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Since the publication of the third edition, the practice of including one or more courses
in modern geometry at the junior—senior level in universities has continued. The use
of both groups of transformations and sets of axioms to classify geometries remains
important. The field of computer graphics has emerged as a major application of
geometric ideas. The continuing emphasis on problem solving throughout the mathe-
matics curriculum has shown geometry to be a fascinating source of problems, and
has pointed up the relationship between skill in geometry and skill in problem-solving
techniques. Increasingly, geometry is seen as an applied as well as an abstract study.

The general goals and recommendations from Geometry’s Future, conference
proceedings sponsored by COMAP, Inc., have been carefully considered in planning
this new edition, and specific suggestions from the report have been incorporated.

This fourth edition also incorporates many improvements suggested by reviewers
and by teachers and students who have used the previous editions. The exercise sets
have been extended to include varying levels of difficulty, with more investigative-
type problems appropriate for individuals or small groups. Other changes include
additional explicit examples and figures, the improvement of many figures, clarification
of wording, rewriting of some proofs, the inclusion of many new applications such as
fractals and geometric probability, more historical notes, and a stronger bibliography.
All of the desirable features of earlier editions have been retained, so that these changes
result in a text that is both mathematically sound and highly teachable.

As the title indicates, the central theme of the text is the study of many different
geometries, rather than a single geometry. The first two chapters give two ways of
classifying some geometries: by means of sets of axioms or by the type of transfor-
mation defined. Both ways are used extensively in this text, and sometimes both are
used for studying the same geometry. The finite geometries of Chapter 1; the convexity,
Euclidean geometry, and constructions of Chapters 3, 4 and 5; the projective geometry
of Chapter 7; and the non-Euclidean geometry of Chapter 9 are based on various sets of
axioms. In addition to the examples of geometries presented from a transformational
point of view in Chapter 2, there are separate chapters (6, 7, 8) on inversion, projective
geometry, and topological transformations with the nature of the geometry depending
on the transformation allowed.

Throughout, the text emphasizes practical and up-to-date applications of modern
geometry. Students should be aware that many of these topics are discussed in current
professional journals and that contemporary research mathematicians are seriously
involved in the extension of geometric ideas. The major new applied area of computer
graphics, with an increased emphasis on matrices for transformations, is covered in
greater detail in the fourth edition.
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viii PREFACE

This text is written for students who range widely in their mathematical abilities.
While much of the material is appropriate for those with average or weak backgrounds
in geometry, students with strong backgrounds will find many new extensions of ideas
that will sharpen their problem-solving skills and encourage them to continue their
investigations. The text is planned for both majors and minors in mathematics. It is
appropriate for students interested in mathematics from the liberal arts standpoint and
for those planning to be teachers of mathematics.

Many of the first exercises in each set can serve as the basis for classroom
discussion; in that way, the instructor can make certain that fundamental concepts are
understood. Later exercises allow extensive practice in providing independent proofs.
The open-ended exercises provide extensive opportunities for further study. New in
this edition is the designation of some of these investigative—type questions for use in
cooperative learning situations. Chapter review exercises provide additional practice
of many concepts and skills. Some instructors may also wish to use these as practice
tests.

The various chapters of the text are largely independent. This and the arrangement
of topics within each chapter allow for great flexibility in their use, according to the
needs of the class and the desires of the instructor.

A Table Suggesting Some Possible Course Arrangements

I. Use of entire text for two-semester or three-quarter course
Plan A. (Semester or quarter system) Follow sequence of text

Plan B. (Semester system) One semester for geometry of transformations
(Chapters 2, 6, 7, 8) and another semester for axiomatic systems (Chapters
1,3,4,5,9)

Plan C. (Quarter system) One quarter for geometry of transformations
(Chapters 2, 7, 8), another quarter for axiomatic systems (Chapters 1, 6, 9),
another quarter for extensions of Euclidean geometry (Chapters 3, 4, 5)

II. Use of portions of text for courses covering less than an academic year
Plan D. (Two-quarter) Any two quarters from plan C
Plan E. (Two-quarter) All of text except Chapters 5, 6, 9
Plan F. (Two-quarter) All of text except Chapters 3, 5, 8
Plan G. (One-semester) Either semester from plan B
Plan H. (One-semester) Chapters 14
Plan I. (One-semester) Chapters 4, 5, 7 and one other selected chapter.
Plan J. (One-quarter) Any one quarter from plan C

Plan K. Survey as many chapters as time permits by choosing first sections
and omitting later sections of each chapter.

I would like to express my appreciation to James Moser of the University of
Wisconsin, Bruce Partner of Ball State University, John Peterson of Brigham Young
University, Demitrios Prekeges of Eastern Washington State College, Curtis Shaw of
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the University of Southwestern Louisiana, and Marvin Winzenread of California State
University, Hayward, for reviewing the manuscript for the first edition; to Lewis Coon
of Eastern Illinois University, Viggo Hansen of California State University, Northridge,
Alan Hoffer of Boston University, John M. Lamb, Jr., of East Texas State University,
and Alan Osborne of Ohio State University for reviewing the text in connection with
preparations for the second edition; to Ione Boodt of the University of Indianapolis,
George Cree of the University of Alberta, H. Howard Frisinger of Colorado State
University, Jay Graening of the University of Arkansas, George C. Harrison of Norfolk
State University, Alan Hoffer of Boston University, Wojciech Komornicki of Hamline
University, Dave Logothetti of the University of Santa Clara, and Joanne Trimble of
Marist College for reviewing the text and/or manuscript for the third edition; Fred Fiener
of Northeastern Illinois University, Claudia Giamati of Northern Arizona University,
Betty J. Krist of State University College, Buffalo, New York, Adrian Riskin of Northern
Arizona University, and John Smashey of Southwest Baptist University, for reviewing
the manuscript for the fourth edition; and to the many conscientious university faculty
members and students who have made worthwhile suggestions for improvements.

I would also like to thank Robert Wisner, Jeremy Hayhurst, Elizabeth Barelli, Joan
Marsh, Carline Haga, and all the other people at Brooks/Cole Publishing Company
who helped in the preparation of this edition. Finally, let me thank Daryl Angney and
the others at TECHarts for the great job of making work on the book such a pleasant
experience.

James R. Smart
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A 1.1 Introduction

Today, the great increase in practical applications of geometry is leading to interest
in many new topics. The idea that geometry consists only of the typical high school
geometry course is completely inadequate. Your concept of the field of geometry should
change dramatically as you study this text.

The word geometry literally means “‘earth (geo) measure (metry).” Although this
literal meaning is far too narrow to include the various modern geometries explored in
this text, the idea of earth measure was important in the ancient, pre-Greek development
of geometry. These practical Egyptian and Babylonian applications of geometry
involved measurement, to a great extent, and they were not complicated by formal
proofs.

Hundreds of baked clay tablets from ancient Babylonia include mathematical ideas.
The analysis of a tablet designated Plimpton 322 (catalog number 322 in the Plimpton
collection at Columbia University) has shown the Babylonians, as early as about
1900-1600 B.C., had extended their knowledge of right triangles to a compilation
of primitive Pythagorean triples. For example, the numbers 3, 4, 5 are primitive triples
because they can be used as the lengths of the sides of a right triangle, and have no
common integral factors other than one. The Babylonians used rules for finding areas
and volumes of some figures, and are also given credit for dividing the circle into 360
parts.

Two ancient Egyptian papyruses dating from about the same period, the Moscow
papyrus and the Rhind papyrus, contain a total of 26 geometric problems, most of which
involve various mensuration formulas used for computing land area and the volume of
granaries. Some problems concerned finding the slope of the face of a pyramid.

During the Greek period, the science of earth measure became more refined. About
230 B.C., Eratosthenes made a remarkably precise measurement of the size of the earth.
According to the familiar story, Eratosthenes knew that at the summer solstice the
sun shone directly into a well at Syene at noon. He found that at the same time, in
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Alexandria, approximately 787 km due north of Syene, the rays of the sun were inclined
about 7.2° from the vertical (Figure 1.1). With these measurements, Eratosthenes was
able to find the diameter of the earth.

Example » Use the measurements of Eratosthenes to find the approximate
difference in angle of elevation of the sun in two places 476 km apart in a north-
south line, both south of the equator.

787 476
72~ x
x ~ 4.4°

Sun

Alexandria

Figure 1.1

Interestingly enough, the earth measurement aspect of geometry has been of recent
interest because satellites, instruments placed on the moon, and the U.S. Coast and
Geodetic Survey (in producing nautical and aeronautical charts) have been able to
provide very precise measurements of the earth.

Today, the science of geodesy includes making precise measurements of the earth’s
size and shape, as well as determining precise locations of points on the earth’s surface.
These measurements are used by cartographers in the production of maps. The earth
is considered to be a geoidal surface whose composition is not uniform and which has
lumps, or bulges, rather than being an exact sphere or even an exact oblate spheroid
(with slightly different major and minor axes). Figure 1.2 illustrates two common map
projections.

The first is the Mercator projection and the second is the Conic projection. A third
type of map is discussed in Chapter 6. The concept of projection appears in Chapter 7.
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Figure 1.2

To many people today, however, the word geometry no longer suggests earth
measure: mathematicians might describe the geometries included in this text as the
study of the properties and relationships of sets of points. To the typical adult, though,
the word geometry probably suggests the high school course they took in plane geometry
or possibly the use of coordinates for points encountered in the study of algebra or
calculus. The ancient Greeks of the period 500 B.C. to A.D. 100 receive much of the
credit for developing the demonstrative geometry studied at the high school level. They
recognized the beauty of geometry as a discipline with a structure and understood that
the proof of a theorem could be even more exciting than the discovery of a practical
application.
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Greek geometry, called Euclidean geometry because of the monumental work of
Euclid (300 B.C.), includes undefined terms, defined terms, axioms or postulates, and
theorems. Other geometries studied in this text have the same sort of structure, so
sets of axioms are one convenient means of classifying a geometry. The geometries
in Chapters 1, 3, 4, 5, and 9 are all approached from the axiomatic viewpoint. In
Euclidean geometry, undefined terms, which are arbitrary and could easily be replaced
by other terms, normally include terms such as points, lines, and planes; it would also
be possible to develop Euclidean geometry using such concepts as distance and angle
and keeping them undefined. Definitions of new words involve using the undefined
terms.

Today, the words axiom and postulate are used interchangeably. In the development
of geometry, however, the word postulate was used for an assumption confined to one
particular subject (such as geometry), while axiom denoted a “universal truth,” a more
general assumption that applied to all of mathematics. The axioms and postulates of
Euclid are stated in Section 1.7. The truth of axioms or postulates is not at issue. These
statements are beginning assumptions from which logical consequences follow. They
are analogous to the rules for a game. Since the mathematical system to be developed
depends on the axioms, changing the axioms can greatly change the system, just as
changing the rules for a game would change the game.

Theorems are statements to be proved by using the axioms, definitions, and previous
theorems as reasons for the logical steps in the proof. The theorems of geometry are
valid conclusions based on the axioms. A simple theorem typically is stated in the form
of an if-then statement such as, “If the sum of the measures of the opposite angles of a
quadrilateral is 180 (in degrees), then the quadrilateral can be inscribed in a circle.” In
logic, this statement is a conditional. Selected ideas from logic are listed in Appendix
4, and selected theorems from plane Euclidean geometry are listed in Appendix 5. The
first 28 theorems (propositions) of Euclid are listed in Appendix 6.

The Greek geometry was synthetic, which means it did not use coordinates for
numbers as in analytic geometry. Really significant advances over the synthetic geom-
etry of the Greeks were made only with the invention of analytic geometry (about 1637)
and its subsequent use as a tool in modern analysis. While analytic geometry is not
the dominant theme of this text, coordinates of points are used as an alternative to the
synthetic approach when convenient.

The title, Modern Geometries, with emphasis on the plural, should prepare you
for finding out much more about the existence of not just one, but an infinitude, of
geometries. As the word modern in the title implies, the major emphasis is on newer
geometries—those that have been developed since 1800. The emergence of modern
algebra, with its theory of groups, and the introduction of axiomatics into algebra
paved the way for Felix Klein’s classification of geometries in 1872. The basic concept
of transformations needed to understand this classification is discussed in Chapter 2.
Many geometries can be explained using the basic idea of transformations. In each
case, mathematicians are interested in properties that remain the same when sets of
points are changed in some way. The geometries in Chapters 2, 6, 7, and 8 are all
classified by means of transformations.
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The latter part of the nineteenth century witnessed a revival of interest in the
classical geometry of the circle and the triangle, with the result that the Greek geometry
was extended by many significant additions (Chapters 4 and 5). Projective geometry
(Chapter 7) was invented about 1822; material on non-Euclidean geometry (Chapter 9)
was in print by about 1830. Inversive geometry (Chapter 6) was developed about the
same time.

During the twentieth century, studies in the axiomatic foundations of geometry and
the finite geometries (Chapter 1), the geometry of convexity (Chapter 3), and geometric
topology (Chapter 8) have all been added to the great body of geometry that is relatively
independent of analysis. A recent development, largely since 1975, has been the appli-
cation of many ideas from geometry in the new applied area of computer graphics.
Other recent developments include insertion of material on fractals, tessellations, and
geometric probability in many geometry books.

Even this brief sketch of some of the major steps in the history of geometry should
convince you that a discussion of modern geometries must deal with many different
kinds of geometry. This dominant theme should be remembered each time a new
geometry is encountered. It is an acknowledgment of the diversity of mathematical
systems titled “geometry” that distinguishes a book on modern geometries from a
traditional college geometry text of a quarter century ago, which concentrated only on
a restudy and direct extension of the Euclidean geometry of the high school. Still other
geometries might have been included. For example, in the early nineteenth century,
Gauss, Riemann, and others applied calculus and analysis to geometry, spawning a
specialty known as differential geometry. This approach was very fruitful, and led to
results that have been crucial to the development of modern physics and cosmology.

Computer graphics is the use of a computer to produce pictorial output. Aspects of
this production include defining the data points, manipulating the figure, and presenting
it. The use of animation and the depiction of fractals are extensions of these ideas.
Computer graphics solves the problem of creating a particular picture or pictures on the
computer screen. Computer graphics may be studied using a small personal computer
with graphics capability, but there are also complex and expensive computers especially
designed for computer graphics use. Applications of computer graphics can enrich
regular geometry texts and courses so that students see this important application at an
earlier age.

The concepts of geometry such as points, lines, and slope are modified when used
in computer graphics. For points, the use of integral coordinates on the computer
screen means pictures composed of pixels, the smallest location on the screen that can
be addressed. The computer graphics screen is a grid of pixels, though they often are
called dots or points in computer graphics. A graphics picture is created by selecting
and energizing some pattern of pixels.

The orientation and scale of axes are concepts that may be used differently in
computer graphics than in high school geometry. For example, the positive y-axis may
be directed downward on some computer screens, so that the origin is in the upper
left hand corner. Because the horizontal-to—vertical ratio of pixels may be about 2
to 1 instead of 1 to 1, the effect on graphing is to change the looks of figures. For



6

CHAPTER 1 Sets of Axioms and Finite Geometries

example, a line with slope of 1 and with positive y-axis pointed downward may look
like Figure 1.3a. Circles may look like ellipses, and figures that are reflected about an
axis may not look congruent. Although it is possible to make changes in the programs
to compensate for this “distortion” on the graphics screen, geometry students should
expect it and should learn to accept various representations as correct. One advantage
of this application is to convince students of geometry that trying to prove something
from a picture alone is dangerous.
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Figure 1.3a Figure 1.3b

A specific application of computer graphics that takes advantage of the “ragged”
appearance of lines and some curves in earlier inexpensive computers is the Moiré
pattern, an example of which is shown in Figure 1.3b. These graphic designs simulate
art produced by slight variations in position of a basic figure.

A EXERCISES 1.1 A

(Answers to selected exercises are given at the back of the text.)

1.

Verify that the Pythagorean theorem a” + b?> = 2, holds for the primitive triple
3,4,5.

. Find the perimeter of a right triangle with shorter sides measuring 5 and 12

units.

. Find the perimeter of a right triangle with shorter sides measuring 9 and 12

units.

. Why could a right triangle with integers for lengths of sides not have shorter

sides measuring 5 and 10 units?

. Use the measurements of Eratosthenes to find the approximate diameter of the

earth.
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6. Use the measurements of Eratosthenes to find the approximate difference in
angle of elevation of the sun at two places 1000 km apart in a north-south
direction, both north of the equator.

For Exercises 7 and 8, assume that the method of Eratosthenes could be used for other
planets.

7. If the distance were 300 miles and the angle difference 6°, what would be the
circumference of the planet?

8. If the distance were 400 miles and the angle difference 8°, what would be the
circumference of the planet?

For Exercises 9—14, answer true or false; then explain what is wrong with each false
statement.

9. High school geometry owes more to the ancient Egyptians than to the ancient
Greeks.

10. Euclid used the word postulate for an assumption confined to one particular
subject.

11. Definitions must use only words that have previously been defined, not
undefined terms.

12. Analytic geometry was invented before the development of finite geometries.

13. The latter part of the nineteenth century witnessed a revival of interest in the
classical geometry of the circle and the triangle.

14. Traditional college geometry of a quarter of a century ago included the study
of more different geometries than are included today.

Throughout the text, exercises preceeded by the symbol D are investigative-type proj-
ects that may require checking references, doing research, making generalizations, and
other supplementary activities to extend the coverage of the section. Some investigative-
type exercises are designated by » to show they are particularly appropriate for use
with cooperative or small-group learning situations.

D 15. How could instruments on the moon be used to make precise measurements of
the earth? Try to discover an answer before consulting a reference.

D 16. Read in a history of mathematics text about the geometry of ancient Babylonia
and Egypt; then work several geometric problems found in the papyruses.

D 17. Read more about the subject of geodesy and discuss it as an application of
geometry.
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A 1.2 Introduction to Finite Geometries

The Euclidean plane has an infinitude of points and lines in it, and a rich collection
of theorems that continues to increase over the years. By contrast, “miniature” geom-
etries have just a few axioms and theorems and a finite number of elements. These
geometries are finite geometries, and the purpose of including them here is that they
provide excellent opportunities for the study of geometries with a simple structure.

All the geometries studied in this text have a finite number of axioms and a finite
number of undefined terms. Thus, those features do not make a geometry finite. Instead,
a finite geometry has a finite number of elements—that is, points or lines or “things to
work with.” For the geometries studied in this chapter, these elements can be considered
points and lines.

Historically, the first finite geometry was a three-dimensional geometry, each plane
of which contained seven points and seven lines. The modernity of finite geometries
is emphasized by the fact that Gino Fano explored this first finite geometry in 1892,
although some ideas can be traced back to von Staudt (1856). It was not until 1906
that finite projective geometries were studied by Veblen and Bussey. Since that time,
a great many finite geometries have been or are being studied. Many sets of points
and lines that were already familiar figures in Euclidean geometry were investigated
from this new point of view. Several of the finite geometries are an integral part of
projective geometry, and a knowledge of the finite geometries of Chapter 1 will help
in the study of some of the basic set of points and lines used in Chapter 7. However, at
the present time it is quite possible for a mathematics major to graduate without ever
encountering finite geometries, although it is also true that finite geometries are being
used increasingly as enrichment topics and extension units at the high school level.
Finite geometries also find a practical application in statistics.

All the finite geometries in this chapter have point and line as undefined terms.
The connotation of /ine is not the same in finite geometry as in ordinary Euclidean
geometry, however, since a line in finite geometry is assumed to have more than one,
but only a finite number, of points.

The first simple finite geometry to be investigated, called a three-point geometry
here for identification, has only four axioms:

Axioms for Three-Point Geometry

1. There exist exactly three distinct points in the geometry.
2. Two distinct points are on exactly one line.

3. Not all the points of the geometry are on the same line.
4. Two distinct lines are on at least one point.

Assume that the words point, line, and on are undefined terms. In Axiom 4, the two
lines with a point in common are called intersecting lines.
Try to discover the answers to these questions before reading further:

» What kinds of figures or models could be drawn to represent the geometry?



