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Preface

HE APPRENTICE CARPENTER may want only a hammer and a saw, but a master

builder employs many precision tools. Computer programming likewise

requires sophisticated tools to cope with the complexity of real applications,

and only practice with these tools will build skill in their use. This book treats
structured problem solving, object-oriented programming, data abstraction, and
the comparative analysis of algorithms as fundamental tools of program design.
Several case studies of substantial size are worked out in detail, to show how all
the tools are used together to build complete programs.

Many of the algorithms and data structures we study possess an intrinsic el-
egance, a simplicity that cloaks the range and power of their applicability. Before
long the student discovers that vast improvements can be made over the naive
methods usually used in introductory courses. Yet this elegance of method is tem-
pered with uncertainty. The student soon finds that it can be far from obvious which
of several approaches will prove best in particular applications. Hence comes an
early opportunity to introduce truly difficult problems of both intrinsic interest and
practical importance and to exhibit the applicability of mathematical methods to
algorithm verification and analysis.

Many students find difficulty in translating abstract ideas into practice. This
book, therefore, takes special care in the formulation of ideas into algorithms and in
the refinement of algorithms into concrete programs that can be applied to practical
problems. The process of data specification and abstraction, similarly, comes before
the selection of data structures and their implementations.

We believe in progressing from the concrete to the abstract, in the careful de-
velopment of motivating examples, followed by the presentation of ideas in a more
general form. At an early stage of their careers most students need reinforcement
from seeing the immediate application of the ideas that they study, and they require
the practice of writing and running programs to illustrate each important concept
that they learn. This book therefore contains many sample programs, both short

x1i
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functions and complete programs of substantial length. The exercises and pro-
gramming projects, moreover, constitute an indispensable part of the book. Many
of these are immediate applications of the topic under study, often requesting that
programs be written and run, so that algorithms may be tested and compared.
Some are larger projects, and a few are suitable for use by a small group of students
working together.

Our programs are written in the popular object-oriented language C++. We
take the view that many object-oriented techniques provide natural implemen-
tations for basic principles of data-structure design. In this way, C++ allows us
to construct safe, efficient, and simple implementations of data-structures. We
recognize that C++ is sufficiently complex that students will need to use the ex-
perience of a data structures courses to develop and refine their understanding
of the language. We strive to support this development by carefully introducing
and explaining various object-oriented features of C++ as we progress through the
book. Thus, we begin Chapter 1 assuming that the reader is comfortable with the
elementary parts of C++ (essentially, with the C subset), and gradually we add
in such object-oriented elements of C++ as classes, methods, constructors, inheri-
tance, dynamic memory management, destructors, copy constructors, overloaded
functions and operations, templates, virtual functions, and the STL. Of course, our
primary focus is on the data structures themselves, and therefore students with
relatively little familiarity with C++ will need to supplement this text with a C++
programming text.

By working through the first large project (ConwAay’s game of Life), Chapter 1
expounds principles of object-oriented program design, top-down refinement, re-
view, and testing, principles that the student will see demonstrated and is expected
to follow throughout the sequel. At the same time, this project provides an oppor-
tunity for the student to review the syntax of elementary features of C++, the
programming language used throughout the book.

Chapter 2 introduces the first data structure we study, the stack. The chapter
applies stacks to the development of programs for reversing input, for modelling
a desk calculator, and for checking the nesting of brackets. We begin by utilizing
the STL stack implementation, and later develop and use our own stack imple-
mentation. A major goal of Chapter 2 is to bring the student to appreciate the
ideas behind information hiding, encapsulation and data abstraction and to apply
methods of top-down design to data as well as to algorithms. The chapter closes
with an introduction to abstract data types.

Queues are the central topic of Chapter 3. The chapter expounds several dif-
ferent implementations of the abstract data type and develops a large application
program showing the relative advantages of different implementations. In this
chapter we introduce the important object-oriented technique of inheritance.

Chapter 4 presents linked implementations of stacks and queues. The chapter
begins with a thorough introduction to pointers and dynamic memory manage-
ment in C++. After exhibiting a simple linked stack implementation, we discuss
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destructors, copy constructors, and overloaded assignment operators, all of which
are needed in the safe C++ implementation of linked structures.

Chapter 5 continues to elucidate stacks by studying their relationship to prob-
lem solving and programming with recursion. These ideas are reinforced by ex-
ploring several substantial applications of recursion, including backtracking and
tree-structured programs. This chapter can, if desired, be studied earlier in a course
than its placement in the book, at any time after the completion of Chapter 2.

More general lists with their linked and contiguous implementations provide
the theme for Chapter 6. The chapter also includes an encapsulated string im-
plementation, an introduction to C++ templates, and an introduction to algorithm
analysis in a very informal way.

Chapter 7, Chapter 8, and Chapter 9 present algorithms for searching, sorting,
and table access (including hashing), respectively. These chapters illustrate the
interplay between algorithms and the associated abstract data types, data struc-
tures, and implementations. The text introduces the “big-O” and related notations
for elementary algorithm analysis and highlights the crucial choices to be made
regarding best use of space, time, and programming effort. These choices require
that we find analytical methods to assess algorithms, and producing such analyses
is a battle for which combinatorial mathematics must provide the arsenal. At an
elementary level we can expect students neither to be well armed nor to possess the
mathematical maturity needed to hone their skills to perfection. Our goal, there-
fore, is to help students recognize the importance of such skills in anticipation of
later chances to study mathematics.

Binary trees are surely among the most elegant and useful of data structures.
Their study, which occupies Chapter 10, ties together concepts from lists, searching,
and sorting. As recursively defined data structures, binary trees afford an excellent
opportunity for the student to become comfortable with recursion applied both to
data structures and algorithms. The chapter begins with elementary topics and
progresses as far as such advanced topics as splay trees and amortized algorithm
analysis.

Chapter 11 continues the study of more sophisticated data structures, including
tries, B-trees, and red-black trees.

Chapter 12 introduces graphs as more general structures useful for problem
solving, and introduces some of the classical algorithms for shortest paths and
minimal spanning trees in graphs.

The case study in Chapter 13 examines the Polish notation in considerable
detail, exploring the interplay of recursion, trees, and stacks as vehicles for problem
solving and algorithm development. Some of the questions addressed can serve
as an informal introduction to compiler design. As usual, the algorithms are fully
developed within a functioning C++ program. This program accepts as input an
expression in ordinary (infix) form, translates the expression into postfix form, and
evaluates the expression for specified values of the variable(s). Chapter 13 may be
studied anytime after the completion of Section 10.1.

The appendices discuss several topics that are not properly part of the book’s
subject but that are often missing from the student’s preparation.

Appendix A presents several topics from discrete mathematics. Its final two
sections, Fibonacci numbers amd Catalan numbers, are more advanced and not
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needed for any vital purpose in the text, but are included to encourage combina-
torial interest in the more mathematically inclined.

Appendix B discusses pseudorandom numbers, generators, and applications,
a topic that many students find interesting, but which often does not fit anywhere
in the curriculum.

Appendix C catalogues the various utility and data-structure packages that are
developed and used many times throughout this book. Appendix C discusses dec-
laration and definition files, translation units, the utility package used throughout
the book, and a package for calculating CPU times.

Appendix D, finally, collects all the Programming Precepts and all the Pointers

and Pitfalls scattered through the book and organizes them by subject for conve-
nience of reference.

prerequisite

content

The prerequisite for this book is a first course in programming, with experience
using the elementary features of C++. However, since we are careful to introduce
sophisticated C++ techniques only gradually, we believe that, used in conjunction
with a supplementary C++ textbook and extra instruction and emphasis on C++
language issues, this text provides a data structures course in C++ that remains
suitable even for students whose programming background is in another language
such as C, Pascal, or Java.

A good knowledge of high school mathematics will suffice for almost all the
algorithm analyses, but further (perhaps concurrent) preparation in discrete math-
ematics will prove valuable. Appendix A reviews all required mathematics.

This book is intended for courses such as the ACM Course CS2 (Program Design
and Implementation), ACM Course CS7 (Data Structures and Algorithm Analysis), or
a course combining these. Thorough coverage is given to most of the ACM/IEEE
knowledge units! on data structures and algorithms. These include:

AL1 Basic data structures, such as arrays, tables, stacks, queues, trees, and graphs;
AL2 Abstract data types;

AL3 Recursion and recursive algorithms;

AL4 Complexity analysis using the big Oh notation;

AL6 Sorting and searching; and

AL8 Practical problem-solving strategies, with large case studies.

The three most advanced knowledge units, AL5 (complexity classes, NP-complete

problems), AL7 (computability and undecidability), and AL9 (parallel and dis-
tributed algorithms) are not treated in this book.

1 See Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force, ACM
Press, New York, 1990.
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Most chapters of this book are structured so that the core topics are presented
first, followed by examples, applications, and larger case studies. Hence, if time
allows only a brief study of a topic, it is possible, with no loss of continuity, to move
rapidly from chapter to chapter covering only the core topics. When time permits,
however, both students and instructor will enjoy the occasional excursion into the
supplementary topics and worked-out projects.

two-term course A two-term course can cover nearly the entire book, thereby attaining a satis-
fying integration of many topics from the areas of problem solving, data structures,
program development, and algorithm analysis. Students need time and practice to
understand general methods. By combining the studies of data abstraction, data
structures, and algorithms with their implementations in projects of realistic size,
an integrated course can build a solid foundation on which, later, more theoretical
courses can be built. Even if it is not covered in its entirety, this book will provide
enough depth to enable interested students to continue using it as a reference in
later work. It is important in any case to assign major programming projects and
to allow adequate time for their completion.

SUPPLEMENTARY MATERIALS

A CD-ROM version of this book is anticipated that, in addition to the entire contents
of the book, will include:

= All packages, programs, and other C++ code segments from the text, in a form
ready to incorporate as needed into other programs;

= Executable versions (for DOS or Windows) of several demonstration programs
and nearly all programming projects from the text;

w» Brief outlines or summaries of each section of the text, suitable for use as a
study guide.

These materials will also be available from the publisher’s internet site. To reach
these files with ftp, log in as user anonymous to the site ftp.prenhall.comand
change to the directory

pub/esm/computer_science.s-041/kruse/cpp

Instructors teaching from this book may obtain, at no charge, an instructor’s
version on CD-ROM which, in addition to all the foregoing materials, includes:
= Brief teaching notes on each chapter;
= Full solutions to nearly all exercises in the textbook;
w Full source code to nearly all programming projects in the textbook;

= Transparency masters.
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BOOK PRODUCTION

This book and its supplements were written and produced with software called
PréTEX, a preprocessor and macro package for the TgX typesetting system.? PreTgX,
by exploiting context dependency, automatically supplies much of the typesetting
markup required by TgX. PréTgX also supplies several tools that greatly simplify
some aspects of an author’s work. These tools include a powerful cross-reference
system, simplified typesetting of mathematics and computer-program listings, and
automatic generation of the index and table of contents, while allowing the pro-
cessing of the book in conveniently small files at every stage. Solutions, placed
with exercises and projects, are automatically removed from the text and placed in
a separate document.

For a book such as this, PréIgX’s treatment of computer programs is its most
important feature. Computer programs are not included with the main body of the
text; instead, they are placed in separate, secondary files, along with any desired
explanatory text, and with any desired typesetting markup in place. By placing
tags at appropriate places in the secondary files, PréIgX can extract arbitrary parts
of a secondary file, in any desired order, for typesetting with the text. Another
utility removes all the tags, text, and markup, producing as its output a program
ready to be compiled. The same input file thus automatically produces both type-
set program listings and compiled program code. In this way, the reader gains
increased confidence in the accuracy of the computer program listings appearing
in the text. In fact, with just two exceptions, all of the programs developed in this
book have been compiled and succesfully tested under the g++ and Borland C++
compilers (versions 2.7.2.1 and 5.0, respectively). The two exceptions are the first
program in Chapter 2 (which requires a compiler with a full ANSI C++ standard
library) and the last program of Chapter 13 (which requires a compiler with certain
Borland graphics routines).
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