiloxane) (Qin et dl, 1998)
Polymethyl methacrylate (Jenoptik Mikrotechnik, Jena, Germany)
Polypropylene (Matson et al, [995)
Quartz (Danel and Delapierre, 1991)
Silicon (Petersen, 1982)

Processes
Anodic bonding (Spangler and Wise, 1990)
Contact printing (Jackman et al, 1995)
Covalent bonding (Drobyshev et al, 1997)
Deposition (Beattie et al, 1995a; Shalon et al., 1996)
Electrochemical micromachining (Datta, [995)
Embossing (Becker and Dietz, 1998)
Injection molding (McCormick et al, 1997)
Ink jet printing (De Saizieu et al, 1998)
In-situ synthesis {Fodor et dl., 1994; Southern, 1996)
Laser ablation (Hennink, 1997, Zimmer et al, 1996)
LIGA (Lithographie, Galvanoformung, Abformung) (White et al, 1995)
Microcontact printing (Kane et al., 1999)
Micromilling (Friedrich et al, 1997, Friedrich and Vasile, [996)
Pattering . (Sleytr et gl, 1992)
Pattern transfer (Xia et df, 1996)
Reactive ion etching (Gorowitz and Saia, 1984)
Silicon fusion bonding (Petersen et al, 1991)
Thermal bonding (Lasky, 1986)
Ultrasonic impact grinding (Qin et df., 1998)
Wet-etching (Petersen, 1982)

method for assessing antibody~-antigen binding and hybridization on microarrays.
This technique is highly sensitive and can detect 5-10 fluorescein labels per um?
(Chu et al., 1996; Sheldon et al., 1993). Fluorescence has also been used for TagMan-
type assays in arrays of glass microwells in combination with a charged-coupled
device (CCD) (Taylor et al., 1998). Both one- and two-color fluorescence procedures
have been devised for use with microarrays. For example, in the microspot assay,
the capture antibody is labeled with Texas Red and the detection antibody is
labeled with fluorescein (Chu ef al., 1996; Ekins, 1998), whereas in the gene expres-
sion assays the test and control are labeled with lissamine and fluorescein or with
Cy 3 and fluorescein, respectively (DeRisi ef al., 1996; Hacia et al., 1998b). An
alternative two-color detection strategy employs a B-galactosidase label and an
alkaline phosphatase label detected using X-Gal and Fast Red TR/naphthol AS-
MX substrates (Chen ¢f al., 1998).

Chemiluminescence methods have also been used to study reactions in micro-
chips (Kricka ef al., 1994), for example, genetic (Rajeevan et al., 1999) and immu-



