ﬁﬁﬁéﬁﬂ '5 EFIZ '|'

o CEREE fidk

éﬁ; | - mER

| DATASTRUCTURES

_ | AND PROGRAM DESIGN
= IN C++

MW Robert L. Kruse
Alexander J. Ryba

LB EFEHFE H R &
Higher Education Press
e P €A@rson Education

= TR

HEH B F K
— - SMEFE RAHF 5 HAR

ARG SIEFITT
— C++HiESiiA
(HEDER)

DATA STRUCTURES AND
PROGRAM DESIGN IN C++

Robert L. Kruse
Alexander J. Ryba

g
Pk &

441 s
z& R

s B E E R A
- Pearson Education H x5 [

Bl=. 01-2001-1043 B

English Reprint Copyright (©) 2001 by Higher Education Press and Pearson Education North Asia Limited.

Data Structures and Program Design in C++
By Robert L . Kruse & Alexander J. Ryba

Copyright (©) 1999

All Rights Reserved

Published by arrangement with Prentice Hall, Inc ., a Pearson Education company

This edition is authorized for sale only in the People’s Republic of China(excluding the Special Administrative

Regions of Hong Kong and Macau)

BB EMS B (CIP) 8#TE
HESWESBRFRIT . C++BFMR . /(X)) REW

(Kruse ,R.L.) % .—Jb & . M EH F H ik, 2001 (2002 EEp)
ISBN 7-04-010039-8

[.%- 0.5 MO BELEHW—EX Q CiEE—BF
wit—3E 3 IV.TP311.12

b E R A B B8 CIP Bl 7 (2001) % 19797 5

BN SRFRIT—C+1B 5 ik
Robert L .Kruse %

HRETT HEEE B MHMEE 010-64054588
HE dEETH AR S5 5 %HB A& 800-810-0598
HBEI4RE3 100009 i) Ht http://www.hep.edu.cn

£ R 010-64014048 http://www.hep.com.cn

Z ¥ FHeBEIREETRT

B Rl JbsREEERIT

F & 787x1092 1/16 B &k 2001 4E5 A% 1R

EP # 46.00 Ep 2002 4E 10 A5 3 EPRI
F ¥ 1026000 E fr 39.00T

A dn Ak BT 480 BT | B0 O S AR [A, B B PR B A AR TR R A

.

Bl

It

20 2K, i EHoEREZARAKRKNEEHERER, HERNEF. FE.
M. #E. X IASFFTENEEFETRAAYH, HHTAXEANELESLE
BRAERZFRFEH . #HAN2HE, EEATRAENEES L, AT #
ERNBOR K.

ATmRREFES LHy#E, ERE (BREFHAHLLXRE TN ELF LS
Y %, ABRY UERMFEF T L, KEELXG®KYE, LAHLEF NHERARX
KR.” ERFUNERT FHE AR EXEAN VT G, KEE L LA ks
EIShE 22t F TSR . RERBMRLAERATEERFRIERALTNEZ S 5#
%o

EWHLR, KEGFEFVEARRIARELE, E5EREH#ERM L, 28X
A A TRLHFEIERFEH#AT, RELFIRESBARAL NREF, 5l BH
FAMEHERELRINEATFHEEHRAL, RAKEFLES LERSE L
AFHLEERE. A, HEXREHFHFTAREHINERFARKNEL, £K
HENRDBFIREEMAFEANHFNER L, FEHBMERERSE, RE—
LETHE, REABEIRNGEENFERERMXELWEF T, EANE
. REREBLZRFNER 21 €450 “AE" EANE R F A RE H 093
Bl EHAHHBEFFRAEZLEERFREARETRAEAESIMFHMNY
BRHATHIERNERF . WEEREETENHF EEERE#AFHEE, Fif
.74 By TR B E K ¥ A 8 FEAF.

ATEBEEREH, Eo—LHRAECR AN, —SERERAXOH
M#EFTHFHEM L, HEXREEHFTALLHAEIRBEHFTLEREFRESMEFE
ERFRBERRFEEMKEHFHPMH BN HAARERDHRA KX LI AT
R % BB M HATRF B K

ARG HGRIIHM OGP ERTAE, REGREGREE LR F AL L
RE5EEERGHATH UG ER ERFE; FIROEROEMAHREEER

ROERMFRERERARNERE, NENEHE RN A EZTFEM FHEQF
RIPHFAINAZH. AP HARFEM: BOBMNENEN LN S RE A ¥ %M
-2

HEREGERTARLE ORI BHEELETESR, FEHAHTRA, A
EAMLABRMEVERRRG. tFE2H LGN ERE, REFOEMHER, &
BEMmETIE, UESHES. EF. EFNIERMARFHMH.

BB, RMEIIMEXERAE LA A TENRS, RHWESHEINT X
HE55HFIE.

HREHBFHE T
—OO0—4MWHA

Preface

HE APPRENTICE CARPENTER may want only a hammer and a saw, but a master

builder employs many precision tools. Computer programming likewise

requires sophisticated tools to cope with the complexity of real applications,

and only practice with these tools will build skill in their use. This book treats
structured problem solving, object-oriented programming, data abstraction, and
the comparative analysis of algorithms as fundamental tools of program design.
Several case studies of substantial size are worked out in detail, to show how all
the tools are used together to build complete programs.

Many of the algorithms and data structures we study possess an intrinsic el-
egance, a simplicity that cloaks the range and power of their applicability. Before
long the student discovers that vast improvements can be made over the naive
methods usually used in introductory courses. Yet this elegance of method is tem-
pered with uncertainty. The student soon finds that it can be far from obvious which
of several approaches will prove best in particular applications. Hence comes an
early opportunity to introduce truly difficult problems of both intrinsic interest and
practical importance and to exhibit the applicability of mathematical methods to
algorithm verification and analysis.

Many students find difficulty in translating abstract ideas into practice. This
book, therefore, takes special care in the formulation of ideas into algorithms and in
the refinement of algorithms into concrete programs that can be applied to practical
problems. The process of data specification and abstraction, similarly, comes before
the selection of data structures and their implementations.

We believe in progressing from the concrete to the abstract, in the careful de-
velopment of motivating examples, followed by the presentation of ideas in a more
general form. At an early stage of their careers most students need reinforcement
from seeing the immediate application of the ideas that they study, and they require
the practice of writing and running programs to illustrate each important concept
that they learn. This book therefore contains many sample programs, both short

x1i

xii Preface

SYNOPSIS

Programming
Principles

Introduction to Stacks

Queues

Linked Stacks and
Queues

functions and complete programs of substantial length. The exercises and pro-
gramming projects, moreover, constitute an indispensable part of the book. Many
of these are immediate applications of the topic under study, often requesting that
programs be written and run, so that algorithms may be tested and compared.
Some are larger projects, and a few are suitable for use by a small group of students
working together.

Our programs are written in the popular object-oriented language C++. We
take the view that many object-oriented techniques provide natural implemen-
tations for basic principles of data-structure design. In this way, C++ allows us
to construct safe, efficient, and simple implementations of data-structures. We
recognize that C++ is sufficiently complex that students will need to use the ex-
perience of a data structures courses to develop and refine their understanding
of the language. We strive to support this development by carefully introducing
and explaining various object-oriented features of C++ as we progress through the
book. Thus, we begin Chapter 1 assuming that the reader is comfortable with the
elementary parts of C++ (essentially, with the C subset), and gradually we add
in such object-oriented elements of C++ as classes, methods, constructors, inheri-
tance, dynamic memory management, destructors, copy constructors, overloaded
functions and operations, templates, virtual functions, and the STL. Of course, our
primary focus is on the data structures themselves, and therefore students with
relatively little familiarity with C++ will need to supplement this text with a C++
programming text.

By working through the first large project (ConwAay’s game of Life), Chapter 1
expounds principles of object-oriented program design, top-down refinement, re-
view, and testing, principles that the student will see demonstrated and is expected
to follow throughout the sequel. At the same time, this project provides an oppor-
tunity for the student to review the syntax of elementary features of C++, the
programming language used throughout the book.

Chapter 2 introduces the first data structure we study, the stack. The chapter
applies stacks to the development of programs for reversing input, for modelling
a desk calculator, and for checking the nesting of brackets. We begin by utilizing
the STL stack implementation, and later develop and use our own stack imple-
mentation. A major goal of Chapter 2 is to bring the student to appreciate the
ideas behind information hiding, encapsulation and data abstraction and to apply
methods of top-down design to data as well as to algorithms. The chapter closes
with an introduction to abstract data types.

Queues are the central topic of Chapter 3. The chapter expounds several dif-
ferent implementations of the abstract data type and develops a large application
program showing the relative advantages of different implementations. In this
chapter we introduce the important object-oriented technique of inheritance.

Chapter 4 presents linked implementations of stacks and queues. The chapter
begins with a thorough introduction to pointers and dynamic memory manage-
ment in C++. After exhibiting a simple linked stack implementation, we discuss

Recursion

Lists and Strings

Searching

Sorting

Tables and
Information Retrieval

Binary Trees

Multiway Trees

Graphs

Case Study:
The Polish Notation

Mathematical
Methods

Preface « Synopsis xiii

destructors, copy constructors, and overloaded assignment operators, all of which
are needed in the safe C++ implementation of linked structures.

Chapter 5 continues to elucidate stacks by studying their relationship to prob-
lem solving and programming with recursion. These ideas are reinforced by ex-
ploring several substantial applications of recursion, including backtracking and
tree-structured programs. This chapter can, if desired, be studied earlier in a course
than its placement in the book, at any time after the completion of Chapter 2.

More general lists with their linked and contiguous implementations provide
the theme for Chapter 6. The chapter also includes an encapsulated string im-
plementation, an introduction to C++ templates, and an introduction to algorithm
analysis in a very informal way.

Chapter 7, Chapter 8, and Chapter 9 present algorithms for searching, sorting,
and table access (including hashing), respectively. These chapters illustrate the
interplay between algorithms and the associated abstract data types, data struc-
tures, and implementations. The text introduces the “big-O” and related notations
for elementary algorithm analysis and highlights the crucial choices to be made
regarding best use of space, time, and programming effort. These choices require
that we find analytical methods to assess algorithms, and producing such analyses
is a battle for which combinatorial mathematics must provide the arsenal. At an
elementary level we can expect students neither to be well armed nor to possess the
mathematical maturity needed to hone their skills to perfection. Our goal, there-
fore, is to help students recognize the importance of such skills in anticipation of
later chances to study mathematics.

Binary trees are surely among the most elegant and useful of data structures.
Their study, which occupies Chapter 10, ties together concepts from lists, searching,
and sorting. As recursively defined data structures, binary trees afford an excellent
opportunity for the student to become comfortable with recursion applied both to
data structures and algorithms. The chapter begins with elementary topics and
progresses as far as such advanced topics as splay trees and amortized algorithm
analysis.

Chapter 11 continues the study of more sophisticated data structures, including
tries, B-trees, and red-black trees.

Chapter 12 introduces graphs as more general structures useful for problem
solving, and introduces some of the classical algorithms for shortest paths and
minimal spanning trees in graphs.

The case study in Chapter 13 examines the Polish notation in considerable
detail, exploring the interplay of recursion, trees, and stacks as vehicles for problem
solving and algorithm development. Some of the questions addressed can serve
as an informal introduction to compiler design. As usual, the algorithms are fully
developed within a functioning C++ program. This program accepts as input an
expression in ordinary (infix) form, translates the expression into postfix form, and
evaluates the expression for specified values of the variable(s). Chapter 13 may be
studied anytime after the completion of Section 10.1.

The appendices discuss several topics that are not properly part of the book’s
subject but that are often missing from the student’s preparation.

Appendix A presents several topics from discrete mathematics. Its final two
sections, Fibonacci numbers amd Catalan numbers, are more advanced and not

xiv Preface

Random Numbers

Packages and
Utility Functions

Programming
Precepts, Pointers,
and Pitfalls

needed for any vital purpose in the text, but are included to encourage combina-
torial interest in the more mathematically inclined.

Appendix B discusses pseudorandom numbers, generators, and applications,
a topic that many students find interesting, but which often does not fit anywhere
in the curriculum.

Appendix C catalogues the various utility and data-structure packages that are
developed and used many times throughout this book. Appendix C discusses dec-
laration and definition files, translation units, the utility package used throughout
the book, and a package for calculating CPU times.

Appendix D, finally, collects all the Programming Precepts and all the Pointers

and Pitfalls scattered through the book and organizes them by subject for conve-
nience of reference.

prerequisite

content

The prerequisite for this book is a first course in programming, with experience
using the elementary features of C++. However, since we are careful to introduce
sophisticated C++ techniques only gradually, we believe that, used in conjunction
with a supplementary C++ textbook and extra instruction and emphasis on C++
language issues, this text provides a data structures course in C++ that remains
suitable even for students whose programming background is in another language
such as C, Pascal, or Java.

A good knowledge of high school mathematics will suffice for almost all the
algorithm analyses, but further (perhaps concurrent) preparation in discrete math-
ematics will prove valuable. Appendix A reviews all required mathematics.

This book is intended for courses such as the ACM Course CS2 (Program Design
and Implementation), ACM Course CS7 (Data Structures and Algorithm Analysis), or
a course combining these. Thorough coverage is given to most of the ACM/IEEE
knowledge units! on data structures and algorithms. These include:

AL1 Basic data structures, such as arrays, tables, stacks, queues, trees, and graphs;
AL2 Abstract data types;

AL3 Recursion and recursive algorithms;

AL4 Complexity analysis using the big Oh notation;

AL6 Sorting and searching; and

AL8 Practical problem-solving strategies, with large case studies.

The three most advanced knowledge units, AL5 (complexity classes, NP-complete

problems), AL7 (computability and undecidability), and AL9 (parallel and dis-
tributed algorithms) are not treated in this book.

1 See Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force, ACM
Press, New York, 1990.

Preface » Supplementary Materials Xv

Most chapters of this book are structured so that the core topics are presented
first, followed by examples, applications, and larger case studies. Hence, if time
allows only a brief study of a topic, it is possible, with no loss of continuity, to move
rapidly from chapter to chapter covering only the core topics. When time permits,
however, both students and instructor will enjoy the occasional excursion into the
supplementary topics and worked-out projects.

two-term course A two-term course can cover nearly the entire book, thereby attaining a satis-
fying integration of many topics from the areas of problem solving, data structures,
program development, and algorithm analysis. Students need time and practice to
understand general methods. By combining the studies of data abstraction, data
structures, and algorithms with their implementations in projects of realistic size,
an integrated course can build a solid foundation on which, later, more theoretical
courses can be built. Even if it is not covered in its entirety, this book will provide
enough depth to enable interested students to continue using it as a reference in
later work. It is important in any case to assign major programming projects and
to allow adequate time for their completion.

SUPPLEMENTARY MATERIALS

A CD-ROM version of this book is anticipated that, in addition to the entire contents
of the book, will include:

= All packages, programs, and other C++ code segments from the text, in a form
ready to incorporate as needed into other programs;

= Executable versions (for DOS or Windows) of several demonstration programs
and nearly all programming projects from the text;

w» Brief outlines or summaries of each section of the text, suitable for use as a
study guide.

These materials will also be available from the publisher’s internet site. To reach
these files with ftp, log in as user anonymous to the site ftp.prenhall.comand
change to the directory

pub/esm/computer_science.s-041/kruse/cpp

Instructors teaching from this book may obtain, at no charge, an instructor’s
version on CD-ROM which, in addition to all the foregoing materials, includes:
= Brief teaching notes on each chapter;
= Full solutions to nearly all exercises in the textbook;
w Full source code to nearly all programming projects in the textbook;

= Transparency masters.

xvi Preface

BOOK PRODUCTION

This book and its supplements were written and produced with software called
PréTEX, a preprocessor and macro package for the TgX typesetting system.? PreTgX,
by exploiting context dependency, automatically supplies much of the typesetting
markup required by TgX. PréTgX also supplies several tools that greatly simplify
some aspects of an author’s work. These tools include a powerful cross-reference
system, simplified typesetting of mathematics and computer-program listings, and
automatic generation of the index and table of contents, while allowing the pro-
cessing of the book in conveniently small files at every stage. Solutions, placed
with exercises and projects, are automatically removed from the text and placed in
a separate document.

For a book such as this, PréIgX’s treatment of computer programs is its most
important feature. Computer programs are not included with the main body of the
text; instead, they are placed in separate, secondary files, along with any desired
explanatory text, and with any desired typesetting markup in place. By placing
tags at appropriate places in the secondary files, PréIgX can extract arbitrary parts
of a secondary file, in any desired order, for typesetting with the text. Another
utility removes all the tags, text, and markup, producing as its output a program
ready to be compiled. The same input file thus automatically produces both type-
set program listings and compiled program code. In this way, the reader gains
increased confidence in the accuracy of the computer program listings appearing
in the text. In fact, with just two exceptions, all of the programs developed in this
book have been compiled and succesfully tested under the g++ and Borland C++
compilers (versions 2.7.2.1 and 5.0, respectively). The two exceptions are the first
program in Chapter 2 (which requires a compiler with a full ANSI C++ standard
library) and the last program of Chapter 13 (which requires a compiler with certain
Borland graphics routines).

ACKNOWLEDGMENTS

Over the years, the Pascal and C antecedents of this book have benefitted greatly
from the contributions of many people: family, friends, colleagues, and students,
some of whom are noted in the previous books. Many other people, while studying
these books or their translations into various languages, have kindly forwarded
their comments and suggestions, all of which have helped to make this a better
book.

We are happy to acknowledge the suggestions of the following reviewers,
who have helped in many ways to improve the presentation in this book: KerrH
VANDER LINDEN (Calvin College), Jens GREGOR (University of Tennessee), VICTOR
BERRY (Boston University), JEFFERY LEON (University of Illinois at Chicago), SusaN

2 TeX was developed by DONALD E. KNUTH, who has also made many important research contri-
butions to data structures and algorithms. (See the entries under his name in the index.)

Preface o Acknowledgments xvii

Hurtr (University of Missouri-Columbia), FRED HARRIS (University of Nevada), ZHI-
L1 ZHANG (University of Minnesota), and ANDREW SUNG (New Mexico Institute of
Technology).

ALEX RyBaA especially acknowledges the helpful suggestions and encouraging
advice he has received over the years from WM RUITENBURG and JOHN SmMms of
Marquette University, as well as comments from former students Rick VoGeL and
Jun WANG.

It is a special pleasure for RoBERT KRUSE to acknowledge the continuing advice
and help of PauL MAILHOT of PréelgX, Inc., who was from the first an outstanding
student, then worked as a dependable research assistant, and who has now become
a valued colleague making substantial contributions in software development for
book production, in project management, in problem solving for the publisher, the
printer, and the authors, and in providing advice and encouragement in all aspects
of this work. The CD-ROM versions of this book, with all their hypertext features
(such as extensive cross-reference links and execution of demonstration programs
from the text), are entirely his accomplishment.

Without the continuing enthusiastic support, faithful encouragement, and pa-
tience of the editorial staff of Prentice Hall, especially ALAN ApT, Publisher, LAURA
STEELE, Acquisitions Editor, and Marcia HorrtoN, Editor in Chief, this project would
never have been started and certainly could never have been brought to comple-
tion. Their help, as well as that of the production staff named on the copyright
page, has been invaluable.

RoBERT L. KRUSE
ALEXANDER J. RyBA

Contents

Preface Xi
Synopsis Xii
Course Structure Xiv
Supplementary Materials XV
Book Production Xvi
Acknowledgments XVi

1 Programming

Principles
1.1 Introduction 2

1.2 The Game of Life 4
1.2.1 Rules for the Game of Life 4
1.2.2 Examples 5
1.2.3 The Solution: Classes, Objects,
and Methods 7
1.2.4 Life: The Main Program 8

1.3 Programming Style 10
1.3.1 Names 10
1.3.2 Documentation and Format 13
1.3.3 Refinement and Modularity 15

1.4 Coding, Testing,
and Further Refinement 20
1.4.1 Stubs 20
1.4.2 Definition of the Class Life 22
1.4.3 Counting Neighbors 23
1.4.4 Updating the Grid 24
1.4.5 Input and Output 25
1.4.6 Drivers 27

1.4.7 Program Tracing 28
1.4.8 Principles of Program Testing

1.5 Program Maintenance 33
1.5.1 Program Evaluation 34
1.5.2 Review of the Life Program
1.5.3 Program Revision

and Redevelopment 38

1.6 Conclusions and Preview 39
1.6.1 Software Engineering 39
1.6.2 Problem Analysis 40
1.6.3 Requirements Specification
1.6.4 Coding a1

Pointers and Pitfalls 45
Review Questions 46

References for Further Study 47
C++ 47
Programming Principles 47
The Game of Life 47
Software Engineering 48

2 Introduction
to Stacks

29

35

a1

49

2.1 Stack Specifications 50
2.1.1 Lists and Arrays 50
.1.2 Stacks 50
3 First Example: Reversing a List
.4 Information Hiding 54
5 The Standard Template Library

51

55

vi Contents

2.2 Implementation of Stacks 57

2.2.1 Specification of Methods

for Stacks 57
2.2.2 The Class Specification 60
2.2.3 Pushing, Popping,

and Other Methods 61
2.2.4 Encapsulation 63

2.3 Application: A Desk Calculator 66
2.4 Application: Bracket Matching 69

2.5 Abstract Data Types
and Their Implementations 71
2.5.1 Introduction 71
2.5.2 General Definitions 73
2.5.3 Refinement of Data Specification 74

Pointers and Pitfalls 76
Review Questions 76

References for Further Study 77

3 Queues

1 Definitions
3.1.1 Queue Operatlons 79
3.1.2 Extended Queue Operations 81

78

3.2 Implementations of Queues 84

3.3 Circular Implementation
of Queues in C++ 89

3.4 Demonstration and Testing 93

3.5 Application of Queues: Simulation 96
3.5.1 Introduction 96
3.5.2 Simulation of an Airport 96
3.5.3 Random Numbers 99
3.5.4 The Runway Class Specification 99
3.5.5 The Plane Class Specification 100

3.5.6 Functions and Methods
of the Simulation 101
3.5.7 Sample Results 107

110
110
References for Further Study 1

Pointers and Pitfalls

Review Questions

4

4.1

4.2
4.3

4.4

4.5

4.6

Linked Stacks
and Queues 112

Pointers and Linked Structures 113
4.1.1 Introduction and Survey 113
4.1.2 Pointers and Dynamic Memory
in C++ 116
4.1.3 The Basics of Linked Structures 122

Linked Stacks 127

Linked Stacks with Safeguards 131
4.3.1 The Destructor 131
4.3.2 Overloading the

Assignment Operator 132
4.3.3 The Copy Constructor 135
4.3.4 The Modified

Linked-Stack Specification 136

Linked Queues 137
4.4.1 Basic Declarations 137
4.4.2 Extended Linked Queues 139

Application: Polynomial Arithmetic 141
4.5.1 Purpose of the Project 141
4.5.2 The Main Program 141
4.5.3 The Polynomial Data Structure 144
4.5.4 Reading and Writing
Polynomials 147
4.5.5 Addition of Polynomials 148
4.5.6 Completing the Project 150

Abstract Data Types

and Their Implementations 152
Pointers and Pitfalls 154
Review Questions 155
5 Recursion 157
5.1 Introduction to Recursion 158

5.2

5.1.1 Stack Frames for Subprograms 158
5.1.2 Tree of Subprogram Calls 159
5.1.3 Factorials:

A Recursive Definition 160
5.1.4 Divide and Conquer:

The Towers of Hanoi 163

Principles of Recursion 170

5.2.1 Designing Recursive Algorithms 170
5.2.2 How Recursion Works 171

5.2.3 Tail Recursion 174

5.2.4 When Not to Use Recursion 176
5.2.5 Guidelines and Conclusions 180

5.3 Backtracking: Postponing the Work 183
5.3.1 Solving the Eight-Queens Puzzle 183
5.3.2 Example: Four Queens 184
5.3.3 Backtracking 185
5.3.4 Overall Outline 186
5.3.5 Refinement: The First Data Structure

and Its Methods 188
5.3.6 Review and Refinement 191
5.3.7 Analysis of Backtracking 194

5.4 Tree-Structured Programs:
Look-Ahead in Games 198
5.4.1 Game Trees 198
5.4.2 The Minimax Method 199
5.4.3 Algorithm Development 201
5.4.4 Refinement 203
5.4.5 Tic-Tac-Toe 204

Pointers and Pitfalls 209
Review Questions 210
References for Further Study 211

Lists and
Strings 212

6.1 List Definition 213
6.1.1 Method Specifications 214

6.2 Implementation of Lists 217
6.2.1 Class Templates 218
6.2.2 Contiguous Implementation 219
6.2.3 Simply Linked Implementation 221
6.2.4 Variation: Keeping the Current
Position 225
6.2.5 Doubly Linked Lists 227
6.2.6 Comparison of Implementations 230

6.3 Strings 233
6.3.1 Strings in C++ 233
6.3.2 Implementation of Strings 234
6.3.3 Further String Operations 238

6.4 Application: A Text Editor 242
6.4.1 Specifications 242
6.4.2 Implementation 243

6.5 Linked Lists in Arrays 251

6.6 Application:
Generating Permutations 260

Pointers and Pitfalls 265
Review Questions 266
References for Further Study 267

7 Searching

7.1 Searching:

Contents

vii

Introduction and Notation

7.2 Sequential Search
7.3 Binary Search

7.3.1 Ordered Lists 278
7.3.2 Algorithm Development 280

7.3.3 The Forgetfu
7.3.4 Recognizing

7.4 Comparison Trees

7.4.1 Analysis for n =10
7.4.2 Generalization 290
7.4.3 Comparison of Methods 294
7.4.4 A General Relationship 296

7.5 Lower Bounds

7.6 Asymptotics 302

7.6.1 Introduction

7.6.2 Orders of Magnitude

7.6.3 The Big-O

and Related Notations
7.6.4 Keeping the Dominant Term

Pointers and Pitfalls

Review Questions

References for Further Study

8 Sorting

8.1 Introduction and Notation
8.1.1 Sortable Lists 319

8.2 Insertion Sort
8.2.1 Ordered Inse

8.2.2 Sorting by Insertion
8.2.3 Linked Version 323
8.2.4 Analysis 325

8.3 Selection Sort

8.3.1 The Algorithm 329
8.3.2 Contiguous Implementation
8.3.3 Analysis 331

8.3.4 Comparisons
8.4 Shell Sort 333

8.5 Lower Bounds

268
269
271
278
| Version 281
Equality 284
286
287
297
302
304
310
31
314
315
316
317
318
320
rtion 320
321
329
330

332

336

viii

8.6

8.7

8.8

8.9

8.10 Review: Comparison of Methods
Pointers and Pitfalls
Review Questions

References for Further Study

9.1

9.2
9.3

9.4
9.5

9.6

9.7

Contents

Divide-and-Conquer Sorting
8.6.1 The Main Ideas 339
8.6.2 An Example 340

Mergesort for Linked Lists
8.7.1 The Functions 345
8.7.2 Analysis of Mergesort

339

344

348

Quicksort for Contiguous Lists 352
8.8.1 The Main Function 352
8.8.2 Partitioning the List 353
8.8.3 Analysis of Quicksort 356
8.8.4 Average-Case Analysis

of Quicksort 358

8.8.5 Comparison with Mergesort

Heaps and Heapsort 363

8.9.1 Two-Way Trees as Lists 363
8.9.2 Development of Heapsort
8.9.3 Analysis of Heapsort 368
8.9.4 Priority Queues 369

360

365

372
375

376

377

Tables and
Information Retrieval _ 379

Introduction:
Breaking the Ig n Barrier

381

Tables of Various Shapes
9.3.1 Triangular Tables
9.3.2 Jagged Tables
9.3.3 Inverted Tables

380
Rectangular Tables

383
383
385

386

Tables: A New Abstract Data Type
391

388

Application: Radix Sort
9.5.1 The Idea 392
9.5.2 Implementation
9.5.3 Analysis 396

Hashing 397
9.6.1 Sparse Tables 397
9.6.2 Choosing a Hash Function
9.6.3 Collision Resolution

with Open Addressing 401
9.6.4 Collision Resolution by Chaining

411

393

399

406
Analysis of Hashing

9.8 Conclusions:

Comparison of Methods 417
9.9 Application:

The Life Game Revisited 418

9.9.1 Choice of Algorithm 418

9.9.2 Specification of Data Structures
9.9.3 The Life Class 421
9.9.4 The Life Functions 421

426
427
References for Further Study

Binary

1 0 Trees

10.1 Binary Trees 430
10.1.1 Definitions 430
10.1.2 Traversal of Binary Trees
10.1.3 Linked Implementation
of Binary Trees 437

444

Pointers and Pitfalls
Review Questions
428

432

10.2 Binary Search Trees

10.2.1 Ordered Lists
and Implementations

10.2.2 Tree Search 447

10.2.3 Insertion into a Binary Search
Tree 451

10.2.4 Treesort 453

10.2.5 Removal from a Binary Search
Tree 455

10.3 Building a Binary Search Tree
10.3.1 Getting Started 464
10.3.2 Declarations

and the Main Function
10.3.3 Inserting a Node 466
10.3.4 Finishing the Task 467
10.3.5 Evaluation 469
10.3.6 Random Search Trees
and Optimality 470

10.4 Height Balance: AVL Trees
10.4.1 Definition 473
10.4.2 Insertion of a Node 477
10.4.3 Removal of a Node 484
10.4.4 The Height of an AVL Tree

10.5 Splay Trees:
A Self-Adjusting Data Structure
10.5.1 Introduction 490
10.5.2 Splaying Steps 491
10.5.3 Algorithm Development

446

463

465

473

485

490

495

419

429

Pointers and Pitfalls
Review Questions
References for Further Study

11

1.1

11.2

11.3

14

Pointers and Pitfalls
Review Questions

References for Further Study

10.5.4 Amortized Algorithm Analysis:
Introduction 505
10.5.5 Amortized Analysis
of Splaying 509
515
516
518

Multiway
Trees

Orchards, Trees,

and Binary Trees 521

11.1.1 On the Classification of
Species 521
Ordered Trees

11.1.2 522

11.1.3 Forests and Orchards 524

11.1.4 The Formal Correspondence 526
11.1.5 Rotations 527

1.1

.6 Summary 527

Lexicographic Search Trees: Tries
11.2.1 Tries 530

11.2.2 Searching for a Key
11.2.3 C++ Algorithm 531
11.2.4 Searching a Trie 532
11.2.5 Insertion into a Trie
11.2.6 Deletion from a Trie
11.2.7 Assessment of Tries

530

530

533
533
534

External Searching: B-Trees 535
11.3.1 Access Time 535
11.3.2 Multiway Search Trees
11.3.3 Balanced Multiway Trees
11.3.4 Insertion into a B-Tree
11.3.5 C++ Algorithms:
Searching and Insertion
11.3.6 Deletion from a B-Tree

Red-Black Trees 556

11.4.1 Introduction 556

11.4.2 Definition and Analysis 557

11.4.3 Red-Black Tree Specification

11.4.4 Insertion 560

11.4.5 Insertion Method
Implementation 561

11.4.6 Removal of a Node 565

566
567

535
536
537

539
547

559

568

520

1 2 Graphs

12.1

12.2

12.3

124

125

12.6

12.7

Pointers and Pitfalls
Review Questions

References for Further Study

13

13.1 The Problem

13.2 The Idea

Contents 1X

569

Mathematical Background 570
12.1.1 Definitions and Examples
12.1.2 Undirected Graphs 571
12.1.3 Directed Graphs 57

570

Computer Representation

12.2.1 The Set Representation
12.2.2 Adjacency Lists 574
12.2.3 Information Fields 575

Graph Traversal 575
12.3.1 Methods 575

12.3.2 Depth-First Algorithm
12.3.3 Breadth-First Algorithm

Topological Sorting 579

12.4.1 The Problem 579

12.4.2 Depth-First Algorithm 580
12.4.3 Breadth-First Algorithm 581

572
572

577
578

A Greedy Algorithm:
Shortest Paths 583
12.5.1 The Problem 583
12.5.2 Method 584
12.5.3 Example 585

12.5.4 Implementation 586

Minimal Spanning Trees 587
12.6.1 The Problem 587
12.6.2 Method 589
12.6.3 Implementation
12.6.4 Verification

of Prim’s Algorithm 593
594

590

Graphs as Data Structures
596

597

597

Case Study: The Polish
Notation 598

599
13.1.1 The Quadratic Formula

601
13.2.1 Expression Trees 601
13.2.2 Polish Notation 603

599

