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Preface

The sound development of petrology, whether naturalistic or ex-
perimental, demands considerable information about the quantita-
tive modal composition of rocks. In certain areas of petrographic
inquiry, further development—indeed, even the resolution of long-
standing controversies—seems almost impossible without an abun-
dance of this kind of information. The amount and caliber of it
available to us will also powerfully influence the rate of development
in many other areas.

Despite increased interest and activity in the ficld of modal analysis
the subject is ignored in nearly all textbooks on petrology and barely
mentioned in most on petrography. The student is obliged to acquire
the necessary background from scattered journal articles of uneven
quality, mostly rather specialized, and often flatly inconsistent or
contradictory. There is no single work to which the advanced under-
graduate or beginning graduate—or anyone else, for that matter—
may turn for an account sufficiently complete to enable him to decide
whether and how he ought to set about using the technique in his
own researches.

What the student. needs, and what I have attempted to give him,
are: (a) a clear description of the geometrical basis of the method;
(6) a review and summary of techniques and instrumentation; (c) a
careful discussion of reproducibility; (d) a definition and numerical
characterization of analytical error; (¢) a scnse of the importance of
analytical error in the design and planning of sampling experiments.

The subject has now advanced to the stage at which a condensed
general treatment of the first three of these is possible; such a treat-
ment is attempted in chapters 1-6, inclusive. One can always de-
fine analytical error generally, but it is only in some particular situa-
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viii’ PREFACE.

tion that one may put numerical flesh on the bones of the definition.
The same difficulty arises in the discussion of the effect of analytical
error on experimental design. The experimentalist senses and the
mathematician symbolizes the relationship in an a priori way, but
specific numerical recommendations can only be developed in a prac-
tical situation.

Beginning with chapter 7, and continuing through chapter 10,
therefore, the discussion is necessarily confined to a particular rock
type, the only one, so far as I know, on which a study of this sort
has been conducted. Most of the work presented in these chapters
has not appeared before. It is included in the hope that it will serve
as a model—albeit one which will certainly require extensive revision
—for those who may be interested in developing for other rocks the
type of information now rapidly accumulating for the two-feldspar
granites. Ultimately something of the sort will probably have to be
done for every major rock type. I hope my errors of design and judg-
ment are sufficiently penetrating that others may profit by them.

Chapter 2 is included primarily as an antidote to the habitual and
largely uncritical skepticism about the potentialities of modal analysis
in the study of sediments and the finer-grained metamorphic rocks.
Readers who do not share this skepticism or have no immediate con-
cern with laminated rocks will find that the argument of chapter 2 is
not essential to an appreciation of the work of succeeding chapters.
Chapter 11, on the other hand, is designed as a warning to those whc
may be tempted to apply modal analysis to rocks to which it shoulc
not be applied.

I should caution the reader that this book is not intended as ¢
literature review. No paper is mentioned merely for the sake o
completeness, and except in chapter 3 no particular attention is paic
to priority. Indeed, the development of the subject has been so un-
systematic that this is scarcely possible. If a recent paper states a
problem more clearly or solves it more satisfactorily than an older
one, the recent one is given preference in the discussion, and in sev-
eral cases the alder one is not even mentioned. Readers interested in
piecing together a history of the subject can get off to a good start
with the excellent bibliography given by Larsen and Miller.

It will be obvious even to the casual reader that this book is some-
thing of a hybrid. Resting heavily on elementary statistical argu-
ment, it is not a book about statistics. Anyone who has participated
in the development of modal analysis realizes that a sharp subdivi-
sion of the subject into statistical and non-statistical categories is no
longer either possible or desirable. This raises the puzzling question
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of how results reached by statistical methods should be presented to
an audience most of whom, even now, have had no training in the
subject.

Fortunately, the argument is for the most part both simple and
straightforward. 1 have tried to write so that geologists completely
unfamiiiar with statistics (and even those who, whether from choice
or necessity, plan to continue in this blissful condition) may never-
theless follow its general outline and make use of its major results.
It will take a bit of doing, but I believe it can be done. Most of the
commoner terms and phrases that have received special definition in
elementary statistics retain enough of their general import so that,
with some allowance for lack of rigor, they still convey much the
same thing to the non-statistical reader as to the reader with some
training in the subject. Technical jargon has been avoided—evaded
would perhaps be a better term—whenever this could be managed
without undue expansion of the text, but has been used freely, and
vithout extended explanation, whenever necessary. Similarly, nu-
nerical results are used liberally, but calculation procedures are de-
cribed only when they are extremely simple or of a type not likely
o be discussed in an elementary statistics textbook.

Instead of attempting the usual statistical explanation or laboring
‘he book with footnotes, I have inserted an appendix containing a
somewhat annotated statistical bibliography. Readers unfamiliar
with the subject will find here references in which the various statisti-
cal terms and procedures employed are described in a fashion I could
not hope to equal.

The book grows out of a series of lectures delivered to a graduate
seminar in petrology at the California Institute of Technology during
the winter of 1955. I am grateful to the staff and members of the
Division of Geological Sciences for gracious hospitality and stimu-
lating criticism. I am also indebted to several colleagues at the
Geophysical Laboratory and to Earl Ingerson and J. D. H. Donnay
for careful criticism of parts of the manuscript. The discussion of
sriented rocks contained in the original lecture notes was so unsatis-
factory that I planned to omit the subject from the published version;
what now appears as chapter 2 was written largely because of the in-
sistent encouragement of W. S. MacKenzie. Some of the experimen-
tal data used in chapter 8 were described briefly in Year Book No. 53
of the Carnegie Institution of Washington, and much of the material
in chapters 1, 4, and 5 is reprinted here by permission of the editors
of the American Mineralogist and the Journal of Geology. The sub-
stance of chapter 11 appeared originally in the Mineralogical Magazine
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and is reprinted here by permission of the councilors of the Mineralogi-
cal Society of London. Finally, it is pleasant to record my gratitude
to the staff of the Statistical Engineering Laboratory of the National
Bureau of Standards, and particularly to J. M. Cameron, for advice,
assistance, and encouragement extending over several years.

FELix CHAYES
Washington, D. C.

July, 1956
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Introduction

This book is intended for petrographers but may also be read by practical
statisticians who have no knowledge of petrography. Modal analysis is
still so sparingly used in geology that many readers of both types may
appreciate a brief statement of the character and purpose of the procedure.

Arockisamineral aggregate. To the petrologist, the kinds and amounts
of mineral species it contains are matters of first importance. 'With regard
to determination of the kinds of minerals present, petrography is a
highly developed descriptive science, and we shall not be further concerned
here with the general problem of qualitative identification.

The composition of rock expressed in terms of the relative amounts of
‘minerals actually present is called a mode. We refer to a procedure which
yields such a statement, and usually to the statement itself, as a modal
analysis. Modes may be obtaimed by recalculation from bulk chemical
analysis, by the counting of crushed fragments, or by the measurement of
relative areas underlain by each of the mineral species in a polished slab
or thin section of the rock.

The compositions of the constituent minerals are rarely well enough
known so that much reliance can be placed on modes recalculated from
bulk analyses. 'Although the procedure of counting sized, crushed frag-
ments seems quite straightforward, the results are of questionable value
because of sampling difficulties which have not yet been carefully evaluated.
At present very few modes are determined by fragment counting.

Modes were determined by areal measurements on polished slabs before
the development of the thin section—or, at any rate, before the thin
section became a common adjunct of petrography—and this is still the
preferred procedure in rather special circumstances. Discrimination
between some of the rock-forming minerals is difficult or impossible under
reflected light, however, and the number of reliable modes obtained by
measuremens m.ade on polished slabs is almost vanishingly small.

1



2 PETROGRAPHIC MODAL ANALYSIS

Thus, although any procedure which estimates the actual mineral
composition of a rock. is, strictly speaking, a modal analysis, nearly all
modcs are cstimated by areal measurement performed on thin sections
under the microscope. The instruments used for this purpose are now
fairly numcrous and quite varied in design and construction. Their
proper application always has the same goal, viz., a reliable estimate of the
relative proportions of the measurement area underlain by minerals of
difterent species, and they all secure this information n one of two ways.
Either they cumulate intercept lengths along a set of parallel equidistant
lines, or they tally the frequencies with which the members of a symmetrical
point grid are underlain by minerals of each species.
~ The equivalence of areal proportions to volumetric proportions was
suspected and announced by Delesse in 1848. (It may have been known
before this in other sciences, but there is no earlier mention of it in the
literature of geology.) Though Delesse used the relation to good advan-
tage, he did not actually prove it. Nor did any other geologist. As a
consequence it was always regarded with considerable skepticism. Those
who placed any confidence in it might justify their credulity by pointing to
an experiment, commonly tao small to demonstrate anything at all, in
which the bulk chemical composition calculated from the mean of a few
modes of dubious quality agreed fairly well with an actual chemical analysis
of unknown quality. Sometimes the procedure was reversed, and measured
modes were compared with modes calculated from chemical analyses.
Occasional tests of this kind could convince only those who had a powerful
will to believe. And geology is by tradition an agnostic scieuce.

The development of the subject was correspondingly slow. Indeed,
what little there was of it was primarily concerned with instrumentation.
In the century following Delesse’s announcement of the method it is
difficult to cite a single geological research in which critical issues were
either illuminated or decided by means of modal analyses. Even the
currently increasing popularity of quantitative minerological rock classi-
fications, in which the very basis of classification is modal composition,
has so far proved insufficient to stimulate activity in this field.

The principal problems of modal analysis are: (a) the equivalence of
areal and volumetric proportions, (b) the reproducibility of estimates of
areal proportions, and (c) the sampling efficiency of thin sections. These
are all problems which are readily susceptible of statistical examination and
difficult though perhaps not impossible to study satisfactorily in any other
way. During the first century of its career modal analysis enjoyed a kind
of extra-statistical existence during which it promised much and accomp-
lished practically nothing. Since 1945 it has been subjected to a persistent
though rather elementary statistical reorientation and has already begun
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to stand on its own feet as an independent discipline; if the trend continues
we may reasonably expect that it will soon assume its rightful place as
the simplest, quickest, and cheapest analytical procedure available to
the petrologist. The immediate future holds the promise of a develop-
ment of quantitative petrography as brilliant and as productive as the great
flowering of qualitative petrography at the close of the last century.



The geometrical basis

of modal analysis

The lack of a satisfactory and easily comprehended analytical demonstra-
tion of the validity of thin-section analysis has probably been the most
important deterrent to the development of the subject. Both Delesse and
Rosiwal, by whom the technique was first proposed, were aware of the
weakness of their analytical arguments. Despite occasional attempts
since their day, no satisfactory solution of the general problem is available
in the geological literature.

Delesse’s original announcement of the method attracted little attention.
His procedure was hopelessly time-consuming, yet a half century elapsed
before anyone attempted to improve upon it. Rosiwal’s improvement
reduced the time per analysis to something on the order of many hours for
a medium- or fine-grained rock. And the next—really the first—substan-
tial improvement, the Shand recording micrometer, was not announced
until 1916, sixty-eight years after Delesse and eighteen after Rosiwal.

The period between the announcement of the Delesse method and the
appearance of the Shand micrometer is precisely the golden age of descrip-
tive petrography. The petrographers of that day could have made
excellent use of reliable quantitative modes, and many of them were
keenly aware of the need for such information. They could have had it—
and the petrography of our day would have profited immeasurably
thereby—with instrumentation far simpler than was then developing in
the sister science of optical crystallography. But the appropriate instru-
mentation was not forthcoming.

Considering all the circumstances, it is reasonable to suppose that the
root of the failure lay in the fact that no one, not even Delesse and certainly
not Rosiwal, was really convinced of the validity of the geometrical theory.
In the language of today, the petrographers who should have taken prompt
and thorough advantage of the Delesse method seem always to have been

4



GEOMETRICAL BASIS OF MODAL ANALYSIS 5

bothered by the fear that their results would be inconsistent, that differences
between analysis would contain large, unknown, and essentially unknow-
able, contributions which had nothing to do with the real differences
between rocks.

This may be reading too much into a long record of indifference and
inertia. It cannot be denied, however, that in the last quarter of the
nineteenth century the time was ripe for full exploitation of quantitative
modal analysis by descriptive petrography, that the method was available,
that the necessary instrumentation was within easy reach, and that
nothing happened. It is also true that the textbook and lecture material
to which the average geology student is exposed today still contains far
more of admonition and qualification than of endorsement and encourage-
ment. Since most geologists have actually done very little modal analysis,
this attitude can hardly stem from extensive practical experience. Rather,
itis a kind of professional memory, an inheritance of the fear that except on

. very special rocks—and perhaps even on such rocks—the thing really
doesn’t work. Our first business is to dispel this fear. The question of
whether modal analysis is theoretically sound has nothing to do with
petrography. It is entirely a matter of geometrical probability. In this
and the succeeding chapter the discussion will accordingly be much more

of geometry than geology.

1. PoINT SuMs AS ESTIMATORS OF RELATIVE AREAS

In Fig. 1 a small irregular area (B) is enclosed in a large irregular area
(B + W). The probability that a point located simply at random in
(B 4+ W)t will also lie in B is, by definition,

_ AB)
P (A(B+W)

the ratio of the two areas.

Fig. 1. Small area (B) enclosed
in large area (B + W), the ratio
of the areas to be estimated by
the sums of points chosen simply
at random in the region (B + W).

1 Le., in such fashion that each point in the area (B 4+ W) has the same probability of
oeing selected as any other point.
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The expected value of the number of points, S(X), which fall in Bin a
particular sample containing n points, is

E(S(X,) =np =n ( Ap ) (1.1)
(B+W)

As a proportion, u, of the total count, this is
Ap

A(B+IV)

b= ESU) =p = (1.2
Since its expected value is the ratio of the smaller to the larger area, the
proportion of the total count that falls in the smaller area is an unbiased
estimate of that ratio. (In the language of thin-section analysis, 4(g.p)
is the total measurement area available in any thin section, and p is the
proportion of that area occupied by mineral B, whether as a single large
grain or many small ones.)

2. PARALLEL LINES AS ESTIMATORS OF RELATIVE AREAS

The areas under the curves in Fig. 2 are obviously

d c
Alzf?hdx, Azzf?lzdx
a b

Let us suppose that ordinates are to be erected at points along OX chosen
simply at random in the region @ <z <d. The element of frequency is
thus dz, and the total frequency is

1 [d
F=d_a‘adx=l _ (1.3)

The expected value of y, is then

E(y,) = L[ dr =
Ol R e
and for y, . ' '
? A
E(yz)=d_aJ;yadx=d_fa (1.5)

(In the regions x < b and = > c, g() is undefined and y, is zero.)

The ratio of the average ordinates is thus a consistent estimate of the ratio
of the areas, for it is an estimate of the parent value u,/u,, and
by _Ely) Ay (d—a) 4,

H“ N E(y,) N (d—a) 4 4,

(1.6)
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Now the expected value of the sum of the ordinate lengths under either

curve is
E[Z(Yz)] = Nu, = NE(y,) (1.7)

where N is the total number of traverses made in a particular random

Y
Y .
’ Ty
|
I
I
|
I
| & | |
| \ | |
| L
L ]
| | | |
I [ | l
| ] | |
0 ) b c d X

Fig. 2. Open areas under two curves, the ratio of the areas to be estimated
by sums of ordinates chosen simply at random in the regiona <z < d.

sampling of the regiona << x < b.  Again the ratio of the sums of ordinates
is a consistent estimate of the ratio of the areas, for
E[S(Y)] _ Nug _ Ay i
E[2(Y)] Npy 4 '

If in Fig. 2 the axes of reference are rotated about O, the area between
the curves and O X will of course change, and so will the ratio of these areas.
2(Yy)
2(1y)

tion, its value will change with any change in the orientation of the axes.

is a consistent estimate for any particular orienta-

Thus, although

? Equations (1.6) and (1.8) do not quite establish consistence. For this it is necessary
that the variances of ¥, and y, be finite, but this is obviously the case since each varies
over a finite range. See section 3 below.
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Since the areas in Fig. 2 do change with rotation of the axes, any reliable
estimate of areal ratios is alsc bound to change. If the areas in question
are insensitive to location or rotation of the reference axes, however,
eqs. (1.4-1.8) apply regardiess of the position or orientation of the reference
axes. Each of the closed curves in Fig. 3 may be divided into two parts
by lines tangent to it and parallel to any chosen ordinate axis. In Fig. 3,

Y

0 X

Fig. 3. Areas enclosed by two curves, the ratio of the areas to be estimated
by sums of ordinates chosen simply at random in the region between the
ordinates tangent to the larger area.

OY is used, and the tangents divide each curve into segments, fi(z),
fx(z), and g,(2), g4(), under each of which we can find E(y) by means of
eq. (1.4) or (1.5). The expected value of a difference is equal to the
difference of the expected values of which it is formed, so we have at once
that 4

E(ey, — ;) =EG,) — Ey) =7,

where A, is the area enclosed by the outer curve. Similarly.

. A
Ew,, _y")=d—’a
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where A, is the area enclosed by the inner curve. The ratio we seek is

EYy, — Yo) _4s

E(.’/f, .'Ir, 4,
and this, being a function only of the enclosed areas, is obviously insensitive
to the choice of axis.

In the language of thin-section analysis, OY is the traverse path or
direction, OX is the traverse normal, and the unchanging areas are,
respectively, the totdl area of measurement and the portion of it occupied
by a particular mineral.

3. BiAs AND Oonsmmch

In accordance with our announced intention of relying on the popular
connotations of statistical terms whenever possible, we have so far neither
defined nor distinguished between consistence and bias. The reader will
have noted that estimates based on parallel lines were characterized as
consistent whereas those based on points were called unbiased.

The sample average £ is said to be a consistent-estimator of the true, or
population, mean u if

Prlu—z|>&<n as n>©

however small £ and 7.

The sample average & is said to be an unbiased estimator of u, on the
other hand, if the expected or most probable value of £ is u for anyn > 1.

Lack of bias is obviously the more desirable property. Estimates of
areal ratios based on the counting of randomly located points are both
consistent and unbiased. Those based on parallel continuous lines are
consistent but may be biased. The effect is easily shown by an example.
Figure 4 shows a square inscribed in a right isosceles triangle; the area of
the triangle is twice that of the square. Proceeding as before, we measure
intercepts in each figure along randomly chosen lines parallel to the
altitude of the tnangle By using eqs. (1.3-1.6) the student should be able
to show that

E@y) _ o5 4 - (19)

E(y) Ar
where A, is the area of the square and A4 that of the triangle. From the
point of view of modal analysis, this is, of course, the correct answer.
The summation extends over all ordinates for each intercept and is com-
pleted before the ratio is calculated. Equation (1.9) suggests that the
ratio of observed average (or total) intercept distances is a consistent
estimator of A,/Ap but, since it does not describe the situation for any
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n < oo, cannot of itself establish consistence. For this we have to rely on
the central-limits theorem. The range, and hence the variance, ¢?, of each
expected value is finite. From this it follows that with increase in n the
distributions of the observed means of the numerator and denominator of
eq. (1.9) approach normality with variances ¢,%/n, 6,%/n. And from this,
finally, it follows that for » sufficiently large the inequality used as the
definition of consistence does in fact hold.

/
Yy
Y2
0 X, X,

Fig. 4. Square inscribed in isosceles triangle, the expected value of the

ratio ¥,/y; and the ratio (expected value of y,)/(expected value of y;) to

be estimated from ordinates chosen simply at random in the region
O<z<a,.

Suppose. however, that, instead of summing y, and ¥, separately before
finding the ratio, we calculated the ratio at each ordinate. If R, = y,/y;,
then, by construction

1
R ={2—2z
0 l<z<<?2

0<x<1

Following the same reasoning as before, we have that
1 (1 dx
ER) == | —— =0.347 1.10
(Ry) Zfo(z_x) 0.34 (1.10)

Thus, although 4,/A 5 is the ratio of the expected values of the ordinates,
it is clearly not the expected value of the ratio of ordinates.



