Charles Rattray
Savitri Maharaj
Carron Shankland (Eds.)

Algebraic Methodology
and Software Technolog

10th International Conference, AMAST 2004
Stirling, Scotland, July 2004
Proceedings

LNCS 3116

@ Springer

Charles Rattray Savitri Maharaj
Carron Shankland (Eds.)

Algebraic Methodology
and Software Technology

10th International Conference, AMAST 2004
Stirling, Scotland, UK, July 12-16, 2004

Proceedings’

@ Springer

Volume Editors

Charles Rattray

Savitri Maharaj

Carron Shankland

University of Stirling

FK9 4L A Stirling, UK

E-mail: {c.rattray,s.maharaj,c.shankland} @cs.stir.ac.uk

Library of Congress Control Number: 2004108198

CR Subject Classification (1998): F.3-4, D.2, C.3, D.1.6,1.2.3,1.1.3

ISSN 0302-9743
ISBN 3-540-22381-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11019428 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4829

Preface

This volume contains the proceedings of AMAST 2004, the 10th International
Conference on Algebraic Methodology and Software Technology, held during
July 12-16, 2004, in Stirling, Scotland, UK. The major goal of the AMAST con-
ferences is to promote research that may lead to the setting of software technol-
ogy on a firm, mathematical basis. This goal is achieved by a large international
cooperation with contributions from both academia and industry. The virtues of
a software technology developed on a mathematical basis have been envisioned
as being capable of providing software that is (a) correct, and the correctness can
be proved mathematically, (b) safe, so that it can be used in the implementation
of critical systems, (c) portable, i.e., independent of computing platforms and
language generations, and (d) evolutionary, i.e., it is self-adaptable and evolves
with the problem domain.

Previous AMAST meetings were held in Iowa City (1989, 1991, 2000), Twente
(1993), Montreal (1995), Munich (1996), Sydney (1997), Manaus (1999), and
Reunion Island (2002), and contributed to the AMAST goals by reporting and
disseminating academic and industrial achievements within the AMAST area
of interest. During these meetings, AMAST attracted an international following
among researchers and practitioners interested in software technology, program-
ming methodology and their algebraic and logical foundations.

For AMAST 2004 there were 63 submissions of overall high quality, authored
by researchers from Australia, Canada, China, the Czech Republic, Denmark,
France, Germany, India, Iran, Israel, Italy, Korea, Portugal, Spain, Taiwan, The
Netherlands, Turkey, the UK, and the USA. All submissions were thoroughly
evaluated, and an electronic program committee meeting was held to discuss the
reviewers’ reports. The program committee selected 35 papers to be presented.
This volume includes these papers, and abstracts or papers of invited lectures
given by Roland Backhouse, Don Batory, Michel Bidoit, Muffy Calder, Bart
Jacobs, and John-Jules Meyer.

We heartily thank the members of the program committee and all the referees
for their care and time in reviewing the submitted papers, and all the institu-
tions that supported AMAST 2004: the Edinburgh Mathematical Society, the
Engineering and Physical Sciences Research Council, the London Mathematical
Society, and the Formal Aspects of Computing Science specialist group of the
British Computer Society.

May 2004 Charles Rattray
Savitri Maharaj
Carron Shankland

Program Committee Chairs

AMAST 2004 was organized by the following team at the department of Com-

puting Science and Mathematics, University of Stirling, UK.

C. Rattray
S. Maharaj
C. Shankland

Steering Committee

E. Astesiano (Italy)

R. Berwick (USA)

M. Johnson (Australia)(chair)
Z. Manna (USA)

M. Mislove (USA)

A. Nijholt (The Netherlands)
M. Nivat (France)

Program Committee

V.S. Alagar (USA)

G. Barthe (France)

M. Bidoit (France)

R. Bland (UK)

P. Blauth Menezes (Brazil)
G. v. Bochmann (Canada)
C. Brink (South Africa)
M. Broy (Germany)

M.L. Bujorianu (UK)

C. Calude (New Zealand)
C. Choppy (France)

R.G. Clark (UK)

A. Fleck (USA)

M. Frias (Argentina)

J. Goguen (USA)

N. Halbwachs (France)

A. Hamilton (UK)

A. Haxthausen (Denmark)
P. Henderson (UK)

M. Hinchey (USA)

A. Lopes (Italy)

C. Rattray (UK)

T. Rus (USA)

G. Scollo (Italy)

M. Sintzoff (Belgium)
J. Wing (USA)

M. Wirsing (Germany)

M. Mislove (USA)

P. Mosses (Denmark)
M. Nesi (Italy)

R. De Nicola (Italy)
A. Nijholt (The Netherlands)
F. Orejas (Spain)

D. Pavlovic (USA)
T. Rus (USA)

S. Schneider (UK)

G. Scollo (Italy)

S. Seidman (USA)
D. Smith (USA)

C. Talcott (USA)

A. Tarlecki (Poland)
K.J. Turner (UK)

J. van de Pol (The Netherlands)

P. Veloso (Brazil)

L. Wallen (UK)

K. Williamson (USA)
M. Wirsing (Germany)

VIIT Organization

Referees

C. Adams

V.S. Alagar

P. Baillot

G. Barthe

S. Berghofer
M. Bidoit

L. Blair

G.v. Bochmann
C. Brink

H. Bruun

M.L. Bujorianu
M.C. Bujorianu
M. Calder

C. Calude

N. Catano

M. Cerioli

C. Choppy

B. Daou

M. Debbabi

G. Dufay

N. Evans

A. Fleck

M. Franzle

M. Frias

R. Giacobazzi
J. Goguen

N. Halbwachs
R.R. Hansen

Sponsoring Institutions

M.J. Healy
P. Henderson
M. Hinchey
J. Hodgkin
M. Huisman
M. Huth
S.B. Jones

J. Kleist
H.H. Lgvengreen
S. Maharaj
F. Mancinelli
P.E. Martinez Lépez
I.A. Mason
1. Mastroeni
F. Mehta

M. Mislove
P.D. Mosses
M. Nesi

H. Nilsson
K. Ogata

F. Orejas

J. Ouaknine
V. de Paiva
D. Pavlovic
P. Pelliccione
L. Petrucci
M. Poel

J. van de Pol

Edinburgh Mathematical Society

Engineering and Physical Sciences Research Council
Formal Aspects of Computing Science Specialist Group of the British Computer

Society

London Mathematical Society

M Rappl

C. Rattray
G. Reggio

E. Ritter

N. Schirmer
S. Schneider
G. Scollo

R. Segala
S.B. Seidman
C. Shankland
R. Sharp

D. Smith

M. Spichkova
M. Strecker
A. Suenbuel
C. Talcott

A. Tarlecki
H. Treharne
K.J. Turner
M. Valero Espada
L. Wallen
K.E. Williamson
T. Wilson

M. Wirsing
J. Worrell

H. Yahyaoui
J. Zwiers

Lecture Notes in Computer Science

Sublibrary 2: Programming and Software Engineering

For information about Vols. 1- 4214
please contact your bookseller or Springer

Vol. 4849: M. Winckler, H. Johnson, P. Palanque (Eds.),
Task Models and Diagrams for User Interface Design.
X111, 299 pages. 2007.

Vol. 4834: R. Cerqueira, R.H. Campbell (Eds.), Middle-
ware 2007. XIII, 451 pages. 2007.

Vol. 4829: M. Lumpe, W. Vanderperren (Eds.), Software
Composition. X, 281 pages. 2007.

Vol. 4824: A. Paschke, Y. Biletskiy (Eds.), Advances
in Rule Interchange and Applications. XIII, 243 pages.
2007.

Vol. 4807: Z. Shao (Ed.), Programming Languages and
Systems. XI, 431 pages. 2007.

Vol. 4799: A. Holzinger (Ed.), HCI and Usability for
Medicine and Health Care. XVI, 458 pages. 2007.

Vol. 4789: M. Butler, M.G. Hinchey, M.M. Larrondo-
Petrie (Eds.), Formal Methods and Software Engineer-
ing. VIII, 387 pages. 2007.

Vol.4767: F. Arbab, M. Sirjani (Eds.), International Sym-
posium on Fundamentals of Software Engineering. XIII,
450 pages. 2007.

Vol. 4764: P. Abrahamsson, N. Baddoo, T. Margaria,
R. Messnarz (Eds.), Software Process Improvement. XI,
225 pages. 2007.

Vol. 4762: K.S. Namjoshi, T. Yoneda, T. Higashino, Y.
Okamura (Eds.), Automated Technology for Verification
and Analysis. XIV, 566 pages. 2007.

Vol. 4758: F. Oquendo (Ed.), Software Architecture.
XVI, 340 pages. 2007.

Vol. 4757: E. Cappello, T. Herault, J. Dongarra (Eds.),
Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface. X VI, 396 pages. 2007.

Vol. 4753: E. Duval, R. Klamma, M. Wolpers (Eds.),
Creating New Learning Experiences on a Global Scale.
XII, 518 pages. 2007.

Vol. 4749: B.J. Kramer, K.-J. Lin, P. Narasimhan (Eds.),
Service-Oriented Computing — ICSOC 2007. XIX, 629
pages. 2007.

Vol. 4748: K. Wolter (Ed.), Formal Methods and Stochas-
tic Models for Performance Evaluation. X, 301 pages.
2007.

Vol. 4741: C. Bessiere (Ed.), Principles and Practice of
Constraint Programming — CP 2007. XV, 890 pages.
2007.

Vol. 4735: G. Engels, B. Opdyke, D.C. Schmidt, F. Weil
(Eds.), Model Driven Engineering Languages and Sys-
tems. XV, 698 pages. 2007.

Vol. 4716: B. Meyer, M. Joseph (Eds.), Software Engi-
neering Approaches for Offshore and Outsourced Devel-
opment. X, 201 pages. 2007.

Vol. 4680: F. Saglietti, N. Oster (Eds.), Computer Safety,
Reliability, and Security. XV, 548 pages. 2007.

Vol. 4670: V. Dahl, 1. Niemeld (Eds.), Logic Program-
ming. XII, 470 pages. 2007.

Vol. 4652: D. Georgakopoulos, N. Ritter, B. Benatal-
lah, C. Zirpins, G. Feuerlicht, M. Schoenherr, H.R.
Motahari-Nezhad (Eds.), Service-Oriented Computing
ICSOC 2006. XVI, 201 pages. 2007.

Vol. 4640: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development IV. IX, 191
pages. 2007.

Vol. 4634: H. Riis Nielson, G. Filé (Eds.), Static Analy-
sis. XI, 469 pages. 2007.

Vol. 4620: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development III. IX, 201
pages. 2007.

Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.), Architecting Dependable Systems IV. XIV, 435
pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Ernst (Ed.), ECOOP 2007 — Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovi¢, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
XI, 375 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part IIL. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part IT. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part ITI. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part II. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-
quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture - Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4523: Y.-H. Lee, H.-N. Kim, J. Kim, Y.W. Park,
L.T. Yang, S.W. Kim (Eds.), Embedded Software and
Systems. XIX, 829 pages. 2007.

Vol. 4498: N. Abdennahder, F. Kordon (Eds.), Reliable
Software Technologies - Ada-Europe 2007. XII, 247
pages. 2007.

Vol. 4486: M. Bernardo, J. Hillston (Eds.), Formal Meth-
ods for Performance Evaluation. VII, 469 pages. 2007.

Vol. 4470: Q. Wang, D. Pfahl, D.M. Raffo (Eds.), Soft-
ware Process Dynamics and Agility. XI, 346 pages. 2007.
Vol. 4468: M.M. Bonsangue, E.B. Johnsen (Eds.), For-
mal Methods for Open Object-Based Distributed Sys-
tems. X, 317 pages. 2007.

Vol. 4467: A.L. Murphy, J. Vitek (Eds.), Coordination
Models and Languages. X, 325 pages. 2007.

Vol. 4454: Y. Gurevich, B. Meyer (Eds.), Tests and
Proofs. IX, 217 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.
Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.
Vol. 4408: R. Choren, A. Garcia, H. Giese, H.-f. Leung,

C. Lucena, A. Romanovsky (Eds.), Software Engineer-
ing for Multi-Agent Systems V. XII, 233 pages. 2007.

Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
X1, 355 pages. 2007.

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4379: M. Siidholt, C. Consel (Eds.), Object-Oriented
Technology. VIII, 157 pages. 2007.

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4350: M. Clavel, F. Durdn, S. Eker, P. Lincoln, N.
Marti-Oliet, J. Meseguer, C. Talcott, All About Maude
- A High-Performance Logical Framework. XXII, 797
pages. 2007.

Vol. 4348: S. Tucker Taft, R.A. Duff, R.L. Brukardt, E.
Plodereder, P. Leroy, Ada 2005 Reference Manual. XXII,
765 pages. 2006.

Vol. 4346: L. Brim, B.R. Haverkort, M. Leucker, J. van
de Pol (Eds.), Formal Methods: Applications and Tech-
nology. X, 363 pages. 2007.

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4336: V.R. Basili, H.D. Rombach, K. Schneider,
B. Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical
Software Engineering Issues. XVII, 193 pages. 2007.

Vol. 4326: S. Gobel, R. Malkewitz, I. Turgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. XI, 269 pages. 2007.

Vol. 4322: F. Kordon, J. Sztipanovits (Eds.), Reliable
Systems on Unreliable Networked Platforms. XIV, 317
pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-

gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4262: K. Havelund, M. Nifez, G. Rosu, B. Wolff
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz

(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4229: E. Najm, J.-F. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative
Approaches for Learning and Knowledge Sharing. XVII,
721 pages. 2006.

Vol. 4218: S. Graf, W. Zhang (Eds.), Automated Tech-
nology for Verification and Analysis. XIV, 540 pages.
2006.

Table of Contents

Invited Speakers

Algebraic Approaches to Problem Generalisation....................... 1
Roland Backhouse

A Science of Software Desigl ... ccouivevs soiaisasinasosasssemsomasnssas 3
Don Batory

Glass Box and Black Box Views of State-Based System Specifications. 19

Michel Bidoit and Rolf Hennicker

Abstraction for Safety, Induction for Liveness 20
Muffy Calder

Counting Votes with Formal Methods 21
Bart Jacobs

Agent-Oriented Programming: Where Do We Stand? 23
John-Jules Charles Meyer

Contributed Talks

On Guard: Producing Run-Time Checks from Integrity Constraints 27
Michael Benedikt and Glenn Bruns

Behavioural Types and Component Adaptation 42
Antonio Brogi, Carlos Canal, and Ernesto Pimentel

Towards Correspondence Carrying Specifications 57
Marius C. Bujorianu and Eerke A. Boiten

Formalizing and Proving Semantic Relations
between Specifications by Reflection o it 72
Manuel Clavel, Narciso Marti-Oliet, and Miguel Palomino

Model-Checking Systems with Unbounded Variables
without Abstractiont 87
Magali Contensin and Laurence Pierre

A Generic Software Safety Document Generator 102
Ewen Denney and Ram Prasad Venkatesan

Linear Temporal Logic and Z Refinement 117
John Derrick and Graeme Smith

X Table of Contents

Formal JVM Code Analysis in JavaFAN 132

Azadeh Farzan, José Meseguer, and Grigore Rosu

Verifying a Sliding Window Protocol in uCRL 148
Wan Fokkink, Jan Friso Groote, Jun Pang, Bahareh Badban,
and Jaco van de Pol

State Space Reduction for Process Algebra Specifications 164
Hubert Garavel and Wendelin Serwe

A Hybrid Logic of Knowledge Supporting Topological Reasoning 181
Bernhard Heinemann

A Language for Configuring Multi-level Specifications 196
Gillian Hill and Steven Vickers

Flexible Proof Reuse for Software Verification 211
Chris Hunter, Peter Robinson, and Paul Strooper

Deductive Verification of Distributed Groupware Systems 226
Abdessamad Imine, Pascal Molli, Gérald Oster,
and Michaél Rusinowitch

Formal Verification of a Commercial Smart Card Applet
with Multiple Toolso 241
Bart Jacobs, Claude Marché, and Nicole Rauch

Abstracting Call-Stacks for Interprocedural Verification
of Imperative Programs i 258
Bertrand Jeannet and Wendelin Serwe

Refining Mobile UML State Machines 274
Alezander Knapp, Stephan Merz, and Martin Wirsing

Verifying Invariants of Component-Based Systems through Refinement ... 289
Olga Kouchnarenko and Arnaud Lanoix

Modelling Concurrent Interactionscoo i, .. 304
Juliana Kiister-Filipe

Proof Support for RAISE by a Reuse Approach Based on Institutions 319
Morten P. Lindegaard and Anne E. Hazthausen

Separate Compositional Analysis
of Class-Based Object-Oriented Languages 334
Francesco Logozzo

Abstract Domains for Property Checking Driven Analysis
of Temporal Propertiesoiuiiiiiiiii i, 349
Damien Massé

Table of Contents XI

Modular Rewriting Semantics of Programming Languages 364
José Meseguer and Christiano Braga

Modal Kleene Algebra and Partial Correctness......................... 379
Bernhard Moller and Georg Struth

Modularity and the Rule of Adaptation................, 394
Cees Pierik and Frank S. de Boer

Maodal Abstractions ift BCRL .u.wivassswmsmsmpimssmsmmsnanssns sasmes 409
Jaco van de Pol and Miguel Valero Espada

Semantics of Plan Revision in Intelligent Agents 426
M. Birna van Riemsdijk, John-Jules Charles Meyer,
and Frank S. de Boer

Generic Exception Handling and the Java Monad 443
Lutz Schroder and Till Mossakowski

Expressing Iterative Properties Logically in a Symbolic Setting 460
Carron Shankland, Jeremy Bryans, and Lionel Morel

Extending Separation Logic with Fixpoints and Postponed Substitution .. 475
Elodie-Jane Sims

A Formally Verified Calculus for Full Java Card 491
Kurt Stenzel

On Refinement of Generic State-Based Software Components 506
Sun Meng and Luis S. Barbosa

Techniques for Executing and Reasoning about Specification Diagrams ... 521
Prasanna Thati, Carolyn Talcott, and Gul Agha

Formalising Graphical Behaviour Descriptions G v s Es 537
Kenneth J. Turner

Model-Checking Distributed Real-Time Systems
with States, Events, and Multiple Fairness Assumptions 553
Farn Wang

Author Index ... 569

Algebraic Approaches to Problem Generalisation

Roland Backhouse

School of Computer Science and Information Technology, University of Nottingham,
Nottingham NG8 1BB, England
rcb@cs.nott.ac.uk

Abstract. A common technique for solving programming problems is
to express the problem in terms of solving a system of so-called “simul-
taneous” equations (a collection of equations in a number of unknowns
that are often mutually recursive). Having done so, a number of tech-
niques can be used for solving the equations, ranging from simple iter-
ative techniques to more sophisticated but more specialised elimination
techniques.

A stumbling block for the use of simultaneous equations is that there
is often a big leap from a problem’s specification to the construction
of the system of simultaneous equations; the justification for the leap
almost invariably involves a post hoc verification of the construction.
Thus, whereas methods for solving the equations, once constructed, are
well-known and understood, the process of constructing the equations is
not.

In this talk, we present a general theorem which expresses when the solu-
tion to a problem can be expressed as solving a system of simultaneous
equations. The theorem exploits the theory of Galois connections and
fixed-point calculus, which we briefly introduce. We give several exam-
ples of the theorem together with several non-examples (that is, examples
where the theorem is not directly applicable). The non-examples serve
two functions. They highlight the gap between specification and simul-
taneous equations — we show in several cases how a small change in
the specification leads to a breakdown in the solution by simultaneous
equations — and they inform the development of a methodology for the
construction of the equations.

Application of the technique in the case of the more challenging prob-
lems depends crucially on finding a suitable generalisation of the original
problem. For example, the problem of finding the edit distance between a
word and a context-free language is solved by computing the edit distance
between each segment of the given word and the language generated by
each nonterminal in the given grammar.

A focus of the talk is the use of Conway’s factor theory [Con71] in gener-
alising a class of problems we call “bound” problems. Since its publica-
tion in 1971, Conway’s work has been largely ignored, but its relevance
to program analysis has recently been observed by Oege de Moor and
his colleagues [MDLS02,SdMLO04]. We show how factor theory underpins
De Moor’s work as well as the well-known Knuth-Morris-Pratt pattern
matching algorithm [KMP77]. We also speculate on how further study
of factor theory might have relevance to a broader class of problems.
This talk is based on [Bac04], where further details can be found.

C. Rattray et al. (Eds.): AMAST 2004, LNCS 3116, pp. 1-2, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Roland Backhouse

References

[Bac04] Roland Backhouse. Regular algebra applied to language problems. Submitted
for publication in Journal of Logic and Algebraic Programming, 2004.

[Con71] J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall,
London, 1971.

[KMP77] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM Journal of Computing, 6:325-350, 1977.

[MDLS02] O. de Moor, S. Drape, D. Lacey, and G. Sittampalam. Incremental program
analysis via language factors. Available from
http://web.comlab.ox.ac.uk/work/oege.de.moor/pubs.htm, 2002.

[SAML04] Ganesh Sittampalam, Oege de Moor, and Ken Friis Larssen. Incremental
execution of transformation specifications. In POPL’04, 2004.

A Science of Software Design

Don Batory

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78746
batory@cs.utexas.edu

Abstract. Underlying large-scale software design and program synthesis are
simple and powerful algebraic models. In this paper, I review the elementary
ideas upon which these algebras rest and argue that they define the basis for a
science of software design.

1 Introduction

I have worked in the areas of program generation, software product-lines, domain
specific languages, and component-based architectures for over twenty years. The
emphasis of my research has been on large-scale program synthesis and design auto-
mation. The importance of these topics is intuitive: higher productivity, improved
software quality, lower maintenance costs, and reduced time-to-market can be achiev-
ed through automation.

Twenty years has given me a unique perspective on software design and software
modularity. My work has revealed that large scale software design and program syn-
thesis is governed by simple and powerful algebraic models. In this paper, I review
the elementary ideas on which these algebras rest. To place this contribution in con-
text, a fundamental problem in software engineering is the abject lack of a science for
software design. I will argue that these algebraic models can define the basis for such
a science.

I firmly believe that future courses in software design will be partly taught using
domain-specific algebras, where a program’s design is represented by a composition
of operators, and design optimization is achieved through algebraic rewrites of these
compositions. This belief is consistent with the goal of AMAST. However, I suspect
that how I use algebras and their relative informality to achieve design automation is
unconventional to the AMAST community. As a background for my presentation, I
begin with a brief report on the 2003 Science of Design Workshop.

2 NSF’s Science of Design Workshop

In October 2003, I attended a National Science Foundation (NSF) workshop in Airlie,
Virginia on the “Science of Design” [11]. The goal of the workshop was to determine
the meaning of the term “Science of Design”. NSF planned to start a program with
this title and an objective was to determine lines of research to fund. There were 60
attendees from the U.S., Canada, and Europe. Most were from the practical side of

C. Rattray et al. (Eds.): AMAST 2004, LNCS 3116, pp. 3-18, 2004.
© Springer-Verlag Berlin Heidelberg 2004

4 Don Batory

software engineering; a few attendees represented the area of formal methods. I was
interested in the workshop to see if others shared my opinions and experiences in
software design, but more generally, I wanted to see what a cross-section of today’s
Software Engineering community believed would be the “Science of Design”. In the
following, I review a few key positions that I found particularly interesting.

Richard Gabriel is a Distinguished Engineer at Sun Microsystems and one of the
architects of Common Lisp. He described his degree in creative writing — in particu-
lar, poetry — and demonstrated that it was far more rigorous in terms of course work
than a comparable degree in Software Engineering (of which software design was but
a small part). He advocated that students should be awarded degrees in “Fine Arts”
for software design. I was astonished: I did not expect to hear such a presentation at a
Science of Design workshop. Nevertheless, Gabriel reinforced the common percep-
tion that software design is indeed an art, and a poorly understood art at that.

Carliss Balwin is a Professor at the Harvard Business School. She argued that
software design is an instance of a much larger paradigm of product design. She ob-
served that the processes by which one designs a table, or a chair, or an auditorium,
are fundamentally similar to that of designing software. Consequently, software de-
sign has firm roots in economic processes and formalisms. Once again, I was not
expecting to hear such a presentation at a Science of Design workshop. And again, I
agreed with her arguments that software design can be viewed as an application of
economics.

Did the workshop bring forth the view of is software design as a science? I did not
see much support for this position. Attendees were certainly using science and scien-
tific methods in their investigations. But I found little consensus, let alone support, for
software design as a science. The most memorable summary I heard at the workshop
was given by Fred Brookes, the 1999 ACM Turing Award recipient. He summarized
the conclusions of his working group as “We don’t know what we’re doing, and we
don’t know what we’ve done!”.

The results of the workshop were clear: if there is to be a science of software de-
sign, it is a very long way off. In fact, it was questionable to consider software design
a “science”. Although I do not recall hearing this question posed, it seemed reason-
able to ask if design is engineering!. For example, when bridges are designed, there is
indeed an element of artistry in their creation. But there is also an underlying science
called physics that is used to determine if the bridge meets its specifications. So if
software design is engineering, then what is the science that underlies software de-
sign? Again, we are back to square one.

After many hours of thought, I realized that the positions of Gabriel and Baldwin
were consistent with my own. Software design is an art as Gabriel argued, but not
always. Consider the following: designing the first automobiles was an art — it had
never been done before, and required lots of trial and error. Similarly, designing the
first computer or designing the first compiler were also works of art. There were no
assembly lines for creating these products and no automation. What made them possi-
ble was craftsmanship and supreme creativity. Over time, however, people began
building variants of these designs. In doing so, they learned answers to the important
questions of how to design these products, what to design, and most importantly, why
to do it in a particular way. Decision making moved from subjective justifications to

Thanks to Dewayne Perry for this observation.

A Science of Software Design 5

quantitative reasoning. I am sure you have heard the phrase “we’ve done this so often,
we’ve gotten it down to a science”. Well, that is the beginnings of a science.

A distinction that is useful for this paper is the following: given a specification of a
program and a set of organized knowledge and techniques, if “magic” (a.k.a. inspira-
tion, creativity) is needed to translate the specification into a program’s design, then
this process is an art or an inexact science. However, if it is purely a mechanical pro-
cess by which a specification is translated into a design of an efficient program, then
this process follows an exact or deterministic science.

Creating one-of-a-kind designs will always be an art and will never be the result of
an exact or deterministic science, simply because “magic” is needed. Interestingly, the
focus of today’s software design methodologies is largely on creating one-of-a-kind
products. The objective is to push the envelope on a program or component’s capa-
bilities, relying on the creativity and craftsmanship of its creators — and not automa-
tion. In contrast, I believe that an exact science for software design lies in the mecha-
nization and codification of well-understood processes, domain-expertise, and design
history. We have vast experiences building particular kinds of programs, we know the
how, the what, and the why of their construction. We want to automate this process so
that there is no magic, no drudgery, and no mistakes. The objective of this approach is
also to push the envelope on a program or component’s capability but with emphasis
on design automation. That is, we want to achieve the same goals of conventional
software development, but from a design automation viewpoint.

The mindset to achieve higher levels of automation is unconventional. It begins
with a declarative specification of a program. This specification is translated into a
design of an efficient program, and then this design is translated to an executable. To
do all this requires significant technological advances. First, how can declarative
specifications of programs be simplified so that they can be written by programmers
with, say, a high-school education? This requires advances in domain-specific lan-
guages. Second, how can we map a declarative specification to an efficient design?
This is the difficult problem of automatic programming; all but the most pioneering
researchers abandoned this problem in the early 1980’s as the techniques that were
available at that time did not scale [1]. And finally, how do we translate a program’s
design to an efficient executable automatically? This is generative programming [9].
Simultaneous advances on all three fronts are needed to realize significant benefits in
automation.

To do all this seems impossible, yet an example of this futuristic paradigm was re-
alized over 25 years ago, around the time that others were giving up on automatic
programming. The work was in a significant domain, and the result had a revolution-
ary impact on industry. The result: relational query optimization (RQO) [12].

Here’s how RQO works: an SQL query is translated by a parser into an inefficient
relational algebra expression. A query optimizer optimizes the expression to produce
a semantically equivalent expression with better performance characteristics. A code
generator translates the optimized expression into an efficient executable. SQL is a
prototypical declarative domain-specific language; the code generators were early
examples of generative programming, and the optimizer was the key to a practical
solution to automatic programing.

In retrospect, relational database researchers were successful because they auto-
mated the development of query evaluation programs. These programs were hard to
write, harder to optimize, and even harder to maintain. The insight these researchers
had was to create an exact or deterministic science to specify and optimize query

