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Some Remarks on This Conference
 and Its Proceedings

GARY §. BLOOM,* RONALD L. GRAHAM?® AND JOSEPH
MALKEVITCH*

“Computer Sciences Department
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M athemaiipal Sciences Research Center
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This volume collects'the papers and problems from the Third International Con-
ference on Combinatorial Mathematics held at the Barbizon Plaza Hotel in New
York City under the auspices of the New York Academy of Sciences from June 10
through June 14; 1985. Like its two predecessors, held in 1970 and 1978, respec-
tively, this meeting was held in recognition of the current dynamic evolution of
combinatorics, as this fundamental subject continues to mature and develop into a
‘major component of the mathematical mainstream. The geographical scope of the
.conference was truly international, with participants comirng from Australia, Austria,
Belgium, Canada, China, Czechoslovakia, Denmark, _England, France, Holland,
Hungary, Israel, Japan, Puerto Rico, Poland, South Africa, Sweden, West Germany, /
and other countries, as well as from every region of the United States. The com-
binatorial scope of the conference was equally broad, as can be seen from the 54
papers in this volume. These papers explore aspects of such topics as structural
graph theory, ‘extremal set theory, Ramsey theory, combinatorial group theory,
random graphs, matroids, finite geometries, game 'theory, block designs, coding
theory, polyhedral combinatorics, irregularities of distribution, and combinatorial
number theory, to name a few, as well as a healthy dose of the increasingly impor-
tant algorithmic aspects of these various subjects. The “Collection of ‘Open Prob-
lems” presented during an organized problem session contains a taste of the many
unsolved problems discussed at the conference; some of the many other open issues
discussed at the meeting are ¢ontained within the papers of this volume. £

We gratefully acknowledge the assistance we received from the staff of the New
York Academy of Sciénces, and of the cooperation of The City College of New
York, of York College, and of AT&T Bell Laboratories. The success of the Con-
ference was greatly enhanced by \tgemf\i)nggg;zil support given by the Air Force Office
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of Scientific Research, the Office of Naval Research, The City College, and York
College: - napsciyginin 3 241 o0 ity 9l

We hope the reader enjoys and benefits from the mathematical contributions in
this volume as much as the conferenge; participants didi;In the end, we again thank
all of those participants, the authors of the papers, the Editorial Committee, who
refereed the papers, and everyone who helped make this Annals available to those of
us who are fascinated by the beauty of combinatorial mathematics.
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INTRODUCTION

Let A be a set of 2n points in general position in the Euclidean plane R?, and
suppose n of the points are colored red and the remaining n are colored blue. A
celebrated Putnam problem (see [6]) asserts that there are n pairwise disjoint
straight line segments matching the red points to the blue points. To’show ‘this,
consider the set of all n! possible matchings and.choose one, M, that minimizes the
sum of lengths (M) of its line segments. It is easy to show that these line segments
cannot intersect. Indeed, if the two segments v,, b, and v,, b, intersect, where vy, v,
are two red points and b,, b, are two blue points, the matching M’ obtained from M
by replacing v;b, and v, b, by v,b, and v, b, satisfies {M’) < I(M), contradicting the
choice of M. Our first result in this paper is a generalization of thi§ result to higher
dimensions.. - ? X . , |

THEOREM 1: Let A be a set of d - n points in genera.l position in RY, and Tet
A=Ay AU U Agbe a partition of 4 into d pairwise disjoint sets, each con-
s1snng of n points. Then there are n pairwise chs10mt d- 1)—d1mensnonal ,sxmphoes,
each’ containmg preclsely one vertex from each 4;, 1 < g d.

' ‘We prove this theorem in' the next section. The' p(obf is ‘short but uses'a 'non-
eiementary tool: the well-known Borsuk-Ulam theorem. =
“Combining Theorem 1 with'an old result. of Erdos from extremal' graph theory
‘we obtain'a coroll&!y dealing with geometric hypergraphs A geometric d-hypergraph
‘ is'a pair G = (V, E), where V is a set of points called vertices; in general position‘in’
R?, and E'is a set of (closed) (d — 1)-dimensional simplices-called edges, whose ver-
tices are points of -V, If d =2, G'is called a geometric graph 1tis' well known (see [31,
[5]) ‘that every geometric graph with n vertices and n'+1 edges contains two' dis-
'joint edges, two nonintersecting edges,' and this ‘result it ithe best' possible. The
number of ‘edges that guarantees | pairwise disjoint edges is'not known-for I > 2,
although Perles [7] determined the exact number for the case that the'set of vertices
1
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V is the set of vertices of.a convex polygon. The situation seems much more dtfﬁcult
for geometric d-hypergraphs ‘when d > 2. Even the number of edges that guarantees
" two disjoint simplices is not known in this case. Clearly this number is greater than

(: ) (simply take all edges containing a given point) and is at most ( d) In the

final section we prove the. followmg theorem, that implies that for every fixed d, .
I = 2, every geometric d-hypergraph on n vertices that contams no J pairwise nonin-
tersecting edges has o(n) edges. e

THeEOREM 2: Every geometric d- -hypergraph with n vertices and at least n‘ L,
edges contains ! pairwise nonmtersectmg edges.

It is worth noting that the following, much stronger conjecture seems plausible.

ConJecTurE 1: For every I, d > 2 there exists a constant ¢ = c(l, d) such that °
. every geometric d-hypergraph with n vertices and at least ¢ - n?~! edges contains |
pairwise nonintersecting edges.

We do not know how to prove this conjecture, evenford=2,1=3.

PROOF OF THEOREM 1

We need the followmg lemma, sometlmes called the “Ham-Sandwnch theorem, ;
which is a well- known eonsequence of the Borsuk-Ulam theorem (see [l], [2])

LemMA 1: Let g1y, 5, ..., , be‘d continuous probability measures i R¥. Then

there exists a hyperplane H in R? that bisects each of the d'measures, that is,

u(H*) = p(H X =4) for all 1'<i < d, where H* and H- denote, tespeetwely, the
open posmvc side and the' open negatlve side of H.

_Theorem 1 will be denved from the following lemma.

LemMA 2: Let A, Ay, A,, ..., A; be as in Theorem 1. Then there exists a hypet
plane H in R? such that

U A - [n/2] 'g_nd |H™ A A= [n/2]  forall t <isd
(Notice that if n 1s odd ) tmphes that H contains preclsely one pomt from eaeh A,.)

Proof: Replace each pomt P € A by a ball of radius ¢ centered in p, where & is
small enough to guarantee that no hyperplane intersects more than d. balls. Associ-
ate each ball with a uniformly distributed measure of 1/n. For 1 <i<d and a
(lebesgue)-measurable subset T-of RY, define ,u,(T) as the total measure of balls cen-
tered at point of 4, captured by T. Clearly u,, u,,".., p  are a continuous ptobabﬂ-“ ’
ity measure. By Lemma 1 ‘there exists a hyperplane H in R? such that p(H*) =
WH)=4%forall1<igd 1If n is odd, this implies that H intersects. at least one
ball centered at a.point of 4;..However, H cannot intersect more than 4 balls alto-
gether, and.thus it intersects precisly one ball centered-at.a point of 4,,.and it must.
bisect these d balls. Hence, for odd n, H satisfies (1). I n is.even; H intersects. at most -
‘d balls, and by slightly rotating H we can divide the centers of these bulla _between
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H* and H- as we wish, without changing ghg,ppoitidn of each other point of A with

respect to H. One can easily check that this guarantees the existence of an H
satisfying (1). O s i

We can now prove Theorem 1 by induction on n. For n-=1 the result is trivial,
Assuming the result for all ', n < n,let A, Ay Ay ..., Ag be as in Theorem 1 and
let H be a hyperplane, guaranteed by Lemma 2, satisfying (1). Put B, = H* n A
and C,;=H n A for 1<sisd, B=Bu--UBand C=C, vV C,. By
applying the induction hypothesis to B, By,...; Byand C,Cy, ..., C,, we obtain two
sets S, and S, of [n/2] pairwise disjoint simplices each, where each simplex of S,
contains precisly one vertex from each B, and each simplex of S, contains precisely
one vertex from each C,. Clearly, all the simplices in §, liein H* and all those in §,
liein H™. ; | A

We thus obtained 2 - [1/2] pairwise nonintersecting simplices. These, together
with the simplex spanned by A, ~ H if n is,odd, complete the induction and the
proof of Theorem 1. 0O y

PROOF OF THEOREM 2

We need the following result of Erdos.:

LemMa 3 [4]: Every d-uniform hypergraph with n vertices and at least pom(m-h
edges contains a complete d—par.'ti;g subhypergraph on d classes of | vertices each.

Now suppose that G is a’geometric d-hypergraph with n vertices and at
least /"1 edges, By, Lemma3 there is a st A of | - d vertices of G, 4= 4, v
; , where | 4= I for each i, and all the ¥'(d — 1)-simplices consisting ol one
from each A, are edges of G. The assertion of Theorem 2 now follows from

2k SR

Theorem 1. O
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INTRODUCTION

There have been many conditions placed on graphs to ensure the existence of
certain kinds of subgraphs, in particular, conditions of the degrees of vertices have
been useful. The following result of Ore is an example of the use of such ‘a degree
condition. ¢ e el

THEOREM A [5]: If G is a graph of .order n > 3 such that the sum of degrees of
any pair of nonadjacent vertices is at léast n, then G is Hamiltonian.

Gould and Jacobson introduced a neighborhood condition that was patterned
after the Ore type of degree condition, and that also implies (Qhe.c:,xfjstencq of certain

subgraphs. An example of a result using this condition is the following, which paral-
- lels the previously cited result of Ore. - o) £

TueoreM B [3]: If G isa graph of order n > 3 such that the union of the neigh-
borhoods of each pair of nonadjacent vertices is of cardinality at least (2n + 1)/3,
then G is Hamiltonian. Sy

Our purpose is to investigate the neighborhood condition of the preceding type
needed to ensure a clique of a fixed order. If n = km, then the Turan graph [6], .
which is the complete k-partite graph, Ko m....,ms dOeS not contain a complete K, , ,
as a subgraph. However, for m > ¢t > 1, the union of the neighborhoods of any set of
t independent vertices has precisely (k — 1)m = (k — 1)n/k vertices. Therefore, the
following theorem, which is the main result to be proved, is the best possible of this
type.

4 To whom correspondence should be addressed.
4
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Trporem 1: Let k and ¢ be fixed integers greater than or equal‘to 2. If any set of
t independent vertices of a graph of ‘order n > gk, t) has more than (k = n/k
vertices in, the union of the neighborhoods of the vertices, then G has a clique of
order at least k + 1. : : o ' < e

. NOTATION

All graphs will be finite and without loops or multiple edges. Notation will gen-
erally follow that of [4] unless otherwise stated. Some special notation and termi- *
nology will be introduced; and standard notation that is used, extensively will be
briefly described. For example, the complete multipartite. graph with k parts each
with m vertices will be expressed as K(k; m), and the special case when m = 1, which
is the complete graph on k vertices, will be expressed simply as K. . G

Let v be a vertex of a graph H. The neighborhood of v (the. vertices that are
adjacent in H to v) will be denoted by Ny(v), or simply N(v) when the identity of H
is clear. If ¢ is a positive integer, then H(t) will denote the graph obtained from H by
replacifig v with.¢ independent vertices, each with the same neighborhood as v. We
will say that H,(t) is obtained from H by expanding the vertex.v into t vertices. The
- graph obtained when each vertex of H is expanded into ¢ vertices will be denoted by
H(t). Therefore, if H has order h (the number of vertices-in H), then H(t) and H(t)
have orders h + t — 1 and ht, respectively. Also, with this notation, K;(t) = K(k; t).

- The maximum number of ‘edges 4 graph G of order r can have without having a
copy of a graph H is the extremal numbér ex(n, H). Additional’ edges in G ‘will
ensure at least one copy, but possibly many copies of H. By ng(H) we will denote the
number of copies of H in G, where H is considered as a labeled graph. If the order of
H is p, then ng(H) < cn? for some ¢ = o(H), because there are at most that many
subsets of p vertices of G. If; on the other hand, ng(H) > c'n” for some ¢’ = ¢'(H), we
will say that H saturates G. ; N >

We next carefully define the neighborhood condition that appears in' the state-
ment of Theorem 1, and is the basis of this inyestigation. '

,,DBFIN'Imn:: For ﬁxed positive iniggcrs%‘aﬁh t, a;»gra'ph G of order n mﬁm the
\neighborhood. condition N(k,-t) if for each set Ly sed Mo, x,} of t-independent ver-
tices, S TR G BT st o8

[{UNalxd: 1 < i <t}1> (k — Dnjk.

PROOFS
We begin with a restatement of the r_esui;_ to be proved ih this section.

THEOREM 1: Let k, £t >'2 be in'tégé;s. If a:grapll'"G of order n.> nolk, t) satisﬂ‘ej:s
the neighborhood condition N(k, t), then G contains a K, ,." 00D i)

It should be noted thatea graph G of ‘order n that satisfies the ‘neighborhood
condition N(k; £) does ‘not riecessarily'have ‘more than ex(n, K. 1) ‘edges. Thus,
Theorém 1 is not a consequence of the extremal result of Turan [6]. i
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The followmg lemma reduoes the ptoof of Theorem 1 to proving the existence of
an expansion of K namely 2 K(k 1), mstead of a K,H . :

Lemma 1: Letk, t > 2 be mtegers If a'graph G'of order n satisﬁes the nexghbor-
" hood condition N(k, t) and contains a K{k; t), then G contams B Kjpreaes

Proof Let Ay, A, ..., A, be th; vertices in the k parts of the complete mplti-’
partite graph Ki(k; ¢), and let A be the remaining n — kt vertices of G. We will _
assume that G does not contain a K, ,, and show that this leads to a contradiction.

“The vertices in each A, are mdependent, and no vertex of 4 is adjaeent to at least
one vertex in each 4, (1 <i'<1), sirice there is 1o K., in G. There is 1o loss of
genefality in assuming that there"are IAI/k = (n — ke)/k'= (n/k) — t vertices of A
with no adjacencies in A4,. Therefore, the't independent vertices of A, 1 have a com-
bined neighborhood of at most n — (n/k) vertices, which i’mphes that IG does not
satisfy the ne:ghborhood condmon N(k, t) Thls contradlcnon completes the proof
of Lemma 1.

. Our next objectave is to show that a graph G that satigfies the nelghborhood
-condition Nk, r) contains a K(k; ). We will show something stronger, namely that
K(i; 1) saturates G for (1.< i < k). The following lemma.will be-used:in an inductive
proof of the preceding statement. Lemma 2 and. its pwof ‘are’ pmerned after a
" result of Erdés and Slmonovxts inf2]."

¥

: LBMMAZ. Lettbeaﬁxedppnuvcmtegerandﬂpﬁxedg‘aphoforderp:lfcxs
:unygraphoforder nwith. P P

lhenthmisaconstamcac(p, t),suqhthat e
L no(H.,(t))ZE(cm’)/(n""m"“)] RIS T e
for any; vemxvof H. S i

Proof: Let H' = H — v, and {H’ ire R} Be the coples of H' oontnmed in'G. For
each copy H), let L, be the vertices of G — H, that ‘are adjacent in G 1o the' neigh-
~borhood N(v) of viin H.. If I, = |L,|; then Z.x’ =m Each.snbset of L, wath t

vertices will give a copy of H/(t)in G. Therefore,

nelHAt) = 5 ( )z IRI("‘"R')

reR
2 e t)(m’/lRI' 1.
SmceH’hasorderp—l IRIScn" ‘and ‘
- nH0) 2 [c(é t)m'/(n" th- "J
Thls completes the proof of Lemma 2 A :

The special case of Lemma 2 when H. ‘saturates G;grves the tollomng v.wo eorol-
laries, which ‘are expressed in the lbrm thlt we will apply them in’ the proof of
Proposltion L i 5 ;
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Conox.mv, 1: Ifm = c'n’ then ne(H (1) = [en?*t-1].
COROLLARY 2: If m = ¢'n?, then ng(H(t)) 2 [en®].

The proof of Theorem 1.will be complete with the proof of the following result,
which states that K(k; ¢) saturates any graph that satisfies the neighborhood condi-
tlon N(k, ?).

PROPOSITION 1: ‘Let t22, kzl be integers and let G be a graph ‘of ‘order n,
which satisfies N(k, t) Then, there emt positive constants ¢ =¢, ,/and ¢' = ¢} s\!ch
that v v

ng(Ky) = [en*] (1)
and T
ne(K(k; ) = [cn"]. . - @

Proof: The proof is by induction on k with t fixed throughout the proof. For

=1, both’(1) and (2) are trmally true. We assume that (1) and (2) are true for
-k =r > 1 and verify them for k ='r + 1. Thus, we assume G satisfies the ncnghbor-
hood condition N(r + 1, t). We can also assume that n is large, because appropriate
choice of constants ¢ and ¢’ make the result trivial for small values of n.

Since property N(r + 1, t) implies N(r, ¢), we have that both (1) and (2) are true
for k =r, so G contains at least [c'n™] copies ot' K(r; t). There are two types of
copies of K(r; 1): there are those w:th no edges in each. of then' parts and those wnth
at least one edge in some ‘part. v
_ First consider the. case of a copy of K(r; £). with pa:ts Ly, A,. ,A,, each of
which is mdcpendent. Let A be the remaining vertices of G. For eachi (1 Si < ), let

B, bé the vertices of A4 that have no adjacericies in A;. Let B be the remaining
: vertices of A The nmghborhood condition N(r +1, t) imphes lB,l < IA]/(r + 1),
'and hence %

IBIZIAI/(r+1)zcn

for some positive constant ¢”. Note that each vertex in B will give at Ieast one copy
ofa K, ., in G using precisely one vertex from each A;.
If at least one half of the copies of K(r; t) in G are of the first type, then there will
at least [(c"n)c'n™)/2] copies of a K, ;, counting multiplicities. However, any
sug +1 can come from at most n™~" different copies of a K(r; t). Thus G would
‘contain at teast [( Lc”c n**1)/2] copies of a K, , in this case.

- We can rlow assume that at least one half of the copies of K(r; t) in G-are of the
second type and have at Teast one edge in one of their parts. Associated with eachof
the (c'n")/2 copies of K(r; t) of this- type there is a copy of K i in G. Also, any such

" K, will arise from at most n” "~ ! different copies of a K(r, 1). Hence there are at
least

[en)2n™ "~ 1] = (¢’ w*1y2)

copies of a K, ., in G. This verifies Wfork=r+1. ;
Since K(r + 1, )= K, ,4(¢), Corollary 2 and (1) verify that (2) is true when
k = r + 1. This completes.the proof of Proposition 1. O
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The proof of Theorem 1 is an 1mmed1ate consequence of Proporuon 1 and
Lemma 1. :

PROBLEMS ~ - ‘

There are numerous unsolved: problems related to neighborhood conditions like
the one just considered. In [3] and [4] neighborhood conditions for nonadjacent
pairs of vertices are used to ensure the existence of certain types of subgraphs.
Theorem B is an example of one of these results. It would be nice to replace each of
these conditions by a neighborhood condition involving ¢ independent wvertices
where ¢ > 3. Also, one can be concerned not with just the existence of a certain
subgraph, but with how many subgraphs of this type there are. Proposition 1 is an
‘example of a result of this type.

* Bondy and Chvatal considered a “degree” closure that generalized results of the
type given in Theorem A. Does there exist a “nelghborhood" closure analogous to
-the “degree” closure that would generalize the results using nelghborhood condl-
tions?

e
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INTRODUCTION AND STA‘TMNT OF THE RESULTS

Let X={1,2, ... n}andeeafamllyofsubsetsofX that is F < 2%, For
1s:sjsnset[w] = i iss B mewgersk,mthhkzz,()smsmwesay,
that F has property P(k, m) if any k pairwise - digjoint members; of F hage _union of
size greater than m. Thus P(k, n) means simply that F-contains no k paxrwrse drsjomt
sets.

Let us write m in the form m = kt—rwherelSrsk.Dcﬁne

F(n,k,m) {FeX: |F|+|Fr\[1 r—l]th}

Ttis easy to check that F(u, m, k) has property P(k, n) ln fact, if F,, F, are
pairwise disjoint members.of F, then ; : ;
[Fpu---v F,|=|F,|v+ +‘,Fx|‘2k‘-"i b3} |me\ [1 T 1]|2kt ~@r=1)

xsts

holds.
. Note that for m = kt — 1 .0ne hassrmply F(n, k,m) {Fs X: [FI > t}

Thorem 1: Suppose F < 2%, F has P, m). Then mle(n, k,m)| hoids in
qachofthefollowmgcam ‘ i

(@ m=kt—1.

b k=2m=2t-2, '

© k,rarbm'ary,n>2m’ Moreover,|F|-|F(n,k,m}|upossxhleonlyxﬂ"u
morphwtoF(n,k ).

- Let 'us ‘mention that the condition n > no(m) eunnot be vompletely temoved in
(c). In fact, Kleitman [8] proved that for n='m="kt - “k th_c"mnxnnﬁmmol’a i

 family having P(n, k, n) is attained by F =-{F<; X:F {1, =1} =t=1}.

Let us also note that if (c) holds for some triple (n, k, m), then it also holds for all

(', k,m)with ' > n—this will be clear from the inductive proof of (a) ant! ®) .

The following old conjecture of Erddsiis related to our problem

9




