LNCS 3148

Roberto Giacobazzi (Ed.)

Static Analysis

11th International Symposium, SAS 2004
Vernona, Italy, August 2004
Proceedings

@ Springer

Roberto Giacobazzi (Ed.)

Static Analysis

11th International Symposium, SAS 2004
Verona, Italy, August 26-28, 2004
Proceedings

@ Springer

Volume Editor

Roberto Giacobazzi

Universita degli Studi di Verona, Dipartimento di Informatica
Strada Le Grazie 15, 37134 Verona, Italy

E-mail: roberto.giacobazzi @univr.it

Library of Congress Control Number: 2004109776

CR Subject Classification (1998): D.3.2-3, F3.1-2, D.2.§, F4.2, D.1

ISSN 0302-9743
ISBN 3-540-22791-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11310426 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3148

Preface

Static analysis is a research area aimed at developing principles and tools for
verification, certification, semantics-based manipulation, and high-performance
implementation of programming languages and systems. The series of Static
Analysis symposia has served as the primary venue for presentation and discus-
sion of theoretical, practical, and application advances in the area.

This volume contains the papers accepted for presentation at the 11th Inter-
national Static Analysis Symposium (SAS 2004), which was held August 26-28 in
Verona, Italy. In response to the call for papers, 63 contributions were submitted
from 20 different countries. Following on-line discussions, the Program Commit-
tee met in Verona on May 06, and selected 23 papers, basing this choice on
their scientific quality, originality, and relevance to the symposium. Each paper
was reviewed by at least 3 PC members or external referees. In addition to the
contributed papers, this volume includes contributions by outstanding invited
speakers: a full invited paper by Thomas Henzinger (University of Califorina
at Berkeley), and abstracts of the talks given by the other invited speakers,
Sheila Mecllraith (University of Toronto), Ehud Shapiro (Weizmann Institute)
and Yannis Smaragdakis (Georgia Institute of Technology).

On the behalf of the Program Committee, the Program Chair would like to
thank all the authors who submitted papers and all external referees for their
careful work in the reviewing process. The Program Chair would like to thank
in particular Samir Genaim, who did an invaluable, excellent job in organizing
the Program Committee meeting and the structure of this volume. We would
like to express our gratitude to the Dipartimento di Informatica and to the
Universita degli Studi di Verona, in particular to Prof. Elio Mosele (president of
the university), who handled the logistical arrangements and provided financial
support for organizing this event.

SAS 2004 was held concurrently with LOPSTR 2004, International Sym-
posium on Logic-Based Program Synthesis and Transformation; PEPM 2004,
ACM SIGPLAN Symposium on Partial Fvaluation and Program Manipulation;
and PPDP 2004, ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming. There were also several workshops in the
area of programming languages. We would like to thank Sandro Etalle (LOPSTR
PC Chair), Nevin Heintze and Peter Sestoft (PEPM PC Chairs), Eugenio Moggi
(PPDP General Chair), Fausto Spoto (Organizing Chair), and David Warren
(PPDP PC Chair) for their help in the organization aspects. Special thanks to
all the members of the Organizing Committee who worked with enthusiasm in
order to make this event possible and to ENDES, specifically to Anna Chiara
Caputo, for the great job she did in the local organization.

Verona, June 2004 Roberto Giacobazzi

Program Committee

Thomas Ball

Radhia Cousot
Roberto Giacobazzi (Chair)
Chris Hankin
Thomas Jensen

Jens Knoop

Giorgio Levi

Laurent Mauborgne
Andreas Podelski
German Puebla
Ganesan Ramalingam
Francesco Ranzato
Martin Rinard
Andrei Sabelfeld
Mary Lou Soffa
Harald Sgndergaard
Reinhard Wilhelm

Steering Committee

Patrick Cousot
Gilberto Filé
David Schmidt

Organization

Microsoft, USA

Ecole Polytechnique, France

Universita di Verona, Italy

Imperial College London, UK

IRISA, France

Technische Universitat Wien, Austria
Universita di Pisa, Italy

Ecole Normale Supérieure, France
Max-Planck-Institut fiir Informatik, Germany
Technical University of Madrid, Spain

IBM, USA

Universita di Padova, Italy

Massachusetts Institute of Technology, USA
Chalmers University of Technology, Sweden
University of Pittsburgh, USA

University of Melbourne, Australia
Universitat des Saarlandes, Germany

Ecole Normale Supérieure, France
Universita di Padova, Italy
Kansas State University, USA

Organizing Committee

Mila Dalla Preda
Samir Genaim
Isabella Mastroeni
Massimo Merro
Giovanni Scardoni
Fausto Spoto
Damiano Zanardini

Referees

Elvira Albert

M. Anton Ertl
Roberto Bagnara
Roberto Barbuti
Joerg Bauer
Michele Bugliesi
V.C. Sreedhar
Paul Caspi
Patrick Cousot
Alexandru D. Salcianu
Mila Dalla Preda
Ferruccio Damiani
Bjorn De Sutter
Bjoern Decker
Pierpaolo Degano
Nurit Dor

Manuel Fahndrich
Jérome Feret
Gilberto Filé
Steve Fink

Bernd Finkbeiner
Cormac Flanagan
Maurizio Gabbrielli
Samir Genaim
Roberta Gori
David Grove
Daniel Hedin

Dan Hirsch
Charles Hymans
Daniel Kaestner
John Kodumal
Andreas Krall
Viktor Kuncak
Kung-Kiu Lau
Francesca Levi
Donglin Liang
Andrea Maggiolo Schettini
Isabella Mastroeni
Ken McMillan

Organization

Massimo Merro
Antoine Miné
Anders Moller
David Monniaux
Carlo Montangero
Damen Mssé
Markus Miiller-Olm
Ulrich Neumerkel
Jens Palsberg
Filippo Portera
Franz Puntigam
Xavier Rival

Enric Rodriguez-Carbonell
Sabina Rossi
Salvatore Ruggieri
Andrey Rybalchenko
Rene Rydhof Hansen
Oliver Riithing
Mooly Sagiv
Giovanni Scardoni
Dave Schmidt
Bernhard Scholz
Markus Schordan
Francesca Scozzari
Clara Segura
Helmut Seidl
Alexander Serebrenik
Vincent Simonet
Fabio Somenzi
Fausto Spoto
Zhendong Su
Francesco Tapparo
Ashish Tiwari
Thomas Wies
Sebastian Winkel
Zhe Yang

Enea Zaffanella
Damiano Zanardini
Andreas Zeller

VII

Lecture Notes in Computer Science

For information about Vols. 1-3056

please contact your bookseller or Springer

Vol. 3172: M. Dorigo, M. Birattari, C. Blum, L.
M.Gambardella, F. Mondada, T. Stiitzle (Eds.), Ant
Colony, Optimization and Swarm Intelligence. XII, 434
pages. 2004.

Vol. 3158: 1. Nikolaidis, M. Barbeau, E. Kranakis (Eds.),
Ad-Hoc, Mobile, and Wireless Networks. IX, 344 pages.
2004.

Vol. 3157: C. Zhang, H. W. Guesgen, W.K. Yeap (Eds.),
PRICAI 2004: Trends in Artificial Intelligence. XX, 1023
pages. 2004. (Subseries LNAI).

Vol. 3156: M. Joye, J.-J. Quisquater (Eds.), Cryptographic
Hardware and Embedded Systems - CHES 2004. X111, 455
pages. 2004.

Vol. 3153: J. Fiala, V. Koubek, J. Kratochvil (Eds.), Math-
ematical Foundations of Computer Science 2004. XIV,
902 pages. 2004.

Vol. 3152: M. Franklin (Ed.), Advances in Cryptology —
CRYPTO 2004. XI, 579 pages. 2004.

Vol. 3150: G.-Z. Yang, T. Jiang (Eds.), Medical Imaging
and Virtual Reality. XII, 378 pages. 2004.

Vol. 3148: R. Giacobazzi (Ed.), Static Analysis. XI, 393
pages. 2004.

Vol. 3146: P. Erdi, A. Esposito, M. Marinaro, S. Scarpetta
(Eds.), Computational Neuroscience: Cortical Dynamics.
XI, 161 pages. 2004.

Vol. 3144: M. Papatriantafilou, P. Hunel (Eds.), Principles
of Distributed Systems. XI, 246 pages. 2004.

Vol. 3143: W. Liu, Y. Shi, Q. Li (Eds.), Advances in Web-
Based Learning — ICWL 2004. X1V, 459 pages. 2004.

Vol. 3142: J. Diaz, J. Karhumiki, A. Lepist, D. Sannella
(Eds.), Automata, Languages and Programming. XIX,
1253 pages. 2004.

Vol. 3140: N. Koch, P. Fraternali, M. Wirsing (Eds.), Web
Engineering. XXI, 623 pages. 2004.

Vol. 3139: F.Iida, R. Pfeifer, L. Steels, Y. Kuniyoshi (Eds.),
Embodied Artificial Intelligence. IX, 331 pages. 2004.
(Subseries LNAI).

Vol. 3138: A. Fred, T. Caelli, R.P.W. Duin, A. Campilho,
D.d. Ridder (Eds.), Structural, Syntactic, and Statistical
Pattern Recognition. XXII, 1168 pages. 2004.

Vol. 3136: F. Meziane, E. Métais (Eds.), Natural Language
Processing and Information Systems. XII, 436 pages.
2004.

Vol. 3134: C. Zannier, H. Erdogmus, L. Lindstrom (Eds.),
Extrente Programming and Agile Methods - XP/Agile
Universe 2004. X1V, 233 pages. 2004.

Vol. 3133: A.D. Pimentel, S. Vassiliadis (Eds.), Computer

Systems: Architectures, Modeling, and Simulation. XIII,
562 pages. 2004.

Vol. 3131: V. Torra, Y. Narukawa (Eds.), Modeling De-
cisions for Artificial Intelligence. XI, 327 pages. 2004.
(Subseries LNAI).

Vol. 3130: A. Syropoulos, K. Berry, Y. Haralambous, B.
Hughes, S. Peter, J. Plaice (Eds.), TEX, XML, and Digital
Typography. VIII, 265 pages. 2004.

Vol. 3129: Q. Li, G. Wang, L. Feng (Eds.), Advances

in Web-Age Information Management. XVII, 753 pages.
2004.

Vol. 3128: D. Asonov (Ed.), Querying Databases Privately.
IX, 115 pages. 2004.

Vol. 3127: K.E. Wolff, H.D. Pfeiffer, H.S. Delugach (Eds.),
Conceptual Structures at Work. X1, 403 pages. 2004. (Sub-
series LNAI).

Vol. 3126: P. Dini, P. Lorenz, J.N.d. Souza (Eds.), Service

Assurance with Partial and Intermittent Resources. XI,
312 pages. 2004.

Vol. 3125: D. Kozen (Ed.), Mathematics of Program Con-
struction. X, 401 pages. 2004.

Vol. 3124: J.N. de Souza, P. Dini, P. Lorenz (Eds.),
Telecommunications and Networking - ICT 2004. XX VI,
1390 pages. 2004.

Vol.3123: A. Belz, R. Evans, P. Piwek (Eds.), Natural Lan-
guage Generation. X, 219 pages. 2004. (Subseries LNAT).
Vol. 3121: S. Nikoletseas, J.D.P. Rolim (Eds.), Algorith-
mic Aspects of Wireless Sensor Networks. X, 201 pages.
2004.

Vol. 3120: J. Shawe-Taylor, Y. Singer (Eds.), Learning
Theory. X, 648 pages. 2004. (Subseries LNAI).

Vol. 3118: K. Miesenberger, J. Klaus, W. Zagler, D. Burger
(Eds.), Computer Helping People with Special Needs.
XXIII, 1191 pages. 2004.

Vol. 3116: C. Rattray, S. Maharaj, C. Shankland (Eds.), Al-
gebraic Methodology and Software Technology. XI, 569
pages. 2004.

Vol. 3114: R. Alur, D.A. Peled (Eds.), Computer Aided
Verification. XII, 536 pages. 2004.

Vol. 3113: J. Karhumiki, H. Maurer, G. Paun, G. Rozen-
berg (Eds.), Theory Is Forever. X, 283 pages. 2004.

Vol. 3112: H. Williams, L. MacKinnon (Eds.), Key Tech-
nologies for Data Management. XII, 265 pages. 2004.

Vol. 3111: T. Hagerup, J. Katajainen (Eds.), Algorithm
Theory - SWAT 2004. X1, 506 pages. 2004.

Vol. 3110: A. Juels (Ed.), Financial Cryptography. XI, 281
pages. 2004.

Vol. 3109: S.C. Sahinalp, S. Muthukrishnan, U. Dogrusoz
(Eds.), Combinatorial Pattern Matching. XII, 486 pages.
2004.

Vol. 3108: H. Wang, J. Pieprzyk, V. Varadharajan (Eds.),
Information Security and Privacy. XII, 494 pages. 2004.
Vol. 3107: J. Bosch, C. Krueger (Eds.), Software Reuse:
Methods, Techniques and Tools. XI, 339 pages. 2004.
Vol. 3106: K.-Y. Chwa, J.I. Munro (Eds.), Computing and
Combinatorics. XIII, 474 pages. 2004.

Vol. 3105: S. Gobel, U. Spierling, A. Hoffmann, I. Iurgel,
O. Schneider, J. Dechau, A. Feix (Eds.), Technologies for
Interactive Digital Storytelling and Entertainment. XVI,
304 pages. 2004.

Vol. 3104: R. Kralovic, O. Sykora (Eds.), Structural In-
formation and Communication Complexity. X, 303 pages.
2004.

Vol. 3103: K. Deb, e. al. (Eds.), Genetic and Evolutionary
Computation — GECCO 2004. XLIX, 1439 pages. 2004.

Vol. 3102: K. Deb, e. al. (Eds.), Genetic and Evolutionary
Computation — GECCO 2004. L, 1445 pages. 2004.

Vol. 3101: M. Masoodian, S. Jones, B. Rogers (Eds.),
Computer Human Interaction. XIV, 694 pages. 2004.
Vol. 3100: J.E. Peters, A. Skowron, J.W. Grzymata-Busse,
B. Kostek, R.W. Swiniarski, M.S. Szczuka (Eds.), Trans-
actions on Rough Sets I. X, 405 pages. 2004.

Vol. 3099: J. Cortadella, W. Reisig (Eds.), Applications
and Theory of Petri Nets 2004. XI, 505 pages. 2004.

Vol. 3098: J. Desel, W. Reisig, G. Rozenberg (Eds.), Lec-
tures on Concurrency and Petri Nets. VIII, 849 pages.
2004.

Vol. 3097: D. Basin, M. Rusinowitch (Eds.), Automated
Reasoning. XII, 493 pages. 2004. (Subseries LNAI).
Vol. 3096: G. Melnik, H. Holz (Eds.), Advances in Learn-
ing Software Organizations. X, 173 pages. 2004.

Vol. 3095: C. Bussler, D. Fensel, M.E. Orlowska, J. Yang
(Eds.), Web Services, E-Business, and the Semantic Web.
X, 147 pages. 2004.

Vol. 3094: A. Niirnberger, M. Detyniecki (Eds.), Adaptive
Multimedia Retrieval. VIII, 229 pages. 2004.

Vol. 3093: S.K. Katsikas, S. Gritzalis, J. Lopez (Eds.),
Public Key Infrastructure. XIII, 380 pages. 2004.

Vol. 3092: J. Eckstein, H. Baumeister (Eds.), Extreme Pro-
gramming and Agile Processes in Software Engineering.
XVI, 358 pages. 2004.

Vol. 3091: V. van Oostrom (Ed.), Rewriting Techniques
and Applications. X, 313 pages. 2004.

Vol. 3089: M. Jakobsson, M. Yung, J. Zhou (Eds.), Applied
Cryptography and Network Security. XIV, 510 pages.
2004.

Vol. 3087: D. Maltoni, A.K. Jain (Eds.), Biometric Au-
thentication. XIII, 343 pages. 2004.

Vol. 3086: M. Odersky (Ed.), ECOOP 2004 — Object-
Oriented Programming. XIII, 611 pages. 2004.

Vol. 3085: S. Berardi, M. Coppo, F. Damiani (Eds.), Types
for Proofs and Programs. X, 409 pages. 2004.

Vol. 3084: A. Persson, J. Stirna (Eds.), Advanced Infor-
mation Systems Engineering. XIV, 596 pages. 2004.

Vol. 3083: W. Emmerich, A.L. Wolf (Eds.), Component
Deployment. X, 249 pages. 2004.

Vol. 3080: J. Desel, B. Pernici, M. Weske (Eds.), Business
Process Management. X, 307 pages. 2004.

Vol. 3079: Z. Mammeri, P. Lorenz (Eds.), High Speed
Networks and Multimedia Communications. X VIII, 1103
pages. 2004.

Vol. 3078: S. Cotin, D.N. Metaxas (Eds.), Medical Simu-
lation. XVI, 296 pages. 2004.

Vol. 3077: E. Roli, J. Kittler, T. Windeatt (Eds.), Multiple
Classifier Systems. XII, 386 pages. 2004.

Vol. 3076: D. Buell (Ed.), Algorithmic Number Theory.
XI, 451 pages. 2004. g

Vol. 3075: W. Lenski, Logic versus Approximation. VIII,
205 pages. 2004.

Vol. 3074: B. Kuijpers, P. Revesz (Eds.), Constraint
Databases and Applications. XII, 181 pages. 2004.

Vol. 3073: H. Chen, R. Moore, D.D. Zeng, J. Leavitt
(Eds.), Intelligence and Security Informatics. XV, 536
pages. 2004.

Vol. 3072: D. Zhang, A K. Jain (Eds.), Biometric Authen-
tication. XVII, 800 pages. 2004.

Vol. 3071: A. Omicini, P. Petta, J. Pitt (Eds.), Engineer-
ing Societies in the Agents World. XIII, 409 pages. 2004.
(Subseries LNAI).

Vol. 3070: L. Rutkowski, J. Siekmann, R. Tadeusiewicz,
L.A. Zadeh (Eds.), Artificial Intelligence and Soft Com-
puting - ICAISC 2004. XXV, 1208 pages. 2004. (Sub-
series LNAI).

Vol. 3068: E. André, L. Dybkjer, W. Minker, P. Heis-
terkamp (Eds.), Affective Dialogue Systems. XII, 324
pages. 2004. (Subseries LNAI).

Vol. 3067: M. Dastani, J. Dix, A. El Fallah-Seghrouchni
(Eds.), Programming Multi-Agent Systems. X, 221 pages.
2004. (Subseries LNAI).

Vol. 3066: S. Tsumoto, R. Stowiriski, J. Komorowski, J.W.
Grzymata-Busse (Eds.), Rough Sets and Current Trends
in Computing. XX, 853 pages. 2004. (Subseries LNAI).

Vol. 3065: A. Lomuscio, D. Nute (Eds.), Deontic Logic in
Computer Science. X, 275 pages. 2004. (Subseries LNAI).

Vol. 3064: D. Bienstock, G. Nemhauser (Eds.), Imeger
Programming and Combinatorial Optimization. XI, 445
pages. 2004.

Vol. 3063: A. Llamosi, A. Strohmeier (Eds.), Reliable
Software Technologies - Ada-Europe 2004. XIII, 333
pages. 2004.

Vol. 3062: J.L. Pfaltz, M. Nagl, B. Bohlen (Eds.), Applica-
tions of Graph Transformations with Industrial Relevance.
XV, 500 pages. 2004.

Vol. 3061: FF. Ramos, H. Unger, V. Larios (Eds.), Ad-
vanced Distributed Systems. VIII, 285 pages. 2004.

Vol. 3060: A.Y. Tawfik, S.D. Goodwin (Eds.), Advances in
Artificial Intelligence. XIII, 582 pages. 2004. (Subseries
LNAI).

Vol. 3059: C.C. Ribeiro, S.L. Martins (Eds.), Experimental
and Efficient Algorithms. X, 586 pages. 2004.

Vol. 3058: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 233
pages. 2004.

Vol. 3057: B. Jayaraman (Ed.), Practical Aspects of
Declarative Languages. VIII, 255 pages. 2004.

.

Table of Contents

Invited Talks

Injecting Life with, Computers « : s:sasssams ssmms oy me s wossm o wosm s 1
Ehud Shapiro

The BLAST Query Language for Software Verification................... 2
Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala,
and Rupak Majumdar

Program Generators and the Tools to Make Them 19
Yannis Smaragdakis

Towards Declarative Programming for Web Services 21
Sheila Mecllraith

Program and System Verification

Closed and Logical Relations for Over- and Under-Approximation

OF POWEESEUS .o v o voieevmeee o aioia oo imsoms s ie o s sie e s imos o s oo ssssssmssses 22
David A. Schmidt

Completeness Refinement in Abstract Symbolic Trajectory Evaluation 38
Mila Dalla Preda

Constraint-Based Linear-Relations Analysis 53
Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna

Spatial Analysis of BioAmbients 69
Hanne Riis Nielson, Flemming Nielson, and Henrik Pilegaard

Security and Safety

Modular and Constraint-Based Information Flow Inference
for an Object-Oriented Language 84
Qi Sun, Anindya Banerjee, and David A. Naumann

Information Flow Analysis in Logical Form............................ 100
Torben Amtoft and Anindya Banerjee

Type Inference Against Races oo ... 116
Cormac Flanagan and Stephen N. Freund

X Table of Contents

Pointer Analysis

Pointer-Range Analysisoooiiiiniiii i 133
Suan Hsi Yong and Susan Horwitz

A Scalable Nonuniform Pointer Analysis for Embedded Programs 149
Arnaud Venet

Bottom-Up and Top-Down Context-Sensitive
Summary-Based Pointer Analysisc.cooiiiiiiiiiiiiii, 165
Erik M. Nystrom, Hong-Seok Kim, and Wen-mei W. Hwu

Abstract Interpretation and Algorithms

Abstract Interpretation of Combinational Asynchronous Circuits......... 181
Sarah Thompson and Alan Mycroft

Static Analysis of Gated Data Dependence Graphs 197
Charles Hymans and Eben Upton

A Polynomial-Time Algorithm for Global Value Numbering 212
Sumit Gulwani and George C. Necula

Shape Analysis

Quantitative Shape Analysis i 228
Radu Rugina

A Relational Approach to Interprocedural Shape Analysis............... 246
Bertrand Jeannet, Alexey Loginov, Thomas Reps, and Mooly Sagiv

Partially Disjunctive Heap Abstraction, 265
Roman Manevich, Mooly Sagiv, Ganesan Ramalingam,
and John Field

Abstract Domain and Data Structures

An Abstract Interpretation Approach for Automatic Generation
of Polynomial Invariants 0ottt 280
Enric Rodriguez-Carbonell and Deepak Kapur

Approximating the Algebraic Relational Semantics
of Imperative Programs o i 296
Michael A. Colon

The Octahedron Abstract Domain it 312
Robert Clarisé and Jordi Cortadella

Table of Contents

Path-Sensitive Analysis for Linear Arithmetic

and Uninterpreted Functionst

Sumit Gulwani and George C. Necula

Shape Analysis and Logic

On Logics of Allasingottt e

Marius Bozga, Radu losif, and Yassine Lakhnech

Generalized Records and Spatial Conjunction in Role Logic

Viktor Kuncak and Martin Rinard

Termination Analysis

Non-termination Inference for Constraint Logic Programs

Etienne Payet and Fred Mesnard

Author Index ...

XI

Injecting Life with Computers

Ehud Shapiro

Department of Computer Science and Applied Mathematics and
Department of Biological Chemistry
Weizmann Institute of Science, Rehovot 76100, Israel

Abstract. Although electronic computers are the only “computer
species” we are accustomed to, the mathematical notion of a pro-
grammable computer has nothing to do with wires and logic gates. In
fact, Alan Turing’s notional computer, which marked in 1936 the birth
of modern computer science and still stands at its heart, has greater
similarity to natural biomolecular machines such as the ribosome and
polymerases than to electronic computers. Recently, a new “computer
species” made of biological molecules has emerged. These simple molec-
ular computers inspired by the Turing machine, of which a trillion can
fit into a microliter, do not compete with electronic computers in solving
complex computational problems; their potential lies elsewhere. Their
molecular scale and their ability to interact directly with the biochem-
ical environment in which they operate suggest that in the future they
may be the basis of a new kind of “smart drugs”: molecular devices
equipped with the medical knowledge to perform disease diagnosis and
therapy inside the living body. They would detect and diagnose molecu-
lar disease symptoms and, when necessary, administer the requisite drug
molecules to the cell, tissue or organ in which they operate. In the talk
we review this new research direction and report on preliminary steps
carried out in our lab towards realizing its vision.

References

1. Benenson Y., Paz-Elitzur T., Adar R., Keinan E, Livneh Z. and Shapiro E. Pro-
grammable computing machine made of biomolecules. Nature, 414, 430-434, 2001.

2. Benenson Y., Adar R., Paz-Elitzur T., Livneh Z., and Shapiro E. DNA molecule
provides a computing machine with both data and fuel. PNAS, 100, 2191-2196,
2003.

3. Adar R., Benenson Y., Linshiz G., Rozner A., Tishby N. and Shapiro E. Stochastic
computing with biomolecular automata. PNAS, in press, 2004.

4. Benenson Y., Gil B., Ben-Dor U., Adar R., and Shapiro E. An autonomous molecular
computer for logical control of gene expression Nature, 429, 423-429, 2004. Verlag,
2002.

R. Giacobazzi (Ed.): SAS 2004, LNCS 3148, p. 1, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The BLAST Query Language
for Software Verification*

Dirk Beyer!, Adam J. Chlipala?, Thomas A. Henzinger!2,
Ranjit Jhala?, and Rupak Majumdar®

1 EPFL, Switzerland
2 University of California, Berkeley
3 University of California, Los Angeles

Abstract. BLAST is an automatic verification tool for checking tem-
poral safety properties of C programs. BLAST is based on lazy predicate
abstraction driven by interpolation-based predicate discovery. In this pa-
per, we present the BLAST specification language. The language specifies
program properties at two levels of precision. At the lower level, monitor
automata are used to specify temporal safety properties of program exe-
cutions (traces). At the higher level, relational reachability queries over
program locations are used to combine lower-level trace properties. The
two-level specification language can be used to break down a verification
task into several independent calls of the model-checking engine. In this
way, each call to the model checker may have to analyze only part of
the program, or part of the specification, and may thus succeed in a re-
duction of the number of predicates needed for the analysis. In addition,
the two-level specification language provides a means for structuring and
maintaining specifications.

1 Introduction

BLAST, the Berkeley Lazy Abstraction Software verification Tool, is a fully au-
tomatic engine for software model checking [11]. BLAST uses counterexample-
guided predicate abstraction refinement to verify temporal safety properties of
C programs. The tool incrementally constructs an abstract reachability tree
(ART) whose nodes are labeled with program locations and truth values of
predicates. If a path that violates the desired safety property is found in the
ART, but is not a feasible path of the program, then new predicate information
is added to the ART in order to rule out the spurious error path. The new pred-
icate information is added on-demand and locally, following the twin paradigms
of lazy abstraction [11] and interpolation-based predicate discovery [8]. The pro-
cedure stops when either a genuine error path is found, or the current ART
represents a proof of program correctness [9].

In this paper we present the BLAST input language for specifying program-
verification tasks. The BLAST specification language consists of two levels. On

* This research was supported in part by the NSF grants CCR-0085949, CCR-0234690,
and ITR-0326577.

R. Giacobazzi (Ed.): SAS 2004, LNCS 3148, pp. 2-18, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The BLAST Query Language for Software Verification 3

the lower level, observer automata are defined to monitor the program execution
and decide whether a safety property is violated. Observer automata can be
infinite-state and can track the program state, including the values of program
variables and type-state information associated with individual data objects. On
the higher level, relational queries over program locations are defined which may
specify both structural program properties (e.g., the existence of a syntactic path
between two locations) and semantic program properties (e.g., the existence of
a feasible path between two locations). The evaluation of a semantic property
invokes the BLAST model-checking engine. A semantic property may also refer
to an observer automaton, thus combining the two levels of specification.

Consider the following example. If we change the definition of a variable in a
program, we have to review all subsequent read accesses to that variable. Using
static analysis we can find all statements that use the variable, but the resulting
set is often imprecise (e.g., it may include dead code) because of the path-
insensitive nature of the analysis. Model checking can avoid this imprecision.
In addition, using an observer automaton, we can ensure that we compute only
those statements subsequent to the variable definition which (1) use the variable
and (2) are not preceded by a redefinition of the variable. The two specification
levels allow the natural expression of such a query: on the higher level, we specify
the location-based reachability property between definition and use locations,
and at the lower level, we specify the desired temporal property by a monitor
automaton that watches out for redefinitions of the variable. The resulting query
asks the model checker for the set of definition-use pairs of program locations
that are connected by feasible paths along which no redefinitions occur.

The BLAST specification language provides a convenient user interface: it
keeps specifications separate from the program code and makes the model checker
easier to use for non-experts, as no manual program annotations with specifica-
tion code (such as assertions) are required. On one hand it is useful to orthog-
onalize concerns by separating program properties from the source code, and
keeping them separated during development, in order to make it easier to un-
derstand and maintain both the program and the specification [13]. On the other
hand it is preferable for the programmer to specify program properties in a lan-
guage that is similar to the programming language. We therefore use as much
as possible C-like syntax in the specification language. The states of observer
automata are defined using C type and variable declarations, and the automa-
ton transitions are defined using C code. The query language is an imperative
scripting language whose expressions specify first-order relational constraints on
program locations.

The two-level specification structure provides two further benefits. First, such
structured specifications are easy to read, compose, and revise. The relational
query language allows the programmer to treat the program as a database of
facts, which can be queried by the analysis engine. Moreover, individual parts
of a composite query can be checked incrementally when the program changes,
as in regression testing [10]. Second, the high-level query language can be used
to break down a verification task into several independent model-checking prob-

4 Dirk Beyer et al.

lems, each checking a low-level trace property. Since the number of predicates
in the ART is the main source of complexity for the model-checking procedure,
the decomposition of a verification task into several independent subtasks, each
involving only a part of the program and/or a part of the specification, can
greatly contribute to the scalability of the verification process [14,17]. A sim-
ple instance of this occurs if a specification consists of a conjunction of several
properties that can be model checked independently. The relational query engine
allows the compact definition of such proof-decomposition strategies.

For a more instructive example, suppose that we wish to check that there
is no feasible path from a program location 4y to a program location 42, and
that all syntactic paths from ¢y to £5 go through location ¢;. Then we may
decompose the verification task by guessing an intermediate predicate p; and
checking, independently, the following two simpler properties: (1) there is no
feasible path from £y to £, such that p; is false at the end of the path (at ¢;),
and (2) there is no feasible path from ¢; to £ such that p; is true at the beginning
of the path (at ¢;). Both proof obligations (1) and (2) may be much simpler to
model check, with fewer predicates needed, than the original verification task.
Moreover, each of the two proof obligations can be specified as a reachability
query over locations together with an observer automaton that specifies the final
(resp. initial) condition pj.

The paper is organized as follows. In Section 2, we define the (lower-level)
language for specifying trace properties through observer automata. In Section 3,
we define the (higher-level) language for specifying location properties through
relational queries. In Section 4, we give several sample specifications, and in
Section 5, we briefly describe how the query processing is implemented in BLAST.

Related Work. Automata are often used to specify temporal safety proper-
ties, because they provide a convenient, succinct notation and are often easier
to understand than formulas of temporal logic. For example, SLIC [2] specifica-
tions are used in the SLAM project [1] to generate C code for model checking.
However, SLIC does not support type-state properties and is limited to the
specification of interfaces, because it monitors only function calls and returns.
Metal [7] and MOPS [4] allow more general pattern languages, but the (finite)
state of the automaton must be explicitly enumerated. Temporal-logic specifica-
tions, often enriched with syntactic sugar (“patterns”), are used in Bandera [5]
and Feaver [12]. Type-state verification [16] is an important concept for ensuring
the reliability of software, but the generally used assumption in this field is to
consider all paths of a program as feasible. Relational algebra has been applied
to analyze the structure of large programs [3] and in dynamic analysis [6]. Also
the decomposition of verification tasks has been recognized as a key issue and
strategy-definition languages have been proposed [14,17]. However, the use of a
relational query language to group queries and decompose proof obligations in
a model-checking environment seems novel.

The BLAST Query Language for Software Verification 5

2 Trace Properties: Observer Automata

Trace properties are expressed using observer automata. These provide a way
to specify temporal safety properties of C programs based on syntactic pattern
matching of C code. An observer automaton consists of a collection of syntactic
patterns that, when matched against the current execution point of the observed
program, trigger transitions in the observer. Rather than being limited to a
finite number of states, the observer may have global variables of any C type,
and it may track type-state information associated with the program variables.
The observer transitions are also specified in C syntax; they may read program
variables and both read and write observer variables.

2.1 Syntax

The definition of an observer automaton consists of a set of declarations, each
defining an observer variable, a type state, an initial condition, a final condition,
or an event. Figure 1 gives the grammar for specifying observer automata.

Observer: DeclSeq

DeclSeq: Declaration | DeclSeq Declaration
Declaration: ’GLOBAL’ CVarDef

’SHADOW’ CTypeName ’{’ CFieldSeq ’}’
*INITIAL’ ’{’ CExpression ’}’
’FINAL’> ’{’ CExpression ’}’

’EVENT) ’{’
Temporal
’PATTERN’ ’{’ Pattern ’}’
Assertion
Action
7})
Temporal: ’BEFORE’ | ’AFTER’ | empty
Pattern: ParamCStmt | ParamCStmt ’AT’ LocDesc
Assertion: ’ASSERT’ ’{’ CExpression ’}’ | empty
Action: ’ACTION’ ’{’ CStatementSeq ’}’ | empty

Fig. 1. The grammar for the observer specification language.

Observer Variables. The control state of an observer automaton consists of
a global part and a per-object part. The global part of the observer state is
determined by a set of typed, global observer variables. Each observer variable
may have any C type, and is declared following the keyword GLOBAL, where the
nonterminal CVarDef stands for any C variable declaration. For example, in the
case of a specification that restricts the number of calls to a certain function, an
observer variable numCalls of type int might be used to track the number of
calls made: “GLOBAL int numCalls;”.

