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INTRODUCTION

Let G be a connected real semisimple Lie group of noncompact
type, K a maximal compact subgroup of G and G/K the associated
globally symmetric space. Consider a discrete torsion-free subgroup T
of G with finite covolume and let TI'\G/K be the corresponding locally
symmetric space. Let V,W be finite-dimensional unitary K-modules and
denote by E, F the induced homogeneous vector bundles over G/K.
E and F can be pushed down to locally homogeneous vector bundles
E=T\ and F = I'\F over TI\G/K. Let

P: C°(G/K,E) — C™(G/K,F)

be an invariant elliptic differential operator. Then D induces an
elliptic differential operator

D: C®(I\G/K,E) — CZ(T\G/K,F)

It is proved in [61] that D has a well-defined L%-index which,
as in the compact case, depends only on chV - chW. Using Selberg's
trace formula, Barbasch and Moscovici [15] derived an explicit formula
for the Lz-index of D if the locally symmetric space I'\G/K has
strictly negative curvature or, equivalently, if the real rank of G
equals one. It seems to be very interesting to have an explicit for-
mula for the Lz-index in the general case.

In this book we shall investigate the case of a locally symmetric
space of Q-rank one. Actually, we shall work with a larger class of
manifolds. Each of these manifolds is locally symmetric near infinity
with ends generalizing the case of a cusp of a Q-rank one locally sym-
metric space. This is motivated by our approach to the proof of a con-
jecture of Hirzebruch (c.f. [63,§6]). In [63] we investigated the sig-
nature operator on Hilbert modular varieties X = r'\H". Here T =
= SL(Z,OF) is the Hilbert modular group of a totally real number field
F of degree n. The Lz—index of the signature operator was computed
with the help of the Selberg trace formula. The contribution of the
cusps in the index formula was given by special values of certain L-
series associated to the number field F. These special values of the
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L-series occure in the formula conjectured by Hirzebruch relating sig-
nature defects of cusps of Hilbert modular varieties and special values
of L-series. We proved that for a Hilbert modular variety with a single
cusp Hirzebruch's conjecture is a consequence of our index formula.
This suggests that an explicit formula for the Lz—index of the signa-
ture operator on manifolds investigated in this book will have other
interesting applications of this type.

A proof of Hirzebruch's conjecture was given by Atiyah, Donnelly
and Singer in [6] . This proof is based on the former work of Atiyah
Patodi and Singer [7 ] on spectral asymmetry.

In the present book we shall give another proof of Hirzebruch's
conjecture along the lines briefly sketched in [63,§6 ] . Actually this
will turn out to be one application of the index formula we shall
establish in this book.

As indicated above, in this book we are dealing with manifolds
which are locally symmetric near infinity with ends generalizing the
case of Q-rank one cusps. On manifolds of this type we shall investi-
gate a class of first-order elliptic differential operators which we
call generalized chiral Dirac operators. One of our purposes is to
establish a formula for the Lz—index of these operators. This covers
the case of twisted Dirac operators on Q-rank one locally symmetric
spaces. It is known that this is sufficient to compute the Lz—index of
any locally invariant elliptic differential operator on a Q-rank one
locally symmetric space (c.f. [15,p.196]1). The main contribution of
the cusps in this index formula is again given by a special value of
a certain L-series associated to the locally symmetric structure of
the ends of the manifolds. This generalizes the L-series arising in

the Hilbert modular case.

We shall now give a more detailed description of the content of
this book. In §1 we have collected some auxiliary results from the
theory of linear operators in Hilbert space. We recall here some re-
sults of the Krein-Birman theory of the spectral shift function and
also some facts concerning supersymmetric scattering theory [82] . In
§2 we introduce the cusps we shall consider in this book. Each cusp is
a locally symmetric space Y = I'\G/K of infinite volume. Y is dif-
feomorphic to a cylinder R* xI'\Z where Z 1is a certain homogeneous
space and ™z is compact. Moreover, TI\Z is a fibration over
a compact locally symmetric space FM\XM with fibre a compact nilmani-
fold. For each b > 0, we denote by Yb the submanifold of Y which
corresponds to [b,») x I'\Z. Each submanifold Yb’ b > 0, of Y with



the induced Riemannian metric will be called a cusp of rank onme. In §3
we study the fundamental solution of the heat equation for certain
locally invariant differential operators on the cusp Y. For the same
kind of locally invariant differential operators on Y we investigate
in §4 the Neumann problem on the submanifolds Yb’ b > 0. These results
are basic for §§5 and 6. In §5 we consider manifolds with cusps of rank
one. Such a manifold is a complete Riemannian manifold X which is the
union of a compact manifold with boundary and a finite number of cusps
of rank one. For simplicity we shall assume throughout this book that
X has a single cusp. Thus X = XOU Y, where XO is a compact mani-
fold with boundary, Y, is a cusp of rank one and Xoﬂ Y, = axo = 8Y1.
The extension of our results to manifolds with several cusps requires
nothing which is essentially new. On X we shall consider differential
operators D which are 1locally invariant at infinity, i.e., there
exists a locally invariant differential operator on the cusp Y whose
restriction to Y, coincides with the restriction of D to Y,. To
be able to apply harmonic analysis at infinity we consider a restric-
ted class of differential operators which we call generalized Dirac
operators. Let E. be a complex vector bundle over X whose restric-
tion to Y, coincides with the restriction to Y, of a certain locally
homogeneous vector bundle over Y. A generalized Dirac operator is a
first-order formally selfadjoint elliptic differential operator D on
C“(X,E) which is 1locally invariant at infinity and such that D2
coincides, up to a zero-order operator, with the operator induced by
the Casimir operator of G on Cm(Y1,ElY1). Geometrically interesting
operators are of this form. In §5 we shall prove that DZ acting in
LZ(X,E) with domain C:(X,E) is essentially selfadjoint. Let H be
the unique selfadjoint extension of DZ. In §6 we shall investigate
the spectral resolution of H. For this purpose we introduce an auxi-
liary operator HO whose continuous spectrum can be explicitly des-
cribed such that (H + I)”' is a compact perturbation of (H, + 7.
H is obtained from H by imposing Neumann boundary conditions on

o
the hypersurface aY Y, = Y as above. Employing the results of §4

we determine the coniinugus spectrum of HO. Then we prove that the
wave operators Wt(H,HO) exist and are complete which implies that
the absolutely continuous parts of H and H0 are unitarily equiva-
lent. To establish the existence and completeness of the wave opera-
tors we employ the method introduced by Enss [31] in quantum scat-
tering theory. Actually we shall apply an abstract version of this
method introduced by Amrein, Pearson and Wollenberg [2], [16]. This

method gives even more - the absence of the singularly continuous spec-
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trum of H. This is Theorem 6.17. Then we continue with the study of
the eigenvalues of H. We employ the method of Donnelly [28], which he
used in the case of Q-rank one locally symmetric spaces. There is no
problem to extend this method to our case. The result is that the num-
ber of eigenvalues of H which are less than A, X >0, is bounded by
a constant multiple of Ad for a certain deéN. Let Hd be: the re-
striction of H to the subspace spanned by the eigenfunctions of H.
Then our estimate on the growth of the number of eigenvalues implies
that, for each t > 0, exp(—tHd) is of the trace class. Another con-
sequence is that kerDl1L2 is finite-dimensional. Therefore each gene-
ralized chiral Dirac operator D: Cw(X,E+)—*~+C°YX,E—) has a finite
Lz-index, denoted L%-TndD. Let H' (resp. H ) be the unique selfad-
joint extensions of D*D (resp. DD*). Then the results of §6 imply

L?-IndD = Tr(exp(—tHé)) - Tr(exp(-tHa)) . (0.1)

In §7 we construct the kernel e(z,z',t) of the heat operator exp(-tH).
For this purpose we employ a variant of the usual parametrix method as
in [62] . To construct the parametrix at infinity we apply the results
of §3. In §8 we construct a system of generalized eigenfunctions for
the operator H. In the locally symmetric case such a system of genera-
lized eigenfunctions is given by the Eisenstein series. We call the
generalized eigenfunctions in the general case Eisenstein functions.
The proof of the existence of an analytic continuation of the Eisen-
stein functions is due to L.Guillopé [38]. Using the Eisenstein func-
tions we get an explicit déscription of the wave operators Wi(H,HO).
Together with the results of §6 we recover in this way all facts known
about the spectral resolution of the Casimir operator acting on sec-
tions of a locally homogeneous vector bundle over a Q-rank one locally
symmetric space. In §9 we investigate the spectral shift function
E(A;H,HO) associated to H and HO. The main result is Theorem 9.25
which gives an explicit expression for the spectral shift function
EC(X;H,HO) associated to the absolutely continuous parts H and

ac

H0 - of H and Ho, respectively. These results are used in §10 to
:
derive a preliminary version of our index formula for a generalized

chiral Dirac operator
D: C*(X,E") — C™(X,E)

We work within the supersymmetric framework developed in [82]. Thus we

0 D*

regard (D 0) as an operator in LZ(X,E+) ® LZ(X,E-) with domain given
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by C:(X,E+) ® C:(X,g-) and we denote by Q its unique selfadjoint
extension. Set H = Q°. Then we introduce a free Hamiltonian Ho which
is a modification of the free Hamiltonian Ho considered in §6. To
define it recall that the boundary of the cusp Y1 is a fibre bundle
over a compact locally symmetric space FM\XM. If we restrict D to
sections of E+|Y1 which are constant along the fibres then we get an
operator

© + + o + -
D: CT(RT * Iy \Kyy, Ey) —— CT(R™ x T \Ky, By

which is of the form

_ 3
D —ﬂ(a—u+D

o M)

Here n 1is a bundle isomorphism and 5M is a selfadjoint operator in

C“TIM\XM,E&). Let Q; be the closure in L% of 3/ du + 6M with re-

spect to the non local boundary conditions of [7] and let Q; be its

Hilbert space adjoint. This is the closure in L2 of -3/3u + D

with respect to the adjoint boundary conditions. Then QO = g+ EO)

is a selfadjoint operator in LZ(]R+ XFM\XM,E&€BE&) and our f;ge Hamil=-
tonian is given by ﬁo = Qoz. Then (Q,Qo) define a supersymmetric
scattering theory in LZ(X,E+ ® E) (c.f. Ch.I). Therefore, we may
split the spectral shift function EC(A;H,HO) into a bosonic part
ES(A;H,HO) and a fermionic part ES(X;H,HO). Further, let e (z,z',t)
(resp. e_(z,z',t)) be the bosonic (resp. fermionic) part of the heat
kernel e(z,z',t) for the Hamiltonian H. Then our first result is

L2-1nd D = f{tre+(z,z,t) - tre_(z,z,t)}dz +
X

+ ) EE%E—— erfc(Jul/t) + (0.2)
w

st [ (ESOHHY) - gf(A;H,HO))e't*dx
1y

Here w runs over the eigenvalues of BM and erfc is the complemen-
tary error function. Using Theorem 9.25 and results of [82] , it fol-
lows that EE(X;H,HO) - ES(A;H,HO) is constant on R'. This constant
is zero if the lower bound of the essential spectrum of H is posi-
tive. According to [7], the second term on the right hand side
of (0.2) has an asymptotic expansion (as t —> 0) whose constant
term is %(rﬂ0)+h) where n(0) is the Eta invariant of 5M and
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h = dhnkerﬁM. Let a'(z) be the constant term in the asymptotic ex-
pansion of tre,(z,z,t) as t —0. Then the local index theorem [5],

[34], leads to our first version of an index formula

LZ—IndD = (a'(z) - & (2))dz + U =+ %n(O) -
X
(0.3)

The term u is determined by the asymptotic expansion of the heat
kernel at infinity. We call U the unipotent contribution to the LZ-
index of D. hi are the dimensions of spaces of extended Lz-solutions
of D and D*, respectively, with limiting values in kerﬁM. In par-
ticular, the last term vanishes if the lower bound of the essential
spectrum of H is positive or, equivalently, if the continuous exten-
sion D: H](X,E+) f—*»LZ(X,E') of D 1is a Fredholm operator. Of course
the index formula (0.3) is not of much use unless the unipotent con-
tribution U has been made more explicit. We deal with this problem
in §11. In the case of Hilbert modular varieties we proved in [63]
that the unipotent contribution to the Lz-index of the signature ope-
rator is given by the value at s=1 of a certain L-series associated
to the cusp (c.f. [63,(5.57)]). We shall show that in the general case
one has in principle the same picture. In the first part of §11 we
reduce the computation of the unipotent contribution to the study of
the asymptotic expansion (as t—= 0) of the integral (11.39). Using
ideas of a forthcoming paper of W.Hoffmann [51] the integral (11.39)
is then converted into a finite sum of unipotent orbital integrals
and a certain non-invariant integral (c.f. (11.56)). In this book we
shall not investigate the unipotent orbital integrals and the non-
invariant integral occurring in (11.56) in general. This requires the
knowledge of a Fourier inversion formula for the corresponding distri-
butions on G. A Fourier inversion formula for unipotent orbital inte-
grals for groups of real rank one was established by Barbasch [14 ].
If G = G1 L XGT where each Gi is a connected semisimple Lie
group of real rank one then one can employ the results of Barbasch to
compute the unipotent orbital integrals in our case. Under the same
assumption one can also deal with the non-invariant integral in
(11.56). This leads to our final index formula for the case where
G = Gy x** xG_ with G, as above (c.f. Theorem 11.77). If rankG >

> rank K , then the unipotent contribution U vanishes. If rankG-=

= rank K , then there is an L-series associated to the cusp and the

differential operator D such that the unipotent contribution U to



the Lz-index of D is given by the value at s=0 of this L-series.
This generalizes our results concerning the Lz—index of the signature
operator on Hilbert modular varieties obtained in [63]. There is no
doubt that a similar result will be true without any restriction on G.
Moreover, if the group T arises from an arithmetic situation then
the L-series introduced by (11.67b) should have an arithmetic meaning.

In this book we shall discuss only one application of our index
formula. This is the proof of the Hirzebruch conjecture which will be
derived from our index formula in §12. It is clear that this method
can be generalized to other locally symmetric spaces. This will lead
to a generalization of Hirzebruch's conjecture which can be proved

along the same lines.

I thank L.Guillopé for pointing out mistakes in the first draft
of this book.

It is a pleasure for me to thank Mme. Breiner (I.H.E.S.) and Mme.
Wist (Berlin) who typed parts of the manuscript.
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CHAPTER I
PRELIMINARIES

For the convenience of the reader we shall collect here some
auxiliary results from the theory of linear operators in Hilbert space.

Let #H be a separable Hilbert space. The domain of any operator
T in H will be denoted by D(T). Let T be a symmetric positive
operator in H with dense domain D(T). On D(T) we define a new

scalar product by
(f,g)p = (f,g) + (Tf,g) , £,geD(T)
Following Friedrichs [33] , introduce the subspace D[T] < H by

D[T] = { feHn |3 {fn} c D(T) such that [lf - £][ > 0

ne N
as n-~> « and an - meT,——-O as n,m— o |
The norm H-HT can be extended to a norm on D[T] . D[T] equipped

with ||+l

we shall denote Friedrichs' extension of T [33]. To is a positive

is a Hilbert space and D(T) 1is a dense subspace. By iy

selfadjoint operator in H . Its domain is given by
D(T,) = D[T] N D(T*)

and fo = T*]D(fo). fo is the unique positive selfadjoint extension
of T which satisfies D(TO)<: D[T] . Moreover, one has D[TOJ=D[T],
[1, No 109,Theorem 2], [30,XII,§5] . Another way to define Friedrichs'

extension is the following one. Consider the quadratic form
q(f) = (Tf,f) , feb(T) |,

and let q be its closure in H . There exists a salfadjoint operator
T' in H which represents the quadratic form q . This operator coin-
cides with Friedrichs' extension %o defined above [52,VI,§2]

Now we recall briefly some results of the Krein-Birman theory of
the spectral shift function [18], [86 ] . Let H,Ho be bounded self-
adjoint operators in the Hilbert space H and assume that H - Ho is

of the trace class. Then the function



g€(A) = E(A;H,H ) = ﬂ_1lin1arg det[1+ (H-H_ )(H —A—ie)_1]
(o] €40 (o] o

exists for a.e. A€R. This is the spectral shift function associated to

H and HO. It has the following properties:
i) teL'(R) with Hg|k1 s ||[H - H_[l, where H-Ih is the trace norm.

©

ii) Tr(H - H)) = [ &(A)dx

-

iii) g£(X) = 0 outside the smallest interval containing the spectra of
of H and Hy-

iv) Let ®€C§(RJ . Then &(H) - @(Ho) is of the trace class and

J et ()E(A)dA

= oo

Tr(e(H) - o(H))

Let #2® and ch be the absolutely continuous subspaces of H and

Ho , respectively, and denote by P3¢ and p2c
thogonal projections of H onto H3C  and HOC s

H - Ho is of the trace class, it follows that the wave operators

the corresponding or-

respectively. Since

itH -itH
Wo(H,H ) = s-lim et et opac

t >t

exist and are complete, i.e., W+(H,Ho) is an isometry of H§C onto
#¢ which intertwines the absolutely continuous parts Ho ae = H0|H2C
3

and H_ . = H|H2C of H, and H, respectively (c.f. [52,X,§4]). Then

the scattering operator S is defined by

ac

S 1is a unitary operator on HO which commutes with H Let

o,ac’

dEaC(A) be the spectral measure of H0 Then there is a correspon-

,ac
ding spectral decomposition for S:

S = fS(A)dEa ())

c

dE_ _(})
where S(A) 1is a bounded operator in the Hilbert space H(A)=-—%§———H.
S(x) is the scattering matrix of H,H . Tt is related to the spectral
shift function &(A) by



exp(-2mig(r)) = det S(A)

for a.e. \e¢ oac(Ho) (c.£f.[16,V,19.1.5]).

Finally, we shall discuss some results from [82] on supersymme-
tric scattering theory. Assume that <1 1is a unitary involution in the
Hilbert space H . The *1 eigenspaces H, of H are called the boso-

nic and fermionic subspaces, respectively. A selfadjoint operator Q

in H 1is called a supercharge with respect to 1 if

Q = - QU on D(Q)

The selfadjoint operator H = Q2 2 0 is called the associated Hamil-

tonian. Any operator H of this form for some Q and 7t 1is called a
Hamiltonian with supersymmetry.

A supersymmetric scattering theory in a Hilbert space H with a
unitary involution T 1is given by a pair (Q,QO) with the following

properties:

i) Q and Qo are supercharges with respect to 1

ii) Let H = Q2 and HO = Qo2 be the associated Hamiltonians. Then
the wave operators
itH -itH
P 13 opacC
Wi(H,HO) s 1{?+me e Pl
exist and are complete. Here ch denotes the orthogonal projec-
tion of H onto the absolutely continuous subspace HO ac of HO.

iii) Wt(H,HO) are intertwining operators for Q and QO:

QW (H,H ) = W, (H,A )Q, on D(Q )N Ho’ac

A sufficient condition for the existence of a supersymmetric scattering

theory is given by

LEMMA 1.1. Assume that Q and QO are supercharges in H with re-

spect to T and
2 2
Qexp(-tQ”) - Qexp(-tQ ")

is of the trace class for all t > 0. Then Q and Q0 define a super-

symmetric scattering theory in H .

For the proof see [82]



Assume that (Q,QO) define a supersymmetric scattering theory with
respect to T . Let

ac _
Qg™ = J @, (M)dE, (W)

[¢) C

be the spectral decomposition of QO|HgC with respect to the spectral
measure dEaC(A) of Ho,ac' Since H0 commutes with 1t it follows
that

=] T(A)dE, (V)

c
dEac(A)
and the Hilbert space H(X) = ——37———fi admits a decomposition
HOAY = H (X)) & H_(X) (1.2)

into the *1 eigenspaces of 1(X). With respect to this decomposition
we may write
0 q_(A)
Q. () =
° q,(x) 0

Now observe that S commutes with <t too, and, by iii), S commutes
also with Qo’ This implies that with respect to the decomposition
(1.2) we have

S+(A) 0
S(A) =
0 S_(A)
and

q,(A)s,(x) = s_(N)q,(A).



CHAPTER II
CUSPS OF RANK ONE

The manifolds we shall consider in this book are locally symme-
tric near infinity with cusp-like ends. In this chapter we shall des-
cribe the 1locally symmetric spaces which occur as ends of our mani-

folds and we establish the assumption and notation.

Let G be a connected noncompact real semisimple Lie group
with finite center. G is admissible in the sense of [66, Ch.2]. Let
K be a maximal compact subgroup of G and set Y = G/K. The Lie alge-
bras of G and K are denoted by g and k respectively. Let B(.,.)
be the Killing form of g , g = kop the Cartan decomposition, 0
the Cartan involution of g (or of G) with respect to K and (.,.%
the scalar product on g defined by (X],Xz) = -B(Xl,O(Xz)) s X1,X2€g

Now let (P,S) be a split parabolic subgroup of G with split
component A. For all details concerning parabolic subgroups the rea-
der is referred to [(66,Ch.2] , [78,I] . Among the split components of
P there is a unique one which is O-stable. This is the special split
component of (P,S) . Throughout this book we shall assume that the
split component of (P,S) 1is O-stable. Let U be the unipotent radi-
cal of P and let L be the centralizer of A in G. L 1is a
Levi subgroup of P and P = UL. Since A is O©O-stable the same is
true for L. As usual, introduce the associated admissible closed reduc-
tive subgroup M of G such that L = UM with M N A = {1} . Then

P =UAM
is the Langlands decomposition of P with respect to the split compo-
nent A and S = UM. Let m , a and u be the Lie algebras of
M, A and U , respectively. Since U\S = M, we get a canonical homo-

morphism

Tpy P S—M (2.1)

The rank of (P,S) 1is the dimension of the split component A. Through-
out this paper we only shall consider split parabolic subgroups (P,S)

of rank one.



DEFINITION 2.2. Let (P,S) be a split parabolic subgroup of G of
"rank one and let T = S be a discrete uniform subgroup without tor-

sion. The manifold Y = F\? is called a cusp of rank one associated
to (P,S) and T.

EXAMPLE 2.3. Let G = (SL(2,R))™ and K = (S0(2))™. Then G/K = H",

where H is the upper half-plane. Let F be a totally real number
field of degree n over @ and let M be a complete Z-module of F,
i.e. M is an additive subgroup of F which is free abelian of rank

n . Denote by U; the subgroup of those units ¢ of 0F (the ring

of integers of F) which are totally positive and satisfy eM =M.
+

Uy is free abelian of rank n-1 ([50,p.200]. Let V < U; be a sub-

group of finite index and set

E1/2 6—1/2U
FM,V = 2 eeV , ueM
0 €

FM v is a subgroup of SL(2,F) . Now observe that there are n

different embeddings of F into the real numbers. These embeddings
will be denoted by XEFlf—+x(J)€E{ , j=1,...,n. Using the different

embeddings of F into R we get a map SL(2,F) —(SL(2,R))" by

sending (i g)€SL(2,F) to

(1) (1) (n) ,(n)
R T L € (SL(2,R))™
C(1) d(1) C(n) d(n)

This is obviously an embedding. In particular, can be considered

r

M,V
as a subgroup of (SL(2,R))™. This subgroup is discrete. Let B be
the subgroup of SL(2,R) consisting of upper triangular matrices and
set P = B"

U of P 1is given by

P is a parabolic subgroup of G. The unipotent radical

1 x 1 x
U = ( ‘) ”) X{,.-.,x_€R
01 01
Let
A, 0 A. O
M = 1 e, o S L
0 xf 0

.and set S = UM . Then (P,S) 1is a split parabolic subgroup of G of

rank one. The split component A is given by



