Lecture Notes In

Computer Science

Edited by G. Goos and J. Hartm%nis

335

F.H. Vogt (Ed)

'CONCURRENCY 88
International Conference on Concur;éncy i

Hamburg, FRG, Oétobe(1988
Proceedings -

Springer-Verlag

b 178K

, 8962966
Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

B

E8962966

3z5 i

F.H. Vogt (Ed)

CONCURRENCY 88

International Conference on Concurrency
Hamburg, FRG, October 18—19, 1988

. Proceedings

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo

Editorial Board :

D. Barstow W.Brauer P.Brinch Hansen D. Gries D.Luckham

C. Moler A.Pnueli G. Seegmiiller J. Stoer N.Wirth (ol PR
fliss i SN

Editor

Friedrich H. Vogt TP§—53
Fachbereich Informati
Bodenstedtstr. 16, D-!

8962966

CR Subject Classification (1987): D.1.3, D.2.1, D.2.4, F.3.1-2, H.2.4,1.2.2
ISBN 3-540-50403-6 Springer-Verlag Berlin Heidelberg New York

ISBN 0-387-50403-6 Springer-Verlag New York Berlin Heidelberg -5
This work 1s subject to copyright. All rights are reserved, whether the whole or part of the material ; it
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, v ¥
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication %
of this publication or parts thereof is only permitted under the provisions of the German Copyright 3 £

Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1988
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210)

Ty mgeR R A U ¥ R

Foreword

CONCURRENCY 88, the international conference on formal methods for distributed
systems, was held October 18-19, 1988, in Hamburg, Federal Republic of Germany.

This conference was presented in connection with the annual conference of the
German Society for Computer Science (GI), dedicated this year to complex and dis-
tributed systems.

CONCURRENCY 88 was held in response to great interest in the field of formal
methods as a means to master the complexity of distributed systems. One of the
goals of the conference was to compare and contrast various methodologies, such
as constructive or property oriented. Major topics included the practical implica-
tions of formal specification techniques.

Particularly in Europe, proponents of different methods often consider them- -
selves to be more or less competitors; investigation of possible integration, combina-
tion and unification of the various methodologies has been neglected. In the United
States, on the other hand, the discussion and cooperation among representatives of
different methods is considerably more prevalent.

The CONCURRENCY 88 addressed the following topics:
— Specification Languages
— Models for Distributed Systems
— Verification and Validation
—Knowledge Based Protocol Modelling
— Fault Tolerance
— Distributed Databases.

The presented papers include 12 invited, and 14 selected by the program com-
mittee. Contributions were presented by authors from Austria, the Federal Republic
of Germany, France, Israel, Italy, the Netherlands, the United Kingdom and the*
United States.

Hamburg, August 1988 F. Vogt

Program Committee

H. Barringer (U Manchester)

M. Broy (U Passau)

D. Hogrefe (U Hamburg]

B. Mahr (TU Berlin)

G. Roucairol (Louve;::iennes)

R. Schwartz (Belmont)

R. Valk (U Hamburg)

F. Vogt (U Hamburg), chairman

¥

Contents

Invited Papers

While Waiting for the Millennium: Formal Specification and
Verification of Concurrent Systems Now (Abgtract) - " .0 . . ool wninl
L. LAMPORT (DEC Systems Research Center, Palo Alto, U.S.A)

A Framework for the Synthesis of Reactive Modules
A. PNUELI, R. ROSNER (The Weizmann Institute of Science, Rehovot, Israel)

Modelling Knowledge and Action in Distributed Systems
J. HALPERN, R. FAGIN (IBM Almaden Research Center, San Jose, U.S.A))

Requirement and Design Specification for Distributed Systems . . .
M. BROY (University of Passau, FRG)

Data Base Distribution and Concurrency for End-Users (Abstract) . .
R. SCHWARTZ (Borland International, Belmont, U.S.A)

On Safety and Timeliness in Distributed Data Management
D. DOLEV, H. R. STRONG (IBM Almaden Research Center, San Jose, U.S.A.)

An Automata-Theoretic Approach to Protocol Verification (Abstract)
M. Y. VARDI (IBM Almaden Research Center, San Jose, U.S.A)

On the Power of Cooperative COBCUNERBEY . . & & o ' o oiin s st
D. DRUSINSKY, D. HAREL (The Weizmann Institute of Science, Rehovot,
Israel)

Executing Temporal Logic: Review and Prospects (Abstract)

H. BARRINGER (The University of Manchester), D.GABBAY (Imperial College,
London, U.K.)

A Graphical Representation of Interval Fogie ... 0 or) Sl e Rna iy
P M. MELLIAR-SMITH (University of California, Santa Barbara, U.S.A)

Temporal Logic and Causality in Concurrent Systems | . .4 a0 s
W. REISIG (GMD, St.-Augustin, FRG)

Data in a Concurrent Environment 5o, Taillig e el ST gr et
E. ASTESIANO, A. GIOVINI, G. REGGIO (University of Genova, Italy)

.18

.33

.63

.64

.73

.74

104

106

121

140

Selected Papers

The Scope and Limits of Synchronous Concurrent Computation .
K. MEINKE, J. V. TUCKER (University of Leeds, U.K.)

A Logic-Functional Approach to the Execution of CCS
Specifications Modulo Behavioural Equivalences
S. GNESI, P. INVERARDI, M. NESI (IEI-CNR, Pisa, Italy)

A Top-down Step-wise Refinement Methodology for Protocol
ERECMICEION » . . . iedhT . s e R R L T e e e
D.-H. LI, T. S. E. MAIBAUM (Imperial College, London, U.K.)

A State Transformation Equivalence for Concurrent Systems:
Exhibited Functionality-equivalence

F. DE CINDIO, G. DE MICHELIS, L. POMELLO, C. SIMONE (University of
Milan, Italy)

External Behaviour Equivalence between two Petri Nets
A. BOURGUET-ROUGER (CNET, Issy-Le-Moulineaux, France)

Weighted Basic PetriNets
E. BEST (GMD, St. Augustin, FRG)

Total Algorithms
G. TEL (University of Utrecht, The Netherlands)

Semantics of Real-time Distributed Programs
A. GOSWAMI, M. JOSEPH (University of Warwick, Coventry , U.K.)

An Example of Communicating Production Systems
B. IGEL, G. REICHWEIN (University of Dortmund, FRG)

Assertional Verification of a Majority Consensus Algorithm for
Concurrency Control in Multiple Copy Databases
N. J..DROST, J. VAN LEEUWEN (University of Utrecht, The Netherlands)

Analysis of ESTELLE Specifications
U. THALMANN (Technical University Vienna, Austria)

Optimal Synchronization of ABD Networks
E. KORACH (The Technion, Haifa, Israel), G. TEL (University of Utrecht,
The Netherlands), S. ZAKS (The Technion, Haifa, Israel)

Adequacy-Preserving Transformations of COSY Path Programs . .
M. KOUTNY (The University of Newcastle upon Tyne, U.K.)

Deterministic Systems of Sequential Processes: Theory and Tools
Y. SOUISSI (Bull Research Laboratory, Louveciennes), N. BELDICEANU,
(MASI Laboratory, Paris, France)

Authors Index R A S P

o o ‘eie @ # e el e @ 8 ‘& e ie velis e

161

163

181

197

222

237
257
277
292

307

320
335

353

368

380

401

B

vited Papers

While Waiting for the Millennium:
Formal Specification and Verification of Concurrent
Systems Now

L. Lamport
DEC Systems Research Center
Palo Alto (USA)

Abstract

Formalisms abound -- algebraic methods, CCS, I/O automata, temporal logic, ...
Their proponents assure us that some day they'll be ready for real-world use.
Meanwhile, industry relies on specification methods that provide syntax without
semantics, and rigorous verification is for Ph.D. theses only.

We can do better. A sensible formal method, applied with common sense and realistic
expectations, can help today in the design and implementation of real systems. We
can't specify every relevant property of a system. We can verify only isolated, critical
parts of a system, to prove the correctness only of high-level algorithms, not of
executable code. Your favorite theory may remove these limitations -- some day. But
tomorrow's panacea doesn't solve today's problems.

A Framework for the Synthesis of Reactive
Modules

Amir Pnueli and Roni Rosner*
Department of Computer Science

The Weizmann Institute of Science
Rehovot 76100, Israel

Extended Abstract
July 1988

Abstract

We consider the synthesis of a reactive module with input z and
output y, which is specified by the linear temporal formula ¥(z,y).
We show that there exists a program satisfying ¥ iff the branching
time formula (Vz)(3y)A¥(z,y) is valid over all tree models.

*The work of this author was partially supported by the Eshkol Foundation.

1 Introduction

An interesting and fruitful approach to the systematic construction of a pro-
gram from its formal specification is based on the idea of program synthesis
as a theorem proving activity. In this approach, a program with input = and
output y, specified by the formula ¢(z,y), is constructed as a by-product of
proving the theorem (Vz)(3y)¥(z,y). The specification ¥(z,y) characterizes
the expected relation between the input z presented to the program and the
output y computed by the program. For example, the specification for a root
extracting program may be presented by the formula |z — v <e.

This approach, which may be called the AE-paradigm, or alternately, the
Skolem paradigm, is based on the observation that the formula
(Vz)(Jy)p(z,y) is equivalent to the second order formula
(3f)(Vz)P(z, f(z)), stating the existence of a function f, such that
®(z, f(z)) holds for every z. If we restrict the proof rules, by which the
synthesis formula is to be established, to a particular set of constructive
rules, then any proof of its validity necessarily identifies a constructive ver-
sion of the function f, from which a program that satisfies the specification
¥ can be constructed.

The AE-paradigm for the synthesis of sequential programs has been intro-
duced in [WL69] (but see also [Elg61]), and has been the subject of extensive
research [MW80, Con85] directed at extending the class of programs that can
be synthesized, and the theories that may be used for the proofs, as well as
strengthening the proof rules and the mechanisms for extracting the program
from the proof.

The success of this approach to sequential programming should not be
judged only by the number and complexity of programs that can be fully au-
tomatically derived, even though serious efforts are continuously invested in
extending the range and capabilities of fully automatic synthesizers, in much
the same way we keep improving the power of automatic theorem provers.
The more important contribution of this approach is in providing a concep-
tual framework for the rigorous derivation of a program from its specification.
Once this scheme is accepted, it can, in principle, be followed in a completely
manual fashion, but encourages, on the other hand, the open ended develop-
ment of a support system that will offer automatic support to increasingly
larger parts of the procedure. Equally important is the realization of the iden-
tity between the processes of theorem proving and program construction. It

has been recognized very early that every system for the formal development
of programs must contain at least a powerful theorem prover as an important
component. The approach of synthesis by theorem proving tells us that such
a system need not contain much more than a theorem prover.

In view of the success of this approach for sequential programs, there is
no wonder that several attempts have been made to extend it to concurrent
programs. These attempts were held back for awhile by the question of what
was the appropriate language to use for expressing the specification formula
¥. While, for sequential programs, it is obvious that a properly enriched first
order language is adequate, it took time to propose similarly adequate speci-
fication language for concurrent programs. One of the more stable proposals
is that of temporal logic ([Pnu77, GPSS80, MP82, SC85, Pnu86]). The basic
supposition underlying temporal logic is that concurrent programs often im-
plement reactive systems (see [HP85, Pnu85]) whose role is not to produce an
output on termination, but rather to maintain an ongoing interaction with
their environment. Therefore, the specification should describe the expected
behavior of the system throughout its activity.

Indeed, the two main works on the synthesis of concurrent programs,
which are reported in [CE81] and [MW84], consider a temporal specification
¥, and show that if it is satisfiable, we can use the model that satisfies ¢ to
construct a program that implements .

There are, however, some limitations of the approach, as represented
in these two pioneering contributions, due to the fact that the approach
is based on satisfiability of the formula expressing the specification ©(z,y).
The implied limitations are that the approach can in principle synthesize
only entire or closed systems.

To see that, assume that the system to be constructed has two compo-
nents, C; and C;. Assume that only C; can modify z (a shared variable
used for communication) and only C; can modify y. The fact that ¢(z,y) is
satisfiable means that there exists at least one behavior, listing the running
values of x and y, which satisfies ¢(z,y). This shows that there is a way
for C; and C; to cooperate in order to achieve ¥. The hidden assumption
is that we have the power to construct both C; and C; in a way that will
ensure the needed cooperation. If indeed we are constructing a closed system
consisting solely of C; and C; and having no additional external interaction,
this is quite satisfactory.

On the other hand, in a situation typical to an open system, C; represents

i 8962968

the environment over which the implementor has no control, while C; is the
body of the system itself, to which we may refer as a reactive module. Now
the situation is no longer that of peaceful cooperation. Rather, the situation
very much resembles a two-person game. The module C, does its best, by
manipulating y, to maintain ¢(z,y), despite all the possible z values the
environment keeps feeding it. The environment, represented by Ci, does its
worst to foil the attempts of C;. Of course, this anthropomorphism should
not be taken too literally. The main point is that we have to show that C;
has a winning strategy for y against all possible z scenarios the environment
may present to it.

It seems that the natural way to express the existence of a winning strat-
egy for C3, is again expressed by the AE-formula (Vz)(3y)¥(z,y). The only
difference is that now we should interpret it over temporal logic, where z
and y are no longer simple variables, but rather sequences of values assumed
by the variables z and y over the computation. In contrast, we may de-
scribe the approach presented in [MW84] and [CE81] as based on the formula
(32)(3y)¥(z, y)-

This is indeed the main claim of this paper. Namely, that the theorem
proving approach to the synthesis of a reactive module should be based on
proving the validity of an AE-formula. As we will show below, the precise
form of the formula claiming the existence of a program satisfying the linear
time temporal formula ¢(z,y), is (Vz)(3y)A¥(z,y), where A is the “for all
paths” quantifier of branching time logic. Thus, even though the specification
¥(z,y) is given in linear logic, which is generally considered adequate for
reactive specifications, the synthesis problem has to be solved in a branching
framework. This conclusion applies to the synthesis of both synchronous
and asynchronous programs, yet for simplicity of presentation, we prefer to
restrict the exposition in this paper to the synthesis of synchronous programs.
The application of our approach to the synthesis of asynchronous programs
will be presented in a subsequent paper.

An interesting observation is that the explicit quantification over the dy-
namic (i.e., variables that may change their values over the computation)
interface variables, z and y, is not absolutely necessary. As we will show in
the paper, there exists an equivalent branching time formula, which quan-
tifies only over static variables (i.e., variables which remain constant over
the computation), whose satisfiability guarantees the existence of a program
for ¢(z,y). For the case of finite state programs, this other formula be-

comes purely propositional, and its satisfiability, therefore, can be resolved
by known decision methods for satisfiability of propositional branching time
formulae. However, for the more general case that deductive techniques have
to be applied, we prefer to establish validity, rather than satisfiability, in
particular since the explicitly quantified version emphasizes the asymmetry
between the roles of the variables z and y in the program.

We justify our main claim on two levels. First we consider the general
case and show that the synthesis formula is valid iff there exists a strategy
tree for the process controlling y. We then argue that such a strategy tree
represents a program by specifying an appropriate y for each history of z
values. On this level we pay no attention to the question of how effective
this representation of a program is, which becomes relevant when we wish to
obtain a program represented in a conventional programming language.

Hence, in a following section we consider the more restricted case in which
the specification refers only to Boolean variables. In this case the validity of
the synthesis formula is decidable, and we present an algorithm for checking
its validity and extracting a finite-state program out of a valid synthesis
formula.

A related investigation of synthesis for the finite state case, based on a
similar approach, has been carried out in [BL69]. The question, formulated
for the first time in [Chu63], has been asked in an automata-theoretic frame-
work, where the specification ¢(z,y) is given by an w-automaton accepting
a combined z,y-behavior, and the extracted automaton is an w-transducer.
The solution presented in [BL69] uses game-theoretic ideas, and it is of very
high computational complexity. Later, [HR72] and [Rab72] have observed,
similar to us, that even though the specification is expressed by automata on
strings (corresponding to linear temporal logic), its synthesis must be carried
out by using tree automata. In our own approach we had to use a similar
algorithm for checking emptiness of w-tree automata. In [PR88], we show
how the complete synthesis process can be performed in deterministic time
which is doubly exponential in the size of the specification.

2 Temporal Logic

We describe the syntax and semantics of a general branching time temporal
language. This language is an extension of CTL* ([CES86, EH86, HT87]),

9

obtained by admitting variables, terms, and quantification. Its vocabulary
consists of variables and operators. For each integer k > 0, we have a count-
able set of k-ary variables for each of the following types: static function
variables — F* static predicate variables — U k dynamic function variables
— f*, and dynamic predicate variables — u*. The intended difference be-
tween the dynamic and the static entities is that, while the interpretation of a
dynamic element in a model may vary from state to state, the interpretation
of a static element is uniform over the whole model. For simplicity, we refer
to O-ary function variables simply as (individual) variables, of which we have
both the static and the dynamic types. The operators include the classical
=, V, 3 and the temporal O (next), ¢ (until) and E (for some path).
Terms: For every k > 0, if t;,-- -, are all terms, then so are FE(ty,-- o 1)
and fk(th 30 7tk)'

State formulae are the (only) formulae defined by the following rules:

1. For all k > 0, if #;,---,¢, are all terms, then U*(ty,---,tx) and
uk(ty,- -+, t;) are (atomic) state formulae.

2. If p and g are state formulae, then so are —p, (pV q) and (Ja)p where
« is any variable.

3. If p is a path formula then Ep is a state formula.
Path formulae are the (only) formulae defined by the following rules:

1. Every state formula is a path formula.
2. If p and g are path formulae, then so are —p, (pVq), Op and (pUg).

We shall omit the superscripts denoting arities and the parentheses when-
ever no confusion can occur. We also use the following standard abbrevia-
tions: T for p V —p, F for =T, p A ¢ for ~(-pV—g),p—qfor-pVgp=gq
for (p = ¢) A (¢ — p), (Ve)p for ~(3a)(=p), Op for TUp, Op for ~O—p,
pUq for pldqV Og and Ap for —E(-p). We shall use the letters a, b for static
individual variables (constants) and z,y for dynamic individual variables, or
propositions, for the Boolean case.

- By restricting this syntax, one gets special cases of the temporal language.
In classical static logic, there are no dynamic variables nor temporal oper-
ators (O,U, E). First-order logic permits 3 quantification over individual

T —

10

variables only. In propositional (resp. quantified propositional) logic, the
only variables permitted are propositions, without (resp. with) 3 quantifica-
tion over them. Finally, linear temporal logic omits the E operator (i.e. all
linear formulae are path formulae).

The semantics of temporal logic is given with respect to models of the
form M = (D,I,M). D is some non-empty data domain, I is a (static)
~ interpretation of all static variables into appropriate functions and predicates
over D, and M = (S,R, L) is a structure. S is a countable set of states.
R C S x S is a binary total access relation on S. L is the labeling function,
assigning to each state s € S a (dynamic) interpretation L(s) of all dynamic
variables into appropriate functions and predicates over D. A path in M is
a sequence = (S, 81, -) such that for all ¢ > 0, (si,si41) € R. A fullpath
in M is an infinite path. Denote by 7) = (s;, sj41, -) the j** suffiz of 7.

A structure M = (S, R, L) is called a tree-structure, iff the following
conditions are satisfied:

1. There exists a precisely one state, r € S, called the root of M, which
has no parent, i.e., no state 3 € S, such that R(s,r).

2. Every other state t # r, has precisely one parent.
3. For every state s € S, there exists a unique path leading from r to s.

A model M = (D,I,M), is called a tree-model, iff the structure M is a
tree-structure. 4

In order to interpret applications of static functions and predicates to-
terms, and applications of existential quantifiers over static variables to for-
mulae, we use standard definitions, over the static interpretation I and the
semantics of the given terms or formulae. Analogously, applications of dy-
namic functions are interpreted with respect to dynamic interpretations.

Satisfiability of a state formula is defined with respect to a model M and
a state s € S, inductively as follows:

1. (M,s) k= u(ty,---,tx) iff L(s)(u)(dr,:--,dx) =true, where d; is the
semantics of ¢; in (M, s), 1 < ¢ < k. That is, we apply u, as interpreted
in s by L, to the evaluation of ¢y, - ,t, as interpreted in s.

2. (M, s) = —p iff not (M, s) = p.

