RPG

A Programming
Language
for Today

Doris Cable

RPG

A Programming
Language
for Today

Doris Cable

Ventura College

% Wm. C. Brown Publishers

Dubuque, lowa*Melbourne,Australias Oxford, England

Book Team

Editor Earl McPeek

Developmental Editor Linda M. Meehan

Publishing Services Coordinator (Production) Julie A. Kennedy
Publishing Services Coordinator (Design) Barbara J. Hodgson

Wm. C. Brown Publishers
A Division of Wm. C. Brown Communications, Inc.

Vice President and General Manager George Bergquist Managing Editor, Production Colleen A. Yonda
National Sales Manager Vincent R. Di Blasi Manager of Visuals and Design Faye M. Schilling
Assistant Vice President, Editor-in-Chief Edward G. Jaffe Publishing Services Manager Karen J. Slaght
Marketing Manager Elizabeth Robbins Permissions/Records Manager Connie Allendorf

Advertising Manager Amy Schmitz

Wm. C. Brown Communications, Inc.

Chairman Emeritus Wm. C. Brown

Chairman and Chief Executive Officer Mark C. Falb

President and Chief Operating Officer G. Franklin Lewis

Corporate Vice President, Operations Beverly Kolz

Corporate Vice President, President of WCB Manufacturing Roger Meyer
Cover and section images by COMSTOCK Inc./Michael Stuckey
Copyediting and Production by Lachina Publishing Services, Inc.
Copyright © 1993 by Doris Cable. All rights reserved

Library of Congress Catalog Card Number: 92-70065

ISBN 0-697-11475-9

Forms reprinted by permission from International Business Machines
Corporation.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher.

Printed in the United States of America by Wm. C. Brown Communications, Inc.,
2460 Kerper Boulevard, Dubuque, IA 52001

109 8 7 6 5 4 3

This book is a text and learning guide for students for whom RPG will be a first introduction to
programming languages. It is also a guide for the experienced programmer who wishes to add a
useful tool to his or her knowledge base. The book will guide the reader through the differences
between RPG Il and RPG III. Finally, the book provides exercises and projects together with sample
data to provide a sound basis for learning the language.

RPG II is available on a wide variety of minicomputers as well as mainframes and even
personal computers. The fundamental concepts presented in this book apply equally to all forms
of RPG, regardless of the hardware on which it will be run. The specific orientation will be toward
RPG as it is run on IBM minicomputer hardware, but in general RPG II differs very little when used
on different computer hardware.

The material on RPG III, however, is hardware-specific. RPG III, in its most complete form, is
available only on the IBM System /38 and on the IBM AS/400. Some of the basic tools of RPG III,
however, are available on the IBM System /36 and other hardware.

This book does not attempt to be all things to all people. It is not a general overview of
computer programming languages. It is specific to the RPG language and its uses in a business
environment.

OBJECTIVES FOR THIS BOOK =

This book was written to help the student learn RPG II, RPG III, and RPG/400. All three versions
of the language are based on similar concepts and methods. Combining discussion of the three
versions of RPG into one text makes it possible to demonstrate their differences and similarities.

The book is divided into two sections. The first section (Chapters 1-11) covers all the funda-
mental concepts of RPG II and is intended for the first-time programming student. It assumes no
prior background in programming.

The second section (Chapters 12-18) is dedicated entirely to RPG III/400 and assumes a
knowledge of the fundamentals of RPG II coding. It offers a modern approach to programming
with the use of externally defined files and structured programming methods. This is one of the
few texts available today that provides complete coverage of RPG III/400.

Besides the usual textbook rules of programming in RPG, there are many unwritten conven-
tions used on a day-to-day basis by professional RPG programmers. These conventions are not
required by any computer hardware or by any compiler. They are standards that are generally used
across industry that make the programmer’s job easier and are only learned on the job. They
represent methods that programmers have discovered (sometimes the hard way) to be easier to
implement, more user friendly, or more universally understood. These programming standards
and conventions are included in this book so that the student can enter the working world with
more than just the programming theory found in the manuals.

OVERVIEW =

This book is intended for the first-time programming student. The fundamental concepts are
described in detail using a building-block approach. Each chapter presents a different type of
problem that can be solved using the programming technique introduced in that chapter. Each
chapter reinforces skills learned in earlier chapters. The student will be able to write a complete
RPG program after completion of the first chapter. On completing the first section of the book, the
student will be able to code programs proficiently in RPG II.

vi

Each chapter begins with an outline listing the main topics to be covered in the chapter. At
the end of each chapter, all new information is reviewed in a chapter summary. This summary lists
new RPG rules, terms, and features. Students will find the summary useful when studying for tests.

Following the summary in each chapter are review questions. These questions relate to the
chapter material and include fill-in answers which can provide a good basis to promote class
discussion. These review questions also allow the student to review and study the concepts
learned.

Program Debugging Exercises at the end of each chapter provide a means for the student to
discover typical programming errors. Students are asked to find the errors, give possible explana-
tions for their occurrence, and offer a solution. These projects may be assigned for outside study
and are excellent for class discussion. Students who complete these exercises should be able to
avoid making the same types of errors in their own programs. Program debugging is a skill that
students will find useful in their future programming careers.

Provided at the end of each chapter is a programming project that allows the student to obtain
“hands-on” experience with solving typical programming problems. These projects include such
business applications as sales reports, employee lists, and inventory reports. Additional projects
are provided in the Instructor’s Manual.

Students are given an overview of the project, the input format, processing specifications, and
the output format. The data for each program is included in Appendix D and is available on
diskette. The appendixes also contain additional information concerning RPG programming.

SUPPLEMENTS =

Adopters of RPG: A Programming Language for Today receive an Instructor’s Manual that will
provide insights into the material covered in each chapter. The manual contains chapter outlines,
teaching tips, more detailed descriptions of some of the more difficult concepts, answers to the
Review Questions, and solutions to the Debugging Exercises and Programming Projects.

A test bank will be provided containing approximately 25 questions per chapter. These test
questions are also available in computerized format, on Wm. C. Brown’s TestPak 3.0. TestPak is a
computerized testing service that provides you with a call-in/mail-in testing program and the
complete test item file on diskette for use with your IBM PC. In addition to random test generation,
TestPak allows for new questions to be added, or existing questions to be edited. TestPak 3.0 is
available free to adopters of RPG: A Programming Language for Today.

All data needed for the programming assignments is available on an IBM 3.5- or 5.25-inch
diskette. The data can easily be uploaded to your computer. This allows students to spend less time
entering data and more time learning programming.

This text can be used for a single-semester class in RPG to give students a good overview of
a programming language as it is used in business. Using this approach, all 18 chapters could be
covered.

It is also possible to use the first 11 chapters in a first-semester class and use the second section
of the book for advanced students in a second semester. This would allow time to cover each
chapter thoroughly and to ensure a complete understanding of the material.

It is hoped that this text will provide a solid foundation for programmers and will prepare
them for the next generation of minicomputers using RPG, the language for today and tomorrow.

ACKNOWLEDGMENTS

I would like to thank the following reviewers who offered many helpful suggestions and com-
ments: Barbara E. Koedel, Atlantic Community College; Thomas J. Abromovich, Retired from Black
Hawk College, Moline, IL; Robert S. Landrum, Jones Junior College; P. Gapen, Laramie County
Community College; Russell K. Lake, Parkland College-Champaign, IL; Steve Backe; Willard H.
Keeling, Blue Ridge Community College; Thomas N. Latimer, Lansing Community College /Preci-
sion Computer Systems; William C. Fink, Lewis and Clark College; Rod B. Southworth, Laramie
County Community College; and Catherine D. Stoughton, CIS Instructor, Laramie County Com-
munity College.

viii

Preface

Introduction to RPG
and Programming

The data processing industry is relatively young and in many ways is still searching for guidelines
and standards. Hardware has gone (and continues to go) through many changes in type and
architecture. At the same time, software is experiencing similar changes and continues to evolve
into something more accessible for the user.

- PROGRAMMING LANGUAGES =

Many programming languages, such as COBOL, FORTRAN, PL/1, and RPG, have been around
for many years. Newer languages, such as fourth-generation languages, have been developed to
make the programmer’s job easier. These are all known as high-level languages because they are
designed to be easy for the programmer to use (unlike low-level languages, such as assembly or
machine languages, which are understood better by the computer). Most high-level languages
share fundamental features such as the ability to read files, do computations, and write reports.
They are nearly all compiled languages, which means that a programmer must first write the
program and then compile (convert) it on the computer into machine language.

OVERVIEW OF THE RPG LANGUAGE =

Of the many programming languages used on computers today, RPG (for Report Program Gener-
ator) is unique. Although it originated as a mere report writer in the 1960s, it has grown up to
become a powerful full-service language for use in business applications. It is more widely used
than any other language on minicomputers today. Interestingly, RPG is programmed in English
worldwide.

RPG is defined as a problem-oriented language. Multitudes of fourth-generation languages
have been developed in recent years to achieve exactly what RPG has been doing all along—solving
the problems of business with a minimum of programming effort or expertise.

A Brief Glance Backward

In the early days of computers (circa 1950-1968) all business computers were large mainframes.
(Minicomputers and personal computers had not yet been invented.) Programming languages
were complicated, difficult to learn and to use. Often management needed only a report printed—
perhaps just a listing of some file. In the languages available at that time, however, there was no
such thing as a simple program.

At last, in the 1960s, IBM decided to create a language that could quickly meet the need for
these simple reports. RPG was that language. It could read a data file, keep a few running totals,
and write a nicely formatted report. This early version of RPG was simple to learn and easy to use,

FIGURE I.1 A Programmer at Work

but it had many limitations. It could not handle arrays of data, or make decisions, or update files.
It could merely read and print. It did serve its purpose, but it was not a serious language.

Some people still think of RPG as this type of limited tool. On some mainframes, RPG remains
in its original form doing only simple report writing.

RPG Il—Enter the Minicomputer

In 1969 IBM announced the first of its minicomputers for the business world—the System/3.
Minicomputers had been around since 1964 for engineering uses, but none had been available for
business applications. The System/3 was the right machine for small businesses that could not
afford roomsful of expensive programmers. IBM, therefore, decided to introduce an easy language
on the System/3. It would be a programming tool that anyone could learn and use quickly. That
language was an updated version of RPG called RPG II.

Along with RPG II came many improvements over the original version of RPG. It became
possible to make decisions, to control the actions of the program, to update files, and to use data
arrays. RPG Il could perform every function needed in the business environment at that time (using
batch processing) and could do it faster, easier, and cheaper than any language of its time. Small
businesses could have all the advantages of a large computer at far less cost.

Before long, other computer vendors realized that they would need to make versions of RPG
IT available for their customers if they were to compete with IBM. RPG II had become the standard
of the minicomputer industry for business applications.

On-Line Interactive Processing

By the mid-1970s, management was asking for more than RPG II could provide. They didn’t like
to wait for reports, and they didn’t want mountains of paper on their desks. They wanted on-line,
interactive, instant, available data on their terminals. Most languages had been designed long
before terminals had become commonplace. No language made this type of programming easy.
As a temporary solution to this problem, IBM designed a utility called CCP which could be
used in conjunction with RPG II to facilitate the writing of interactive application programs.

Introduction

Everyone knew that this was not a complete answer to the problem, but they also knew that the
System/3 was rapidly becoming obsolete. IBM then developed the System/34 and later the Sys-
tem/36 as further solutions. These machines used RPG II with an on-line capability—a big im-
provement over CCP.

RPG lll—A Truly On-Line Language

In 1979, with the System/38, IBM introduced RPG 1III, a language that was specifically intended to
be used for programming interactive on-line applications. RPG III is a fully functional language,
providing all the benefits of a completely modern structured programming language for use in the
business environment. It continues to support all of the functions of RPG II with none of the
aggravations of a limited language. RPG III is a language designed for communicating with
terminals. It combines the best of the more modern languages (such as PASCAL) with the ease of
use of a fourth-generation programming tool. Like PASCAL, it encourages the use of completely
structured programming methods.

RPG III is native to the IBM System/38 architecture for which it was designed. This means
that it cannot be readily adapted for use on other computers. Versions of RPG III are now available
for other minicomputers (such as the IBM System/36), but there are certain limitations. The greatest
benefits of RPG III can only be realized on the IBM System/38 and AS/400.

The Future

With the announcement of IBM’s AS/400 model in 1988, the functions of the System/36 and the
System/38 are molded into a single framework. The language used on the AS/400 is RPG/400.
RPG/400 is really RPG III with some additional operations and enhancements. With IBM’s com-
mitment to integrating the AS/400 into its planned system architecture for the 1990s, it is probable
that RPG II, RPG I1I, and RPG/400 will share a united future in the 1990s and well into the twenty-
tirst century.

OVERVIEW OF PROGRAMMING =

Programming consists of planning and designing the program, documenting the plan, writing the
source code, compiling the code into object form, testing the program until it is free of errors, saving
the final copy of the program, and finally documenting the program for future users or program-
mers.

Before a programmer begins writing a program, it is necessary to determine what the pro-
gram is to do. The first step is to develop a plan. This may be done by a systems analyst or a
programmer/analyst. It consists of discussing the project with the user (or manager) and finding
out what is needed.

The second step will consist of documenting these findings by means of flowcharts, written
narrative, and sample report formats so that the user can see what to expect. If all of this is
acceptable, the programmer can then begin coding in the language available. Some typical docu-
mentation is shown in Figures 1.2(a), 1.2(b), 1.2(c), and 1.2(d).

Coding the Program

The language in which programmers usually write their instructions for the computer is called a
source language, or source code. It consists of words and phrases that are recognizable as human
language (rather than binary symbols that have meaning only to the computer). The programmer
must code with great attention to detail and accuracy to ensure that the final product will be free
of errors. The programmer will write the entire program in this source language before submitting
it to the computer to be compiled, or translated into machine language.

Program coding today is normally entered on a terminal using a special utility program called
a text editor utility or source entry utility. Figure .3 shows what a source program might look like
on a display screen using a common utility.

Introduction

xi

FIGURE I.2(a) Flowchart

EMPL
EMPLMAST

RPG1

RPG1
EMPLOYEE
LIST

FIGURE I.2(b) Record Layout

RECORD LAYOUT

&/ﬂ Record Layout Application Program ForMAT NaMe [EMPLLI

[e]
S {[[0]]
=
m

l EMPLOYEE NAME EMPL| PAY

bbbl Lo I ERFRATEL L T 50
N A A D B IR IO S I B B)
N PP P TR PR PP PRV POV TR PErE e
o PSP PETUN BT IR PRI PR PEEEY P PR)
O T I I P PR DA A BT B B

FIGURE I.2(c) Program Narrative

Program Narrative
Input: This program uses the following input files.

EMPLMAST Employee Master List
File Length 128

EMPL Employee Time Transactions
File Length 50
Process:

EMPL records are in sequence by department. Each EMPL record is read and the employee number
compared with the EMPLMAST file to determine if it is a valid employee transaction. If the employee
number is invalid, the hours in the record will not be added to the totals. The invalid employee number will
be printed on the report with the message "Invalid Employee Number." Processing will continue with the
next record.

If the employee number is valid, the record will be printed on the report showing department,
employee name, regular hours, overtime hours, double-time hours, holiday hours, sick time hours, and a
total of all hours. Total hours are computed from the hours in the input record by adding all the hour
fields together.

Each type of hours is accumulated (i.e., all regular hours, all overtime hours, etc.) and a total is printed
for each department. This total will be printed at the end of each group of records for a department after
advancing one line.

A grand total for all departments will be printed at the end of the report.

xii

Introduction

FIGURE 1.2(d) Printer Spacing Chart

150/10/8 PRINT CHART PROG ID PAGE

t<&——— Fold back at dolted ne
(SPACING 150 POSITION SPAN. AT 10 CHARACTERS PER INCH 6 LINES PER VERTICAL INCH DATE i
PROGRAM TITLE

PROGRAMMER OR DOCUMENTALIST

CHART TITLE

CARRIAGE CONTROL - - T T B T i T
TAPE CHAN L A o [a]o o] a]e 4] 21212 |al2lalala|ala|s) sldalalalalalelals]s|s|s|s|s|s|s|s|s|e|sleialelntolalalnir] 7| 7| 7| 7| 7| 77| 7|7|ofalede HEEERE

SIgeas ewaun- { 1]2|3]4]s[6|7[8]s alsie iy 12[3j4|s)6|7]8]s| fsi 1]2/3] 4[5 6{7]8}s]ofs 1|2|3|4|s|6]7|8}so] 1)2|3l4|5l8|7]s]

1
5 2

3
©
o 4

7 5

6 =

a 6
s Z it =
: 8
: 9 1 1
s no] o) |
£ 11)i '
- 12 .
v 13] 1] .
© 14]] : ; ! . i
H - -
: 15] 111 1 :
: 16 [| | | B
& R T [l B IBA N N

Program Compilation

After the RPG program has been completely entered and all obvious errors have been corrected, it
must then be translated from the RPG source language into machine-language instructions which
can be understood by the computer.

This translation is accomplished by the use of an RPG compiler. The compiler is itself a
program supplied by the computer manufacturer. Figure 1.4 shows the steps that occur to convert
source language into compiled machine language.

To convert the RPG source program into machine language, the compiler is read into the main
memory of the computer. The compiler usually resides on disk when not in use. Next, the source
code is read into main memory. The compiler then goes to work translating the source code into
object code (machine language). A source listing is produced at the same time. This source listing

FIGURE 1.3 Display Screen Showing Source Program

Introduction xiii

FIGURE 1.4 Compilation Flowchart

SOURCE
CODE
ENTERED

N1

UTILITY SOURCE SOURCE CODE IS
PROGRAM FILE SAVED ON DISK

v

COMPILE IS

REQUESTED SN——

N1

SOURCE
FILE

COMPILER

N——

\

COMPILER

N1

OBJECT
MODULE

PROGRAM

LISTING
N———

will show every line of code as it was coded by the programmer. The source listing will also note
any errors and show them at the bottom of the listing. Note that the compiler will find only syntax
errors or errors in spelling of key words or placement of the fields. It is not capable of finding errors
in logic. If the errors are too severe to permit compilation, then it will say so and no object code will
be produced at all. If all goes well, the source listing will state that, and the object code (an object
module) will be created.

Once the object module is created, it should be saved on disk and the program will be ready
for testing. The source code should probably also be saved on disk so that changes can be made
later if needed.

In learning environments, it is often useful to do a test run immediately after the compiler has
finished. This is referred to as a “load and go” method. Figure 1.5 shows a source listing of an RPG
program with its accompanying error messages.

Program Testing

Once the program is compiled successfully, it must be tested to determine whether it will produce
the desired results. Acceptance by the compiler does not necessarily mean the output will be
correct. Steps in testing are as follows:

1. Preparing Test Data. When a program is to be tested, it should be tested with data which
was prepared for testing the various routines within the program. Test data should
contain every possible combination of bad and good data to be sure all functions of the
program are exercised. It is better to find the problems before the program goes into “live”
productive use than to wait and let the errors be found by users, bosses, or instructors.
Program testing should be extensive and thorough. The preparation of good test data is a
difficult and tedious task, but it is an important part of programming.

xiv

Introduction

2.

Desk Checking. Sometimes problems are not easy to find. Sometimes the most careful
programmer will find an obscure bug or error in the program that refuses to allow the
program to perform correctly. The only solution to this dilemma is for the programmer to
sit down with a listing of the program and “think” some data through the program line
by line. This process, called “playing computer,” is slow, but it is one of the best ways to
discover what has gone wrong with the program.

Program Debugging. Programs containing bugs (or errors) should never be released into a
production environment. Nothing will give computers a bad name faster than invalid
data showing up on someone’s report or screen. Unexpected program failures greatly
reduce the credibility of the data processing department. It is the responsibility of every
programmer to make certain that no program is released until it has been completely and
thoroughly tested and found to be absolutely bug free.

FIGURE 1.5 Source Listing

*

-
*

*

SEQUE
NUMBE

NCE 1 2 3 4 5 5 7
R 67890123456T890123456789012345678901234567890123456789012345678901234

100 F* TITLE: SALES ANALYSIS REPORT

200 F= DATE: 3/11 AUTHOR: DeCABLE

300 F& DESCRIPTION: PRINT REPORT OF ALL SALES FOR MONTH

400 FEECEEEAXEAAEEINEXEAEEAXBE IR AR RXEETXXIB XXX XIS VRAER I EAXLAAET
500 F=* MODIFICATIONS:

600 F#* NO. DATE INIT DESCRIPTION

700 F= XX/ XX/ XX XXX XXX XX XX KX XXX XXX XXE XXX XX XXX XX XX

800 FHEEXTEREEEEEBENAE I EACE UG EETRREXE XX ISR PR TV EAXEF LT VX ERX G T AL

NAME OF PROGRAM WILL BE ILLOS5 IN LIBRARY CASBLE
H
1019 ALL DECTMAL DATA ERRORS IGNORED
900 FSALEMASYIP F 512 DISK
1000 FREPORT O F 132 PRINTER
1100 FE:oE eSS SENAEICEEVNESFACEEVURREAE I EBEE VSRS GACEOTAETEODE
1200 ISALEMASTAA Ol
1300 I 1 2 SACMPY
1400 I 3 50SALOC
1500 1I 6 & SATYPE
1600 I T 21 SAPNO
1700 1 22 230SAMTH
1800 I 24 280SAQTY
1900 I 29 352SAPRC
2000 C TIME TYME 60
2100 QOPRINT H 101 1P
6001 6001-sssuouns o
6035 603500t
2200 O 6 *ILLOOS®
2300 O 75 *PeCe SOLUTIONS®
2400 O 124 °PAGE"*
2500 O PAGE 132
2600 O H 2 1P
o 6001 6001-ssteross
6035 6035— s eons
2700 O 8 °*RUN DATE®
2800 O UDATE Y 17
2900 O TYME 26 * : = *
3000 O 60 °*MONTHLY SALES ANALYSIS®
3100 O H 2 1P
6001 6001-sssessex

LK

60135

603S-seoes

Introduction

XV

FIGURE I.5 Continued

SEQUENCE
NUMBER

3200
3300
3400
3500
3600
3700

5) 7

2 3 4
678901234567890123456789012345678901234567890123456789012345678901234

0O000O0O

0

% 6001 6001-%x&aBHE
603S-2x 000k

* 6035

3800
3900
4000
4100
4200
* T & ¥ X

s T086
% TO64

0
o
]
0
g
E

900
1000

1

10 *COMPANY*

20 *LOCATION®

26 "MONTH®

33 *QUANT"

42 °*TOTAL SALES®
o1

SACMPY 12
SALOC 20
SAMTH 25

SAQTY K 32
SAPRC K 42

ND OF SOURCE®=*=* 2 x

RPG PROVIDES BLOCK/UNBLOCK SUPPORT FOR FILE SALEMAST.
REPORT FILE NOT REFERENCED FOR OUTPUT

CROSS—REFERENCE LISTING

FILE/RCD

PRINT
02 REPORT

01 SALEMAST

FIELD

PAGE
SACMPY
SALOC
SAMTH
% T031 SAPNO
SAPRC
SAQTY
& 7031 SATYPE
TYME
UDATE

DEV/RCD REFERENCES (D=DEFINED)

*SUNDEFesx 2100

PRINTER 1000D

DISK 9000 1200

ATTR REFERENCES (M=MODIFIED D=DEFINED)

Pl4,0) 2500
A(2)
P{3,0) 14000 3900
P{290) 1700D 4000

A(15)

13000 3800

16000

P(T7+2) 1900D 4200
P(S5S,00) 18000 4100
AlL1)
P(6,0) 20000 2900
P{6¢0) 2800

15000

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

MESSAGES
MSGID

QRGL1O19
QRG6001

L

* QRG6035

QRG7031
QRGT 064
QRG7086

LX)

Introduction

SEV

00
40

20
00

40
00

9000

1200M 3700

2100 2600 3100

NUMBER TEXT

1 IGNDECERRU*YES) SPECIFIED ON COMMAND. NO DECIMAL CATA ERRORS

4 FILE/RECORD NAME NJT VALIDy NOT DEFINEDy IGNOREDy OR MISSING.
VALID TYPE FOUND

4 SPACE OR SKIP MUST BE SPESCIFIED ONLY FOR PROGRAM DESCRIBED FI
ASSUNEDe.

2 NAME OR INDICATOR NOT REFERENCED.

1 PROGRAM FILE NOT REFERENCEDe. FILE IGNORED

1 RPG WILL HANDLE BLOCKING FUNCTION FOR THE FILE. INFDS CONTEN]

ARE TRANSFERRED.

FIGURE I.5 Continued

MESSAGE SUMMARY

TOTAL 00 10 20 30 40 50
13 4 0 4 0 5 0
42 RECORDS READ FROM SOURCE FILE
SOURCE RECORDS INCLUDE 33 SPECIFICATIONS, O TABLE RECORDSs AND 9 COMMENTS

QRGO008 COMPILE TERMINATED. SEVERITY 40 ERRORS FOUND IN PROGRAM

&« = & &« END OF COMPIULATIONR2®Z®Z=2Z®
= QRGLl020 ERROR OCCURRED CREATING OR UPDATING DATA AREA RETURNCOCE. COMPIL

Documentation

Documentation is the process of recording all information related to a given program (or system of
programs) in such a way that users, managers, other programmers, or data processing auditors will
be able to quickly understand exactly what it is that your program is supposed to be doing. At a
minimum it should include:

1. Record layout forms

Printer (or screen) layouts

A program narrative describing the routines used in the program

A flowchart and/or pseudocode outline of the program logic

The final copy of the source listing (produced at final compilation time)
Sample reports (or screens)

User instruction manual

NSak N

Documentation is an often-neglected part of a programmer’s job but a crucial one if a
company is to continue to function successfully over a period of time.

CONCLUSION =

RPG is a programming language that can serve as an excellent introduction to programming. It is
alanguage that is best suited for business applications and is widely used on mid-range computers.
RPG has been used as a business programming language since the early 1960s and is predicted to
remain popular with mid-range users for many years to come.

This text presents an introduction to both RPG I and RPG III. It explains the fundamentals of
programming along with standard conventions practiced in a business programming environ-
ment.

Introduction

Xvii

Contents

Preface vii

Introduction to RPG and
Programming ix

SECTION 1
RPG Il

1

Input and Output

Processing 3 ,
Program Processing Steps 4
RPG Coding Formats 6

Common Entries on Coding
Forms 8

The Control Specifications Form

(Header Format or

H Specification) 8

The File Description Specifications

Form (F Specification) 9
Defining the Input File 9 / File
Type/File Designation Entries 10
/ File Format 10 / Record
Length 10 / Device 10 /
Defining the Output File 11

The Input Specifications Form

(I Specification) 11
Form Type/Filename Entries 11 /
Sequence Number Option Entries
(Columns 15-16) 12 / Record
Identifying Indicator Entry (Columns
19-20) 12 / From-To Entries
13 / Field Location Entries
(Columns 44-47 and 48-51) 13
/ Field Name Entries (Columns
53-58) 13

The Output Specifications Form

(O Specification) 14
Filename Entry (Columns 7-14)
14 / Type Entry (Column 15) 14
/ Space Entry (Columns 17-18)
14 / Output Indicators (Columns
24-25, 27-28, or 30-31) 14 /
Field Name (Columns 32-37) 14
/ End Position (Columns 40-43)
15

The RPG Fixed Logic Cycle 15

Incorporating Comments Within a
Program 17

Why Document? 17 / How Much
Documentation Is Enough? 18 /
How Do You Put Comments into an
RPG Program? 18 / Conventions
for Professional Program
Documentation 19

Compiling a Program 20

Summary 23

Review Questions 24

Exercises 24

DEBUGGING EXERCISES 25

PROGRAMMING PROJECT 28

2

Arithmetic Operations and
Report Formatting 29

General Rules for Coding

Calculation Specifications 29
Addition 30 / Subtraction 31 /
Multiplication 31 / Division 32
/ Division Remainders 32 /
Rounding a Result Field
(Half-adjusting) 33 / Defining a
Constant 34 / Calculating
Cumulative Totals 35 / Summary
of Arithmetic Functions in RPG 35

Sample Program Using Arithmetic

Calculations 36
Input Data 36 / Output Data
36 / File Description
Specifications 37 / Input
Specifications 37 / Calculation
Specifications 38 / Output
Specifications 40 / Field Editing
(Edit Codes) 42 / Other Edit
Codes 44 / Editing Dollar Signs
44 / Printing Total Lines 45

Summary 46

Review Questions 47
Exercises 47
DEBUGGING EXERCISES 48
PROGRAMMING PROJECT 52

Using Indicators in RPG 55

The Compare Operation 56
Comparing Alphabetic or
Alphanumeric Data Fields 56 /
Comparing Alphabetic or
Alphanumeric Fields of Different
Lengths 57 / Comparing
Numeric Data Fields 57 /
Comparing Numeric Fields of
Different Lengths 59 / Collating
Sequence for Comparing 61 /
Comparing Literal Values 61 /
Summary of the Compare
Operation 62

Processing Multiple Record

Types 62
Use of Input Indicators 62 /
Field Record Relation Indicators
64 / Calculation Specifications
66

Branching Within Calculations 67
Using the GOTO Operation 67 /
Using Subroutines 68 / GOTOs
Revisited 69

Summary 70

Review Questions 71

Exercises 71

DEBUGGING EXERCISES 72

PROGRAMMING PROJECT 77

3

Computer Logic and
Processing Multiple
Record Types 54

Fundamental Logic Concepts
(Compare) 54

4

Control Breaks (The RPG
Cycle) 79

Sample Program Using Level
Breaks 79
Sequence of Input Data 79 /
Level Break Totals 80 / Control
Level Indicators 80

The Effect of the RPG Cycle on
Level Breaks 85

Summary Reports 87
Summarized Output Files 87
Multiple Output Files 89
Summary 90

Review Questions 91
Exercises 91

DEBUGGING EXERCISES 92
PROGRAMMING PROJECT 96

5

Multiple Level Breaks 98

Sample Program Using Multiple
Level Breaks 98
Input Specifications 98 /
Calculation Specifications 100 /
Output Specifications 103
The RPG Cycle Revisited 103
Group Indication 104 / Zeroing
Out a Total Field 107
Standards for Report Formatting
110
Report Headings 110 / Report
Totals 112
Sample Program Defining Report
Headings 112
Report Identification 112 /
Report Title 112 / Page Number
113 / System Date and Edit
Codes 113 / System Time and
Edit Words 114 / Summary of
Report Formatting 115

Summary 115

Review Questions 116
Exercises 116
DEBUGGING EXERCISES 117
PROGRAMMING PROJECT 122

6

Exception Output
Processing 124

Sample Program Using Exception
Output Processing 125
File Description and Input
Specifications 125 / Calculation
Specifications (Program Loops)
126 / Output Specifications 128
Page Overflow 128
Fetch Overflow 129 / Sample
Program 130 / Internal Control
(Line Counting) 134
Moving Data (MOVE and MOVEL)
135
Moving Fields of Different Lengths
with MOVE 136 / Moving Fields
of Different Lengths with MOVEL
136 / Alphanumeric/Numeric
MOVE or MOVEL 138 / Moving
Literal Values 138 / Initializing a
Field to Blanks 139
Summary 140
Review Questions 141
Exercises 141
DEBUGGING EXERCISES 142
PROGRAMMING PROJECT 146

iv Contents

7

Table Processing 148

Types of Table Applications 148
Benefits of Table Processing 149
Extension Specifications 151
Table File Formats 151

Types of Tables (Internal and
External) 151

Internal (Compile Time) Table
Entries 151

Sample Program 1 Using Internal

or Compile Time Tables 152
File Extension Specifications 152
/ Record Layout 154 /
Compiling Table Information 155
/ Calculation Specifications for
Processing Table Data 156

External (Pre-Execution Time)

Table Entries 156

Sample Program 2 Using an

External or Pre-Execution Time

Table 158
File Description Specifications
160 / Extension Specifications
161 / Record Layout 161 /
Input Specifications 161 /
Calculation Specifications 162 /
Output Specifications 162 /
Table Data File Maintenance 162

The Time at Which Table Data Is

Available 163

Avoiding Common Errors 163

Alternating Tables 164

Sample Program 3 Using

Alternating Table Data 164
Input Specifications 164 /
Calculation Specifications 164 /
Output Specifications 166 /
Multiple Tables 166 / Printing a
Table 166

Summary 167

Review Questions 168

Exercises 168

DEBUGGING EXERCISES 169

PROGRAMMING PROJECT 174

Accessing an Entire Array 181 /
Accessing Individual Elements of
an Array 181

Sample Program 1 Using Three
Types of Array 182
The Compile Time Array 183 /
Printing the Entire Array 184 /
Pre-Execution Time Array 184 /
Execution Time Array 184
Sample Program 2 Showing Other
Uses of Arrays 190
Compile Time Array 191 /
Execution Time Arrays 191 /
Calculation Specifications 192 /
Using an Array Index 193 /
Computed Index Using Exception
Output 193 / Accessing an Array
by Index (Looping) 193
Sample Program 3 Using LOKUP
with an Array 197
Special Operations for Array Data
201
Sample Program 4 Using XFOOT
203

Sample Program 5 Using MOVEA
205

Summary 208

Review Questions 209
Exercises 209
DEBUGGING EXERCISES 210
PROGRAMMING PROJECT 215

8

Array Processing 176

Rules for Constructing Arrays 176
Examples of Arrays 177
Extension Specifications for

Arrays 177

How an Array Is Loaded 177
Compile Time Arrays 177 /
Pre-Execution Time Arrays 179 /
Execution Time Arrays 180

Array Processing 181

9

Processing Multiple
Sequential Files 217

Types of Files 217
Master Files 218 / Transaction
Files 218 / Table Files 218 /
History Files 219 / Backup Files
219

Tape Media 220
Sequential File Processing 220 /
Record Blocking 221 /
Processing a Master File 223

Method for Updating Sequential
Files 223
Transaction Types 224 /
Matching Record Logic 224

Sample Program Using Sequential

File Processing 225
Record Layouts 225 / File
Description Specifications 226 /
Input Specifications 227 /
Sequence Checking 228 /
Matching Record Indicator (MR)
228 / Output Specifications 229

Packed Decimal Data 231
Reading and Writing Numeric Fields
in Packed Decimal Format 232

Summary 233
Review Questions 234

Exercises 234
DEBUGGING EXERCISES 235
PROGRAMMING PROJECT 240

10

Multiple File Processing
(Indexed Files) 242

Direct Access Storage Devices
(DASDs) 242
Disk Access Concepts 243 / File
Organization on DASDs 244
Sample Program 1 Creating an
Indexed File 246
File Formats 246 / File
Description Specifications 247 /
Input Specifications 247 /
Output Specifications 248 /
Inquiry Programs 249
Sample Program 2 Using Inquiry
Programs 250
Chaining to an Indexed File 250
/ Printed Output from an Indexed
File 251 / File Maintenance
(Data Updating) 252 /
Reorganizing a File 253
Sample Program 3 Updating an
Indexed File 253
Sample Program 4 Demonstrating
Sequential Retrieval from an
Indexed File 258
Record Address Files 258
Summary 261
Review Questions 262
Exercises 262
DEBUGGING EXERCISES 263
PROGRAMMING PROJECT 267

Indicators 279 / Matching
Record Indicators 279 / Last
Record Indicator 280 / Halt
Indicators 280 / External
Indicators (Switches) 280 / Even
More Indicators 280

External Subroutines 280
Look-Ahead Feature 282
FORCE Operation 283

READ Operation 284
Debugging Methods 284
DSPLY Operation 286
Accessing Multiple Indexed Files

Redefinition of Fields 313
Data Structures 314
Summary 316

Review Questions 317
DEBUGGING EXERCISES 318
PROGRAMMING PROJECT 321

13

Calculation Enhancements
in RPG I1ll/400 323

287

Naming Conventions 289
Program and File Names 289 /
Field Names 290

Summary 290
Review Questions 291
DEBUGGING EXERCISES 292

SECTION 1I
RPG IIl/RPG 400

An Introduction to RPG Ill/
RPG 400 299

12

Overview of RPG Ill/400
File Concepts 301

Introduction to RPG I11/400 File
Concepts 301
Benefits of Externally Defined

Reserved Words for RPG Il /400
324

Arithmetic Operations in RPG
11/400 324

Structured Programming Concepts

for RPG Ill/400 325
Structured Selection
(If...Then...Else) 325 /
Structured Iteration (DO Loops)
330 / Difference Between a Do
While and a Do Until 332 / Use
of Indicators with DOxxx 333 /
Compare and Branch Operation
(CABxx) 334 / Case Structure
(CASxx) 334 / New Methods for
Using Indicators (Setting Flags)
336 / Calling a Program from
Within an RPG 11l/400 Program
336 / Defining Field Attributes in
RPG Ill/400 338

Summary 340

Review Questions 341
DEBUGGING EXERCISES 342
PROGRAMMING PROJECT 347

11

Additional Subjects 269

Line Counter Specifications 269
Binary Data 270

Editing Data Operations 272
Move Zone 272 / Test Zone
272 / Test Numeric 273

Reversing a Sign 274

Testing the Value of a Bit 274

Special Indicators 276
Halt Indicators 276 / External
Switches 276

Indicators—A Review 279
Record Identification Indicators
279 / Field Record Relationship
Indicators 279 / Resulting
Indicators 279 / Overflow
Indicators 279 / Level Break

Files 302
Programmer Productivity 302 /
Standardized Naming Conventions
302 / File Changes Made Easier
303 / Automatic Documentation
303
The Data Description Specification
(DDS) 303
Using Externally Defined Files
305
File Description Specifications
305 / Input Specifications 306
Explanation of Physical/Logical
Files 306
Physical Files 306 / Logical
Files 306 / Unique Keys in a
File 308 / Multiple Indexes 309
File Format Names for Data File
Descriptions 309
File Format Names for Display File
Descriptions 311
File Members 311

Summary of File Organization 313

14

File Management
Techniques in RPG
/400 349

Full Functional File Processing
349

Reading a Sequential File Using
SETLL and READ Operations 350

Defining a File Key in RPG 111/400
(KLIST and KFLD) 351

New Methods for Accessing Files

and Retrieving Records 353
Using SETLL and READ Operations
(with a Key) 353 / Using SETGT
and READP Operations 354 /
Using SETLL and READE
Operations 355 / Differences
Between CHAIN and READ
Operations 355

Creating Your Own Processing
Cycle 356

Exception Output Labels 356

Contents

