PRINCIPLES OF
COMPUTER

SCIENCE

ICULLEN SCHAFFER]

Principles of
Computer
Science

CULLEN SCHAFFER

Rutgers University

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

SCHAFFER, CULLEN, (date)
Principles of computer science.

Includes index.

1. Computers. 2. Electronic data processing.
I. Title.
QA76.8345 1988 004 87-29061
ISBN 0-13-709759-X

Editorial/production supervision

and interior design: Joan McCulley
Cover design: Photo Plus Art
Manufacturing buyer: Rick Washburn

== © 1988 by Prentice-Hall, Inc.
% A Division of Simon & Schuster

Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-709759-X 0es

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL of AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL of INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL of JAPAN, INC., Tokyo

SIMON & SCHUSTER ASIA PTE. LTD., Singapore

EDITORIA PRENTICE-HALL do BRASIL, LTDA., Rio de Janeiro

For Guthrie and Cecily,
whom 1 admire

Preface

Frankly speaking, the volume at hand is an odd one—a kind of eccentric friend
whom I am glad to have had as a companion these many months, but yet am rather
apprehensive in introducing to a larger acquaintance.

The book opens with a detailed account of how to build a computer from
transistors, and yet it relegates external memory and 170 devices to a few pages at the
end. It introduces the halting problem and uncomputability; complexity analysis and
recursion; and yet it presumes virtually no mathematics, not even algebra. Finally, as
if it were not enough to treat computer science topics from Boolean logic to artificial
intelligence, the narrative ranges off at times into biology, philosophy, psychology,
and economics.

I think it is safe to say the approach is unique. The question, of course, is
whether it has any other merits.

One, certainly, is that it concentrates on some of the most exciting, important
ideas in the history of technology. These are implicit, of course, in other introductory
texts, but all too often scintillating ideas are couched in inscrutable equations, with
relevance and ramifications written only between the lines.

Furthermore, the first goal of most texts is to convey practical information,
much of which is rather less than earthshaking. Most people appreciate the utility of
a keyboard; few care to read about it.

The topics treated here are of practical value, but they have been chosen
primarily on grounds of intellectual significance. I have asked myself what ideas we
computer scientists have reason to be proud of and then attempted to present these at
an introductory level.

The result is a knockout lineup. As the deep insights of our discipline are
revealed, students ought to experience not just understanding, but awe: and if I

xi

xii Preface

occasionally overstep the usual bounds of textbook matter and prose, it is with the
idea of exciting this reaction. I would hope the tenor of the presentation is so fitted to
the brilliance of the material that students will be moved to burst out from time to
time into unprintable, but appreciative, expletives. Certainly, if they do not, it is the
writing and not the material to blame.

To get at the powerful ideas of computer science, a surprisingly simple model of
the computer suffices. By paring the machine down to essentials, dispensing with
everything but a serviceable processor and some internal memory, I have managed to
say nearly everything about how it works in a few chapters.

I expect students will get a certain satisfaction from learning what makes a
computer tick, from transistors to CPU; but the project of building a computer also
provides a framework into which other topics may be introduced coherently: formal
logic, through Boolean algebra; the central role of feedback in self-regulating
systems; and the basis of arithmetic operations in the place-value scheme.

Moreover, the ascent from transistors to logic gates, from logic gates to
flip-flops, and from flip-flops to memory systems and higher—this itself is an
awesome and valuable introduction to the power of hierarchical design. Indeed, one
of the deep lessons of the computer, and perhaps of technology as a whole, is that the
agglomeration of simple, well-defined constituents may yield disproportionate power
in the whole.

The intent of the first chapters, then, is not merely to explain computer
architecture, but rather, as my title would suggest, to elucidate the principles
underlying it.

Once the components of a model computer have been plausibly designed, a few
elementary machine-language examples lead quickly and, I should hope, shockingly
to the halting problem proof of uncomputability. This naturally raises important
questions about the limits of mechanical information processing. But it is equally
valuable here as a testament to the abstract approach which distinguishes computer
science from computer programming.

This distinction is often drawn in textbook prefaces, but I think it is rarely
impressed upon students in the chapters following. To my mind, the halting problem
proof is the strongest and best medicine for adept programmers, who are all too apt
to treat analysis as a kind of artificial complication.

To drive the point home, the text continues with an analytic look at algorithms
and data structures, considering searching and sorting problems with an emphasis on
efficiency. I expect students to leave this section with an intuitive appreciation of the
enormous difference between functions of various orders—log n, linear, n log n, and
n’—as well as with a practical respect for what may be gained through the creative
organization and handling of information.

Again, no mathematics is presumed. Rather than treating logarithms as a
prerequisite to complexity analysis, I have used complexity examples to motivate
logarithms, and, with apologies to the mathematics department, I think students will
be grateful for the more concrete approach.

Preface

xiii

From a general consideration of data structures, the text focuses on the special
role of stacks in subroutines and recursion. These are both of major importance:
subroutines because they allow us to apply hierarchical design principles to software
as well as to hardware; recursion because it provides an alternative, equally powerful
model of computation.

Both also suggest ways of raising the machine to a higher level of
understanding, a topic with which most of the rest of the book is concerned.
Translation and bootstrapping are the principal topics, but I have also included a
description of a high-level language, a simplified one designed to give programmers
a fresh view of the essential algorithmic elements and nonprogrammers a feel for the
ease of high-level programming, unclouded by the syntactic complexities of practical
languages.

With the essence of the computer bared, then, from transistors to translators, the
text finishes its tour where most begin, by introducing practical, auxiliary features
such as disk drives, I/0 devices, and operating systems, along with some of the jargon
avoided elsewhere in the text. This ties together many otherwise disparate subjects
and relates the sophisticated, abstract notion of a computer developed in the text to
the pedestrian contraption with which many students are already quite familiar.

From these pragmatic concerns, however, the text turns for its conclusion to the
question of artificial intelligence. If the preceding chapters are not wholly
uninterpretive, this last one is frankly opinionated. It will have served its purpose well
if it provokes a heated response.

It may be discerned from this description that what I have written is not simply
a collection of related chapters. This text embodies a development, an organizing
scheme. It aims to show students not only the ideas of our discipline, but how these
are interwoven to form a discipline. Realizing that I cannot hope to include all the
facts in a single volume, I have striven instead to provide an overview, a framework
into which students may later fit details.

This makes the book a useful one, I think, for computer science majors, who will
be bombarded with such details in other courses.

For two reasons, it should also find a place in the general introductory course,
which constitutes a kind of invitation to the field. First, if we concentrate on Pascal in
such classes, the ranks of our majors will swell with students who believe computer
science is the study of programming. Second, conversely, if the introductory course
does not offer a substantial taste of the best computer science has to offer, we risk
losing the very brightest students, the ones we pine for in upper-level classes.

Finally, although it may seem odd to some, my own intent is to use the book in
a Rutgers University course meant strictly for nonmajors. Existing literacy texts stress
vocabulary, programming, and the use of applications packages. The fact is, however,
that students who take a one-semester introductory course are extremely unlikely to
have any use for programming skills after the course has concluded. They will, of
course, have occasion to use word processing and spreadsheet programs, but these
have been geared to the mass market and require little teaching.

Xiv

Preface

This book gives substance to my deep conviction that technical subjects merit
the respect and treatment normally reserved for works in the humanities. We teach
literature not for any immediate, pragmatic benefit, but because of its inherent beauty
and the difficulty, sometimes, of apprehending that beauty without guidance. In the
same way, I would like to try to convey something of the feeling of computer science
to nontechnical students.

With these words, then, I send my eccentric friend out to greet the world. The
text is an odd one, admittedly, but it is written with a good deal of affection and
respect for the material it treats. I entrust it to the consideration of my like-hearted
colleagues.

Cullen Schaffer
New Brunswick, New Jersey

Introduction

Ten years ago, a book about computers might have begun with a definition.
Today, most people already know more about the machine than a definition can tell.
A hefty percentage have been taught to use a computer in some way—either to
program it or to use a store-bought program like a word processor. Many own a
computer or have considered buying one.

Computers are becoming as familiar as the family dog and, if we are to believe
the advertising copy we read, nearly as friendly. Would a book called Principles of
Canine Science begin with a definition? Nonsense. Everyone knows what a dog is,
and most people know quite a bit more: what dogs eat, how to teach them tricks, what
the difference is between a collie and a poodle, and so on.

But, for all this knowledge, how much do we know?

For one thing, a dog’s internal workings are more complex, by far, than our
most fabulous mechanical and electronic inventions. From intricate cells to major
organs like the heart and stomach, the body of a dog is a miracle of design—a miracle
few people appreciate in any depth.

Moreover, knowing how a dog digests food and pumps blood is only the
beginning—it still leaves us with questions on a higher level. Why does the dog sleep?
What kind of control system keeps all its parts functioning smoothly together?
Despite the simplicity of these questions, it is fair to say that no one—neither scientist
nor dog lover—knows the full answer.

On a third level, consider behavior. In part, this is based on instinct. We all
know that dogs have a built-in tendency to chase cats and bury bones. Charting the
full range of instinctual behavior, however, is a major scientific problem. Another is
explaining why dogs have the instincts they do—how these contribute to its survival.

Behavior is more than instinct, however. Intelligence permits a dog to learn and

Xv

xvi

Introduction

to be trained. This fact leads to theoretical questions about row dogs learn. It also
suggests practical questions about how to teach them—to perform tricks, guide blind
people, or sniff out bombs.

Finally, all these points lead to questions on a yet higher level. How has
evolution made the dog what it is? Through further evolution or breeding, what will
it become? How far may a dog be trained? What is the limit of canine intelligence?

* * * * *

Understanding, it seems, is a matter of many levels. When we say that everyone
knows about dogs, we really mean only that all people know a little about some of the
middle levels. A scientist could fill a book with what most people do not know about
the family dog.

Moreover, there would be good reasons for reading such a book. First, subjects
like physiology, evolution, and animal behavior are fascinating in their own right.
The fact of life grows all the more astounding and marvelous when we examine the
details.

Second, a many-leveled understanding is important for practical purposes. To
breed dogs efficiently, we need to know genetics. To train them, we ought to
understand canine instinct and intelligence.

Last, and perhaps most important, much of what we might learn about dogs
would apply beyond the canine world. Genetics, respiration, instinct—once we have
learned about these things, we may apply our knowledge to animals in general, even
to ourselves. Research into how dogs fight disease can lead to advances in human
medicine.

Furthermore, beyond the applications in other parts of biology, knowledge
about dogs might provide insight in unrelated fields. Engineers, for example, have a
great deal to learn from the dog about design and control. They have yet to build a
machine that walks and climbs as easily as the dog does over uneven surfaces.

Also, the dog is a marvel of planning and compromise. At any moment, it is
bombarded with information and torn by conflicting desires. A hungry, tired dog may
be called by its owner just as a cat runs by. Will the dog chase, eat, sleep, heed the
call? Somehow, all the information and urges must be managed and coordinated so
that the dog acts sensibly.

An understanding of the dog’s decision process might well profit people who are
bombarded with information and torn by conflicting pressures: people who manage
and coordinate complex systems like factories and governments.

As a last example, consider evolution. Once we have the idea and understand
how it applies to dogs, we may begin to consider the evolution of economies, peoples,
or ideologies. Attempting to understand dogs may lead us to principles which are of
general use, far beyond the original context.

This, in fact, is our main point: it is not only the dog we are interested in, but the
principles behind it.

* * * * *

Naturally, all we have said is relevant to computers as well as canines. When we
say that most people are familiar with computers, we mean that they know a little bit

Introduction xvii

about the middle levels. This is as true of most programmers as it is of the English
major who knows only how to write essays with a word processor.

Most of this book is an attempt to explain the other levels and to show how they
are related. That is, we want to provide a broad understanding of what computers are
and how they may be used.

We will begin by showing, in detail, how a computer is constructed. It is an odd
fact that, although the computer is the most complex invention in the history of
humankind, we can give a fairly complete explanation of its design in just a few
chapters.

Part of the reason is that the computer is designed on many levels. By saying just
a little about each level it is possible to show how the whole machine operates. At first,
we will discuss the simple electronic parts that go into a computer. Then we will
explain how the parts are assembled into components, how the components are used
to build systems and, finally, how the systems go together to make a working
computer.

All these lower levels concern the physiology of the computer, its inner
workings. Once we have considered these thoroughly, we will move on to higher-level
questions about the computer’s behavior. In particular, we will want to ask what it
can and cannot do.

Given that the computer can undertake quite a variety of useful projects, we will
also need to consider practical questions of efficiency. As we will see, computers are
information-handling machines. Efficiency depends on organizing and using
information effectively.

Finally, on a still higher level, we will look into the peculiar fact that computers
may be used to increase their own power. This leads to some exciting, perhaps crucial
questions: How powerful can computers get? Can they match our own
information-handling skills? Can they think?

The reasons for studying computers at all these levels are exactly those we gave
a moment ago. First, the subject material is inherently intriguing. The computer is
very nearly a miracle and it becomes all the more astounding and marvelous when we
examine it closely.

Second, a many-leveled understanding is important for practical purposes.
Knowing how the computer is constructed often aids efficient programming.
Likewise, knowing the limits of what computers can do may keep us from attempting
impossible projects.

Last, and perhaps most important, much of what we learn in studying
computers applies in other fields as well. In part, this is because techniques for
designing and controlling complex systems carry over into other kinds of engineering.

But, as we will see, the ideas behind computers also apply in many seemingly
unrelated fields: biology, economics, and, especially, pyschology.

And now we come back, again, to our main point: It is not only the computer we
are interested in, but the principles behind it. These are what make this book not a
programming guide, but an introduction to computer science. It is the idea of the
computer and the analysis of that idea which forms our subject of study.

Preface

Contents

xi

Introduction xv

1. Logic with Electricity 1

®No o s WL

T Gy (N U U T (U QR (I T G §

+10.

12,
.13.
.14.
.15.

Valves and Transistors 7
Gates 5

A Logic Problem 9

Logic Circuits 10

Logic Functions 13

Boolean Algebra 14

Logic Notation 174
Evaluating Boolean Expressions
Applying Axioms 17

More Axioms 19

Wider Gates 22

De Morgan's Law 23
Distributive Properties 26
Majority Organs and Multiplexers
Taking Stock 30

Exercises 317

16

27

vi
2, Memory 35

2.1. Feedback and the Sticker 35
2.2. Instability and Inconsistency 38
2.3. A Simple Flip-Flop 40
2.4. Clocks 42
2.5. Clocked Flip-Flops and D Flip-Flops
2.6. Master-Slave Flip-Flops 44
2.7. A Memory Block 45
2.8. Decoding 47
2.9. Storing and Reading 49
2.10. A Memory System with Feedback
2.11. Shift Registers 53
2.12. Memory Organization | 56
2.13. Memory Organization II| 57
2.14. How Many Transistors? 61
2.15. Counting 62
2.16. Taking Stock 64

Excercises 65

3. Arithmetic 68

3.1.
3.2.
3.3.
3.4.
3:5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.

A Stranger’'s View 68

An Addition Table 68

More Properties of Addition 72
Decoding the Table 73
Place Values 74

Why Addition Works 77
Stack Size 78

Counting in Binary 80

A Connection 82

Two States for Storage 83
Binary Subtraction 84

A Third Way to Subtract 87
Multiplication 89

A Conversion Method 97
Taking Stock 92

Exercises 95

4. An Arithmetic and Logic Unit 98

4.1.
4.2.
4.3.
4.4,
4.5.

A Calculator 98

A Half-Adder 99

A Full Adder 101

Using the Full Adder 104
Negative Numbers 107

42

51

Contents

Contents

4.6. The Limits of Representation 7109
4.7. Scientific Notation 777
4.8. Significant Digits 7172
4.9. Fractions 1714
4.10. The Binary Point 7175
4.11. An Adder-Subtracter 1717
4.12. Memory for the Calculator 779
4.13. Operations 7122
4.14. The Arithmetic and Logic Unit 725
4.15. Using the Arithmetic-Logic Unit 126
4.16. Taking Stock 728
Exercises 129
5. Control and Programming 132
5.1. A Controller Circuit 132
5.2, Compatibility 733
5.3 The Controller at Work | 7134
5.4. The Controller at Work || 136
5.5. Instructions 137
5.6. A Loop 139
5.7. Breaking the Loop 747
5.8. Dissecting an Instruction 144
5.9. Registers and Connections for the Controller
5.10. Counter Calls the Signals 750
5.11. Steps for Other Instructions 157
5.12. The Control Network 754
5.13. Taking Stock 157
Exercises 159
6. Programming and Unsolvability 162
6.1. Practical Programs 762
6.2. Top-Down Programming 1763
6.3. Adding a List 164
6.4. Subroutines 170
6.5. A Letter-Searching Program 7172
6.6. Self-Analysis . .. 176
6.7. . . and Self-Reference 177
6.8. A Stop-Analyzer 179
6.9. Unsolvability 187
6.10. The Halting Problem Proof 782
6.11. The Limits of Method 784
6.12. The Post Correspondence Problem 785
6:13. Taking Stock 787

Exercises 188

147

vii

viii

7. Searching and Sorting 190
7.1. Efficiency 790
7.2. Measuring an Algorithm 797
7.3. A Dead End and a Fresh Start 794
7.4. Binary Search 196
7.5. Linear versus Logarithmic 201
7.6. Efficiency versus Speed 204
7:7: Selection Sorting 205
7.8. Analyzing Selection Sort 207
7.9. An n-Squared Algorithm 270
7.10. A Better Way to Sort 2712
7.11. Merge Sorting 214
7.12. Analyzing Merge Sort 217
7.13. Taking Stock 220

Exercises 220

8. Data Structures 223
8.1. The Priority Problem 223
8.2. A Deceptive Solution 224
8.3. Representing a List 226
8.4. Searching 227
8.5. Adding and Removing Iltems 229
8.6. Linked Lists 230
8.7. Linked List Operations 236
8.8. Searching a Linked List 238
8.9. A Tournament Solution 238
8.10. Removing and Adding with a Heap 247
8.11. A Heap in Memory 245
8.12. Heap Sort 247
8.13. Other Scheduling Structures 248
8.14. Representing the Stack 250
8.15. Representing the Queue 257 d
8.16. Applying the Queue 255
8.17. Taking Stock 259

Exercises 259

9. Stacks, Subroutines, and Recursion 263
9.1. Power of Expression 263
9.2. Subroutines Again 264

Contents

Contents

10.

1.

9.3. Two Problems 265
9.4. Sharing Subroutines 266
9.5. Interrupted Interruptions 270
9.6. A Hierarchy of Subroutines 272
9.7. Subroutines and Definitions 275
9.8. Circularity 276
9.9. Recursion 278
9.10. A Recursive Subroutine 279
9.11. Applying Recursion 282
9.12. Applying Recursion: The Tower of Hanoi
9.13. Taking Stock 294
Exercises 295
Translation 299
10.1. Bootstrapping 299
10.2. A Program to Translate 301
10.3. An ldentification Key 304
10.4. A Subroutine for the Key 309
10.5. The Translator 3171
10.6. Assembly Language 313
10.7. Ambiguity 377
10.8. Numbers and Letters 379
10.9. Interpreting a Number 327
10.10. Parsing 324
10.11. An Algorithm for the Assembler 328
10.12. Taking Stock 330
Exercises 331
An Algorithmic Language 334
11.1. Why not English? 334
11.2. An Algorithmic Language 335
11.3. Loops 337
11.4. Data Manipulation 340
11.5. Variables and Data Types 345
11.6. Conditionals 348
11.7. Subroutines 349
11.8. Numbering Variables 357
11.9. Sorting in AL 354
11.10. Other Languages 359
11.11. Taking Stock 365

Exercises 366

284

12.

13.

Practicalities 370

12.1. Real Computers 370

12.2. External Memory 370
12.3. Input and Output 375
12.4. The Operating System 3817
12.5. A Computer Session 382
12.6. Taking Stock 386

Exercises 387

Machine Intelligence 388

13.1.
13.2.
13.3.
13.4.

Index

Fallacies 389

Intelligence 396

Machine Intelligence 402
Taking Stock of Ourselves 406

407

Contents

