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Preface

The 9th International Conference on Theory and Practice of Public-Key Cryp-
tography (PKC 2006) took place in New York City. PKC is the premier interna-
tional conference dedicated to cryptology focusing on all aspects of public-key
cryptography. The event is sponsored by the International Association of Cryp-
tologic Research (IACR), and this year it was also sponsored by the Columbia
University Computer Science Department as well as a number of sponsors from
industry, among them: EADS and Morgan Stanley, which were golden sponsors,
as well as Gemplus, NTT DoCoMo, Google, Microsoft and RSA Security, which
were silver sponsors. We acknowledge the generous support of our industrial
sponsors; their support was a major contributing factor to the success of this
year’s PKC.

PKC 2006 followed a series of very successful conferences that started in
1998 in Yokohama, Japan. Further meetings were held successively in Kamakura
(Japan), Melbourne (Australia), Jeju Island (Korea), Paris (France), Miami
(USA), Singapore and Les Diablerets (Switzerland). The conference became an
IACR sponsored event (officially designated as an TACR workshop) in 2003 and
has been sponsored by TACR continuously since then. The year 2006 found us
all in New York City where the undertone of the conference was hummed in the
relentless rhythm of the city that never sleeps.

This year’s conference was the result of a collaborative effort by four of us:
Moti Yung served as the conference and program chair. Moti orchestrated the
whole project and led the Program Committee’s efforts in the careful selection
of the 34 papers that you will find in this volume. Yevgeniy Dodis served as
the general and sponsorship chair, coordinating the sponsorship efforts. Aggelos
Kiayias served as the publicity and publication chair, tending to the conference’s
publicity aspects, Web-site, submission and reviewing site as well as the edito-
rial preparation of the present volume. Tal Malkin served as the general and
local arrangements chair and was responsible for the very critical job of hosting
PKC 2006 at Columbia University.

The selection of papers for this year’s program was a delicate and laborious
task. PKC 2006 had received a total of 124 submissions by the day of the sub-
mission deadline, November 15, 2005. Each paper was refereed by at least four
committee members who were frequently assisted by external reviewers. The on-
line discussions together with the reviews that were posted on the online review-
ing site, if printed, would require more than 450 pages of densely printed text.
The present proceedings volume contains the revised versions of the accepted
extended abstracts as submitted by the authors after an alloted three week re-
vision period based on the Program Committee’s comments. The PKC 2006
Program Committee had the pleasure of according this year’s PKC Best Pa-
per Award to Daniel Bleichenbacher and Alexander May for their advancement



VI Preface

of RSA cryptanalysis in their paper entitled “New Attacks on RSA with Small
Secret CRT-Exponents.”

We would like to thank the Program Committee members as well as the
external reviewers for their volunteered hard work invested in selecting the pro-
gram. We thank the PKC Steering Committee for their support. We also wish
to thank the following individuals: Shai Halevi for providing his Web-review and
submission system to be used for the conference and for providing technical sup-
port; the submission and reviewing-site administrator David Walluck as well as
the other students of the CryptoDRM Lab at the University of Connecticut for
providing technical support; and Michael Locasto for Web-site administration
support at Columbia University. Finally big thanks are due to all authors of sub-
mitted papers whose quality contributions make this research area a pleasure to
work in, and made this conference a possibility.

March 2006 Moti Yung
Yevgeniy Dodos

Aggelos Kiayias

Tal Malkin
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New Attacks on RSA with
Small Secret CRT-Exponents

Daniel Bleichenbacher! and Alexander May?

! daniel_bleichenbacher@yahoo.com
2 Department of Computer Science,
TU Darmstadt,

64289 Darmstadt, Germany
mayQ@informatik.tu-darmstadt.de

Abstract. It is well-known that there is an efficient method for decrypt-
ing/signing with RSA when the secret exponent d is small modulo p — 1
and ¢ — 1. We call such an exponent d a small CRT-exponent. It is one
of the major open problems in attacking RSA whether there exists a
polynomial time attack for small CRT-exponents, i.e. a result that can
be considered as an equivalent to the Wiener and Boneh-Durfee bound
for small d. At Crypto 2002, May presented a partial solution in the case
of an RSA modulus N = pg with unbalanced prime factors p and q.
Based on Coppersmith’s method, he showed that there is a polynomial
time attack provided that ¢ < N°3%2. We will improve this bound to
g < N%%8 Thus, our result comes close to the desired normal RSA case
with balanced prime factors. We also present a second result for balanced
RSA primes in the case that the public exponent e is significantly smaller
than N. More precisely, we show that there is a polynomial time attack
if dp,dq < min{(N/e)é,N%}. The method can be used to attack two
fast RSA variants recently proposed by Galbraith, Heneghan, McKee,
and by Sun, Wu.

Keywords: RSA, small exponents, lattices, Coppersmith’s method.

1 Introduction

Let N = pq be an RSA modulus. The public exponent e and the secret exponent
d satisfy the equation ed = 1 mod ¢(N), where ¢(IN) = (p — 1)(¢ — 1) is Euler’s
totient function. The main drawback of RSA is its efficiency. A normal RSA
decryption/signature generation requires time ©(log dlog? N).

Therefore, one might be tempted to use small secret exponents to speed up
the decryption/signing process. Unfortunately, Wiener[14] showed in 1991 that
if d < Ni then the factorization of N can be found in polynomial time using
only the public information (V,e). In 1999, Boneh and Durfee[1] improved the
bound to d < N%292. One can view these bounds as a benchmark for attacking
RSA (see also the comments in the STORK-roadmap [11]). Thus, improving
these bounds is a major research issue in public key cryptanalysis.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 1-13, 2006.
© International Association for Cryptologic Research 2006



2 D. Bleichenbacher and A. May

It remains an important open problem whether there is an analogue of these
attacks in the case of small secret CRT-exponents d, i.e. exponents d such that
d, =dmod p—1 and d; = d mod g — 1 both are small. For the construction of
such small CRT-exponents with a given bit-size, we refer to Boneh, Shacham [2].
Notice that small CRT-exponents enable to efficiently raise to the d* power
modulo p and modulo g, respectively. The results are then combined using the
Chinese Remainder Theorem (CRT), yielding a solution modulo N. For the nor-
mal RSA case with balanced prime factors p, ¢ and full-size e, the best algorithm
that is currently known has time and space complexity O(y/min{dp, d,}).

At Crypto 2002, May[9] presented two polynomial time attacks for the case
of imbalanced prime factors p and q. His attacks are based on Coppersmith’s
method for finding small roots of modular equations. His first attack is rigorous
and solves a polynomial equation modulo p. This attack works whenever q <
NO-382 May’s second attack is a heuristic method that is based on a resultant
heuristic for Coppersmith’s method in the multivariate modular case. This attack
works whenever g < Ns.

Let us have a look at the size of d,, that can be attacked by May’s approaches
as a function of the size of ¢q. In Fig. 1 we present both of these sizes as a fraction
of the bits of N.

logpn d
1.0 N %p

0.9
0.8 4
0.7 1
0.6
0.5
04
0.3 -+ /
] 2 RESULT
0.1

0.‘1

logn g

T
0.2 0.3 04 05

Fig. 1. The attacks of [9] in comparison with the new approach

A close look at the functions presented in Fig. 1 reveals that there is a tiny
region where May’s first method is better than his second one. Hence, it is a
natural question to ask whether there is a unifying method that covers both
regions of the key space.

In this work, we present a new attack that solves this question. In Fig. 1, we
give the improved sizes of d,, that can be attacked by our new approach as a
function of g. One can see that the new attack works up to ¢ < N9468 and covers
the key spaces of the previously known attacks. Thus, we are able to improve
the benchmark for attacking CRT-RSA up to almost balanced prime factors.
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Interestingly, we get the improvement by making just a small twist to May’s
second method. He solved a polynomial equation f(z,y) = z(N —y)+ N with a
small root (z,q) modulo e. In this work, we make additional use of the fact that
the desired small solution contains the prime factor g. Namely, we introduce a
new variable z for the prime factor p and further use the equation yz = N.

Our new approach immediately raises an interesting open problem: The poly-
nomial f(z,y) = (N — y) + N used here is very similar to the polynomial
g(z,y) = (N +1 —y) + 1 that is used in the Boneh-Durfee approach to show
the currently best bound of d < N%292 for attacking small secret exponent RSA.
Notice that both polynomials f(z,y) and g(z, y) have the same set of monomials,
i.e. the same Newton polytope. In contrast to f(z,y), the polynomial g(z,y) has
a small root (z{,, p+ ¢). It is a natural question to ask whether one can improve
the Boneh-Durfee bound by using the fact that this root contains the sum of the
prime factors p and gq.

We should point out that our new attack works for small d, and arbitrary
sizes of dy. It is an open problem how to make use of a small parameter d, in
this attack. Maybe a clever use of d, could already help to push the bound from
g < N9468 to the desired normal RSA-case of balanced prime factors.

As a second result, we are able to give a different lattice-based attack on RSA
with small CRT-exponents that works in the case of balanced prime factors, but
with the restriction that the parameter e is significantly smaller than N. This
second attack makes use of small d,, and small d;. The result is achieved by mul-
tiplying the equations ed,, = 1 mod p—1 and ed; = 1 mod g—1 and then using a
linearization technique. Our attack works whenever dp, d, < min{ % (N/e)% ,%N% 1
i.e., up to roughly half of the bit-size of p, g for sufficiently small e. The attack
requires to find a shortest vector in a 3-dimensional lattice and is extremely fast.
As an application of our second result, we show that recently proposed RSA vari-
ants by Galbraith, Heneghan and McKee [5] and Sun, Wu [12] are vulnerable to
the new attack.

We would like to point out that both new attacks are heuristic methods. We
implemented both methods and provide several experiments that show that the
heuristics work well in practice.

The organization of the paper is as follows. In Section 2, we state some lattice
basis theory and in Section 3 we review May’s result. In Section 4, we show
how to achieve the improved bound of ¢ < N°468 | In Section 5, we present our
second attack for d;,, dy < min{{(N/e) 5, N 7} and show how this attack breaks
recently proposed fast RSA variants. We conclude our work by providing some
experimental results for our attacks in Section 6.

2 Lattice Theory and Definitions

Let by,...,b, € Zy be linearly independent. Then these vectors span a lattice
of dimension n defined by

L= {a: €Ly |x= iaibi, where a; € Z}.

=1
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We call the set B = {b1,...,b,} a basis of L. There are infinitely many bases.
A basis can be transformed into another basis by a unimodular transformation,
i.e. a multiplication by a matrix with determinant +1. Therefore, the absolute
value of the determinant of a basis matrix is an invariant of the lattice L. We
call this invariant the determinant of L, which is denoted by det(L) = | det(B)|.

A famous theorem of Minkowski gives an upper bound for the length of a
shortest vector v in a lattice in terms of a function of the determinant and the
dimension n:

lvl < vndim(L)™.

In lattices with fixed dimension, a shortest vector can be found in polynomial
time. In arbitrary dimension, approximations of a shortest vector can be obtained
in polynomial time by applying the well-known L3 basis reduction algorithm of
Lenstra, Lenstra and Lovész [8].

Theorem 1 (Lenstra, Lenstra, Lovasz). Let B = {b1,...,b,} be a basis.
On input B, the L*-algorithm outputs another basis {vi,...,v,} with

n =L
loa]l < flog]l < 2% det(L)T,

in time polynomial in n and in the bit-size of the entries in B.

Let f(z,y) =3, ; a; jz'y’ € Z[z,y]. We define the norm of f by the Euclidean
norm of its coefficient vector: | f|? = i a;{j.

Based on the L3-algorithm, Coppersmith [4] presented in 1996 a method that
finds small solutions to modular polynomial equations. The idea behind Cop-
persmith’s method is to construct a polynomial which has the desired small root
over the integers. Howgrave-Graham [7] in turn formulated a useful condition

how to find such a polynomial in terms of the norm of a polynomial.

Theorem 2 (Howgrave-Graham). Let f(xi,...,zx) be a polynomial in k
variables with n monomials. Furthermore, let m be a positive integer. Suppose
that

(1) f(r1,...,7%) = 0mod bmmwhere lri| < X, i=1,...,k and
(2) 1f(@1 X1, ...z Xp)l < 2.

Then f(ri,...,rx) = 0 holds over the integers.

3 Revisiting May’s Attack on Small CRT-Exponents

Throughout this paper, we assume that e < ¢(IN). Furthermore, we assume
that ¢ < NP for some 3 < % We start by writing the RSA equation ed, =
1 mod (p — 1) in the form

edT) =1+ k(p - l)a
for some unknown k£ € N. Rewriting terms yields

edy = (k—1)(p— 1) +p. (1)
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A multiplication with g leaves us with the equation
edpg=(k—1)(N —q) + N.

We assign the variables x and y to the unknown parameters on the right-hand
side and obtain a bivariate polynomial

f(z,y) =x(N —y)+ N, (2)
with the root (zg,y0) = (k — 1,¢) modulo e. In order to bound the term k — 1,
we observe that by Eq. (1)
ed, —p
p—1
Let us fix a parameter m. We define the following collection of polynomials that
all have the root (z¢,yo) modulo e™:

P <p—i—1dp<(q—1)X<NﬂX.

gij(z,y) =e™ "2 f{(z,y) for i=0,...,m; j=0,...,m—i and
hij(z,y) =™y fi(z,y) for i=0,....,m; j=1,...,t (3)

The parameter t has to be optimized as a function of m.

Since each polynomial of the collection has the small root (xg,yo) modulo e,
every linear combination of these polynomials also has the same root modulo e.

A lower triangular lattice basis can be build from the coefficient vectors of
9i;(xzX,yY) and h; j(zX,yY ). According to Howgrave-Graham’s theorem (The-
orem 2), linear combinations of the vectors with sufficiently small norm give raise
to bivariate polynomials that have the root (zo, y0) not only modulo e but over
the integers. Having two polynomials f;(z,y) and f2(z,y) with this root over the
integers, one can take resultants in order to extract the desired root. However,
the last step is a heuristic, since the resultant computation may fail due to a
non-trivial ged of f; and f,.

In [9], it was shown that with the optimal choice of parameters one obtains
an attack that works up to ¢ < N%, see also Fig. 1 in Section 1.

4 An Approach That Works for g < IN0-468

Our improvement of the algorithm presented in Section 3 is based on the obser-
vation that in Eq. (2) the polynomial f(z,y) contains in its small root (zg,yo) =
(dp,q) modulo e the prime factor g. We will use the fact that we do not deal
with just an arbitrary small root but that ¢ is already determined by N.

Let us introduce a new variable z for p. We multiply the polynomial f(z,y)
by a power z° for some s that has to be optimized. Additionally, we can replace
every occurence of the monomial yz by N. Let us look at the following new
collection of trivariate polynomials that we obtain by multiplying the former
collection from (3) with 2*:

g0 5(2,y,2) = €™l fi(z,y)  for i=0,...,m; j=0,...,m—i and

by j(x,y,2) =™y 2 fi(z,y) for i=0,...,m; j=1,...,t



