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PREFACE

ICALP is the acronym of the annual International Colloquium on Automata,
Languages and Programming sponsored by the European Association for Theoretical
Computer Science (EATCS). It is a broad-based conference covering all aspects of
the foundations of computer science, including such topics as automata, formal
languages, analysis of algorithms, computational complexity, computability,
mathematical aspects of programming language definition, flow analysis, semantics
of programming languages, parsing, program verification, dynamic logic, rewriting
systems, cryptology, abstract data types, data structures and data base theory.
Previous ICALP conferences were held in Paris(1972), Saarbriicken (1974) , Edinburgh
(1976) , Turku{1977), Udine(1978), Graz(1979) and Noordwijkerhout (1980) .

ICALP 81 is the 8th conference of EATCS, covering once again a broad spectrum
of theoretic computer science. It is organized by the Computer Science Dept. of
the Technion and is to be held on July 13-17,1981, in Acre ( kko), Israel.

There are 44 papers in this volume, including 2 invited papers (by J.D. Ullman
and E. Engeler). The other contributed papers were selected by a Selection Commi-
ttee (the names of its members are listed below) from 109 extended abstracts and
draft papers submitted in response to the call for papers. Each submitted paper
was sent for evaluation to three members of the Program Committee. The manuscripts,
however, were not formally refereed as several of them represent preliminary re-
ports of continuing research. It is anticipated that most of these documents will
appear in more polished and complete form in scientific journals.

The chairman of ICALP 81 and the organizing committee wish to thank all those
who submitted papers for consideration; members of the Program Committee (see be-
low) for their help in the evaluation of the papers, and the many who assisted in
this process (see next page); Maurice Nivat who was a host of the Selection Commi-
ttee meeting in Paris; all the institutions and corporations which support ICALP 81
(see list of supporters below); Mr. Henry Lochoff of "Eden-Tours" Ltd. for handling
the many touristic details related to the conference; Springer-Verlag for printing
this volume. Finally we wish to thank Ms. Anat Even and Ms. Bella Gologorsky and
the secretarial staff of the Computer Science Department of the Technion for their
assistance in all organizational matters related to the conference.

April 16, 1981 S. Even and O. Kariv
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REFINED ANALYSIS AND IMPROVEMENTS
ON SOME FACTORING ALGORITHMS

€.P, Schhory
Fachbereich Mathematik
Universitdt Frankfurt

Extended Abstract

Abstract. By combining the principles of known factoring algorithms
we obtain some improved algorithms which by heuristic arguments all
have a time bound O(exp Vc In n 1n 1ln n) for various constants c=3.

In particular, Miller's method of solving index equations and Shanks's
method of computing ambiguous quadratic forms with determinant -n can

be modified in this way. We show how to speed up the factorization of

n by using preprocessed lists of those numbers in [—u,ﬂ and
[n-u,n+u],0<<u<<n which only have small prime factors. These lists

can be uniformly used for the factorization of all numbers in [n—u,n+u].
Given these lists, factorization takes O(exp[Z(ln n)1/3(ln 1n n)2/3])
steps. We slightly improve Dixon's rigorous analysis of his Monte Carlo
factoring algorithm. We prove that this algorithm with probability 1/2

detects a proper factor of every composite n within o(exp ¥y6In n In In n)
steps.

1. A Refined Analysis of Dixon's Probabilistic Factoring Algorithm.

So far the asymptotically fastest run time of a factoring algorithm
has been proved by Dixon (1978). Given a composite number n, this al-
gorithm finds a proper factor of n with probability 1/2 within
O(exp(4/In n In In n)) steps. 1mn denotes the "logarithmus naturalis"
with the Eulerian number e as base and exp is the inverse function to 1n.
Dixon mainly applies the method of "combining congruences" to generate

2=y2mod n. In Sections 2 and 3 we will see that this

solutions of x
technique can well be combined with factoring algorithms proposed by
J.C.P. Miller (1975) and D. Shanks (1971). We give an outline of Dixon's

algorithm with an improved analysis. We decrease the constant 4 in

* This work has been started in Summer 1980 during a stay at the Stan-
ford Computer Science Department. Preparation of this report was
supported in part by National Science Foundation grant MCS-77-23738
and by the Bundesminister fiir Forschung und Technologie.



Dixon's bound toV6. The improved theoretical time bound results from
a tighter lower bound on the number of quadratic residues mod n which
can be completely factored over small primes (Lemma 1) and a specific
method for detecting small prime factors. Here we do not focus on de-
signing the most practical algorithm but we like to prove a rigorous
asymptotical time bound as small as possible. We do not assume any
distribution on the input data but we assume that some intermediate

data are chosen at random.

Dixon's algorithm.

begin input n

stage; 1 v =Ln1/2rj
comment the optimal choice of relN will be made below.

3.

Form the list P of all primes sv:P={p1,..,p
if I p,eP:p,|n then print p, stop
B:= @

stage 2 Choose z e [l,n—l] at random and independently from previous

m(v)

choices of  z.
if gcd(z,n)#1 then print gcd(z,n)stop
w:= z2mod n with Osw<n

stage 3 Compute g;(aieﬂv |1si<m(v)) and w¥* with w=w*HisTT(v)pii
and Vpe P:p does not divide w¥*.
test 1 if w¥*#1 then goto stage 2
B:= BU{al},z_:= z
Try to find a nontrivial solution of
L f,a = Omod2; fge{Oﬂ}- (1)

aeB =

test 2 if there is no nontrivial solution then goto stage 2

M amar v T

ism(v)Pi

comment The construction implies x2=y2 mod n; in case x#ty
mod n, gcd(x+y,n) are proper factors of n.
test 3 if x#+y mod n then print gcd(xty,n)stop
Choose the first a &€B such that fa=1.
B:=B-{a},goto stage 2 &
end

Obviously a proper factor of n has been found as soon as test 3 succeeds.
In the following analysis of the algorithm we suppose that n is an odd
number with prime factor decomposition:?



d “ 1§
T g 1;21 and d=2.

Clearly the cases that n is even or a pure prime power can easily be
handled in advance. The following facts are due to Dixon.

Eact 1. prob (x=+y mod n within test 3)=21—‘d and the corresponding events
for distinct passes of test 3 are mutually independent.

Let T(n) be the total time of the algorithm and let T (n) be the time
till the first pass of test 3. We count arlthmetlcal steps mod n as
single steps. T (n), T3(n) are random values depending on the random
variables z of stage 2. Fact 1 immediately implies:

Fact 2. E[T(n)] = (1-2""9~ E[T3(n ]szE[T3(n]
Here E[X] denotes the expectation of the random value X. Let T, (n)

(T (n) , resp.) be the time spent from any entering of stage 2 tlll the
first pass of test 1 (test 2, resp.) without counting the steps used to
solve the various linear systems of equations (1). Since a linear de-
pendence of the a with a €B must exist as soon as #B=2m(v) +1=0 (v/1nv)

it follows that there are at most m(Vv)+1 passes of test 2 before the
first pass of test 3. Hence

Fact 3. E[T3(n)]s(m(v)+N)E[T, @) ]+0(m(v)?).

Here O(n(v)3) bounds the steps to solve all the linear systems (1) oc-

curring in the various passes of stage 3. 1Indeed this task amounts to

solve one system of linear equations with m(v)+1 unknowns. In order to
analyze E[T,(n)] we define

= {set of guadratic residues modrﬁnz
T(n,v):={re[1,n] :all prime factors of r are sv}
M(n,v) :={z¢[1,n] :22mod neQnT (n,v)}.

Let ?(n)=#2g be the Eulerian function.

Fact 4. E[T2(n)]SO(E[T1(n)Jcp(n)/#M(n,\)))-
Proof. We clearly have prob (w =1)=#M(n,v)/p(n). Hence test 1 will at-
most be passed about ¢@(n)/#M(n,v) times between two passes of test 2.8

(n) depends on how the factorization of w over the prime base P is
done. An obvious bound is as follows:

Fact 5. Eﬁ1mﬂsﬂW+Mgn.




Here log n bounds the number of multiple prime factors of n according
to their multiplicity.

So far Facts 1-5 yield under the assumption log nsm(v):

2 n
E[T(n)] £ O(TT(\)) [m + TT(\))]) (2)
and it remains to prove a sharp lower bound on #M(n,v). This will be

our main improvement over Dixon's analysis. Let k:Z —»{;t1}d~ ed 122 be
the quadratic character, defined as follows. For a € _Z let

k(a) = (e, ee.,e;) with e, = a_ ). By definition the Jacob1 s mbol(g)
1 a i gk =ASORL YRR Nq
i

is 1,(-1, resp.) if b is a quadratic residue (non-residue) mod g. It
is well known that K:Z{’eci]=122 is a group homomorphism and a€ Q iff «k(a)
is the/group unit (1,1,.:.,1) e {£1}

Lemma 1. #M(n,\))zn(v)zr/(zr)! for all natural numbers r with \)ern
proviéed all prime factors of n are >v.

Proof. Let T (m,v):= {we[1 ,m]]w—l'[p Sl ,\Z a;=r}. Since all prime

factors of n are >v we have Ty (J—',v)el . We partition T, (Jm,v) into
classes Tl,i ‘l,...,2d according to the 2d possible values of K. Then

d
UTiTi < T, (n,v)nQ.
i=1
»*
Since for each weTZr(n,v)nQ,#{ze'Zn|z mod n} = 2d it follows

#(n,v) 2 29T, (n,v) Q)

d r|2
a:2 3
o ):1 1#'1',‘(2;\:)| s

Here (#Ti)2 counts the number of ordered pairs (w1 ,wz) € Tix Ti and
(2r) !/ (r!)2 bounds for each w€ Q the number of distinct pairs
(w1 ,wz)e UiTi x T, that yield the product w,w,=w. The Cauchy Schwarz

2
inequality implies
zzd(#'r L S e e (4)
.7 §) 2 gAY me AR V)

2 2 ISR
(use }:iu ‘I vié(ziuivi) with ui—#'ri,\)i=1) i

Obviously we have 47 ( Vm,v)=(""") 2" Yan (v)¥/r1, since ("MIF7Y) 4o



the number of possibilities of choosing with repetitions r elements out
of m(v). Finally we obtain from (3), (4):

2
r! SIT(\))Zr r!2 3 ﬂ(v)Zr

575 1 SaET I 5% 8 B+ H

M (n,v) 24T_( Vn,v)

Putting (2) and Lemma 1 together we obtain

2 [n(2r)!
E T(n) —- O(TT(\)) —_— 4 Tl'(\)) )
- I [ﬂ(v)zr }

2

provided log n£m(v) and Vv irn Using \)=n1/2r

, V lnvsm(v)s2v/1ln v

(which follows from the prime number theorem) and (2r)!=0(12r(2r)2re—2r)
(which follows from Stirling's formula) we obtain
2_1/r . 1428
E[T(n)] = of{42)°n " [,‘Tr 72T ai BN %n__]) (5)
(1n n)2 i

We choose r €N as to minimize n1/r(ln n)2r. This implies

r= LR elel=

and

n'/T(1n n)2r =0(lnn expV8 In n 1n 1n n).

This finally yields the

expV8 1n n 1n 1n n')

2
Propositionl. E[T (n)] o(_!zzlg___

Iniln

o(expV8 1In n 1n 1n n).

The asymptotic behaviour of this bound is quite attractive for exces-
sively large n: n can be factored within nE(n) steps with £(n)->0 for
n»>~, However, for reasonably sized values the exponent g€(n) is not much

smaller than 0.5 and the algorithm is not practical.

Can the above analysis of Dixon's algorithm still be refined leading to

a constant in the exponenf which is smaller than J§5 We discuss two

main points, (a) the tightness of our lower bound on #M(n,v) in Lemma 1,
(b) the use of more sophisticated factoring algorithms for factoring w
over the prime base P in stage 2.

We clearly have #M(n,v)s¥(n,V) :=#{we [1,n]: all prime factors of w are



< v} The asymptotic behavior of y(n,v) has been analyzed for a long
time, see De Bruijn (1966) and Knuth, Trabb Pardo (1976). However, no

1/2%

exact values of ¥ (n,n ) have been published for large n, say n—22

v=7,8,9 and reasonable r, say 4srsio.

Instead of using within stage 2 the straightforward factoring algorithm
that leads to Fact 5 we could use one of Pollard's algorithms that finds
actors <v of n in about O(VyV) steps. By computational experience,
Pollard's p-method (1975) detects factors sv of n in O(YV 1In V) arith-
metical steps mod n, see Guy (1975) and Knuth (1980). This method is
highly practical although no rigorous theoretical time bound is known

so far. Recently Brent succeeded in factoring F8=228+1 by a variant of
this method. Pollard (1974) also proposed a second method with a rigor-
ous time bound. He computes for sufficiently many small ae'Z

for

gcd (I, (dvf—: -4y ,n) for u=1,2,..., v. For fixed a, these gcd values
can be computed by the fast Fourier transform within O(fﬁ(ln v)21n 1n v)
O. 5+£)

steps. In total, Pollard obtains a worst case time bound O(v
arbitrarily small £€>0, but the constant factor, expresses by O, increases
in an unknown way as & decreases. We give a similar but slightly
stronger result, see Schnorr (1980) for a detailed proof, also compare

StraBen (1976) .

Lemma 2. The smallest prime factor sv of n can be found in
O(rv(ln v)zln 1ln v) arithmetical steps mod n, provided 1ln n=0(ln v)z.

Using the above procedure in stage 3 of Dixon's algorithm for factoring
w over primes sv clearly improves Fact 5 to

Fact 6. T1(n) = 0( v(ln v)zln dn7 s,

This finally improves the bound of proposition 1 to E[T(n)] = (exp
Vv In n In 1n n). Thus we obtain the

Theorem 1. For each composite n let E[T(n)] be the expected time that
the above algorithm takes to find a proper factor of n. Then for all n
1) E[T(n)l = oi(expiv6 i In 'n AL n N .

(2) The event that the algorithm does not find a proper factor of n

within kE[T(n)] steps has probability SZ_k.

Statement (2) is an immediate consequence of the fact that the distinct
events of "test 3" (test 1,resp.) failing" are mutually independent.
A more practical factoring algorithm is obtained if the quadratic re-



sidues w in stage 2 are produced via the continuous fraction method (see
Morrison and Brillhart, 1975) which implies w=0O ( i) and if Pollard's

p—method is used for detecting small prime factors of w.

Under the assumption

(AO) the continuous fraction of fﬁ‘generates quadratic residues mod n
which are uniformly distributed in [1,0( {1)]

the time bound (5) transforms into a time bound
3/4r e r, 3/2r,2xr 3
E[T(n)] = O(n Inne " (ln n) +n () (8)

with r even, for the Morrison-Brillhart method. By choosing
1 3 In.n
:2 R
In In n

(In ) = o((1n n)2exp V3 1n n 1n Tnin

> |

we obtain

n3/4r

n3/2r O(exp V3 1Inn 1In 1n n).

By (8) this implies

Corollary 1. [Assume (AO)J. The Morrison-Brillhart method runs in

average time o(exp V3 1In n 1n 1n n).

This last method is really practical. Wunderlich (1979) obtained average

0.152 0.:21 40
&~ N

runtimes around 322n for n s 107

2. An Analysis and Revision of J.C.P. Miller's Factoring Method.

J.C.P. Miller (1975) proposed a factoring method based on the comp-
utation of indices. We shall develop a slightly improved version of
Miller's method which turns out to be quite similar to the previously
analyzed Dixon algorithm. Under reasonable heuristic assumptions the
runtime of our version of Miller's algorithm will be

O(exp V4.5 In n 1In In n). 1In particular Miller's method does not yield
an independent factoring algorithm but merely a specific modification

of the method of "combining congruences mod n". However, as we shall
point out, this modification has some decisive advantages in the case
that one likes to factor many numbers in the same range. So far all
known factoring algorithms collect data which are only useful for factor-



ing one specific number. For instance the congruences collected in
Dixon's algorithm cannot be used for different n's. This observation
also applies to the factoring algorithms of Morrison-Brillhart (1975),
Schroeppel (unpublished, see Monier 1980), Shanks (1971, 1974), and
Pollard (1974, 1975). 1In our version of Miller's method we will collect
products of small prime numbers which are near to the number n to be
factored. These products of small primes can be uniformly used for
factoring all numbers near to n. For the connection to Miller's method,
see Schnorr (1980).

As an example, let n = 1037

stage 1: Generate many distinct representations of n or multiples of n
as a sum or difference of two products of small primes. For

instance we have

faan = 2% . 33 i, 285 = 3%mca n
= 263e52.7 - 13 2¢3¢52.7 =13 mod n
= 223545.13 2235 =-5.13 mod n
= 3473423 3¢73 =-23mod n

We obtain by multiplying the above congruences:

211 7-.3,4 3.5

375%7% = 23355.13%m0a n
Since no prime of our base divides n, this yields

28325244 _ 432,44 0.

From 24',3'5°72 = 353mod n we obtain

353% = A8 modin

which gives us the proper factors

ged (353 = 13,n)
ged (353 '+ 13 ,n)

7
61.

A formal description of our method is as follows.

begin input n
vi= n1/2r 4= e
comment the optimal choice of r and d will be made below
Form the list P = {po,p1,..,p"(v)} of all primes <v,including
Pot iz



