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Preface

This volume contains the proceedings of AMAST 2004, the 10th International
Conference on Algebraic Methodology and Software Technology, held during
July 12-16, 2004, in Stirling, Scotland, UK. The major goal of the AMAST con-
ferences is to promote research that may lead to the setting of software technol-
ogy on a firm, mathematical basis. This goal is achieved by a large international
cooperation with contributions from both academia and industry. The virtues of
a software technology developed on a mathematical basis have been envisioned
as being capable of providing software that is (a) correct, and the correctness can
be proved mathematically, (b) safe, so that it can be used in the implementation
of critical systems, (c) portable, i.e., independent of computing platforms and
language generations, and (d) evolutionary, i.e., it is self-adaptable and evolves
with the problem domain.

Previous AMAST meetings were held in Iowa City (1989, 1991, 2000), Twente
(1993), Montreal (1995), Munich (1996), Sydney (1997), Manaus (1999), and
Reunion Island (2002), and contributed to the AMAST goals by reporting and
disseminating academic and industrial achievements within the AMAST area
of interest. During these meetings, AMAST attracted an international following
among researchers and practitioners interested in software technology, program-
ming methodology and their algebraic and logical foundations.

For AMAST 2004 there were 63 submissions of overall high quality, authored
by researchers from Australia, Canada, China, the Czech Republic, Denmark,
France, Germany, India, Iran, Israel, Italy, Korea, Portugal, Spain, Taiwan, The
Netherlands, Turkey, the UK, and the USA. All submissions were thoroughly
evaluated, and an electronic program committee meeting was held to discuss the
reviewers’ reports. The program committee selected 35 papers to be presented.
This volume includes these papers, and abstracts or papers of invited lectures
given by Roland Backhouse, Don Batory, Michel Bidoit, Muffy Calder, Bart
Jacobs, and John-Jules Meyer.

We heartily thank the members of the program committee and all the referees
for their care and time in reviewing the submitted papers, and all the institu-
tions that supported AMAST 2004: the Edinburgh Mathematical Society, the
Engineering and Physical Sciences Research Council, the London Mathematical
Society, and the Formal Aspects of Computing Science specialist group of the
British Computer Society.

May 2004 Charles Rattray
Savitri Maharaj
Carron Shankland
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Algebraic Approaches to Problem Generalisation

Roland Backhouse

School of Computer Science and Information Technology, University of Nottingham,
Nottingham NG8 1BB, England
rcb@cs.nott.ac.uk

Abstract. A common technique for solving programming problems is
to express the problem in terms of solving a system of so-called “simul-
taneous” equations (a collection of equations in a number of unknowns
that are often mutually recursive). Having done so, a number of tech-
niques can be used for solving the equations, ranging from simple iter-
ative techniques to more sophisticated but more specialised elimination
techniques.

A stumbling block for the use of simultaneous equations is that there
is often a big leap from a problem’s specification to the construction
of the system of simultaneous equations; the justification for the leap
almost invariably involves a post hoc verification of the construction.
Thus, whereas methods for solving the equations, once constructed, are
well-known and understood, the process of constructing the equations is
not.

In this talk, we present a general theorem which expresses when the solu-
tion to a problem can be expressed as solving a system of simultaneous
equations. The theorem exploits the theory of Galois connections and
fixed-point calculus, which we briefly introduce. We give several exam-
ples of the theorem together with several non-examples (that is, examples
where the theorem is not directly applicable). The non-examples serve
two functions. They highlight the gap between specification and simul-
taneous equations — we show in several cases how a small change in
the specification leads to a breakdown in the solution by simultaneous
equations — and they inform the development of a methodology for the
construction of the equations.

Application of the technique in the case of the more challenging prob-
lems depends crucially on finding a suitable generalisation of the original
problem. For example, the problem of finding the edit distance between a
word and a context-free language is solved by computing the edit distance
between each segment of the given word and the language generated by
each nonterminal in the given grammar.

A focus of the talk is the use of Conway’s factor theory [Con71] in gener-
alising a class of problems we call “bound” problems. Since its publica-
tion in 1971, Conway’s work has been largely ignored, but its relevance
to program analysis has recently been observed by Oege de Moor and
his colleagues [MDLS02,SdMLO04]. We show how factor theory underpins
De Moor’s work as well as the well-known Knuth-Morris-Pratt pattern
matching algorithm [KMP77]. We also speculate on how further study
of factor theory might have relevance to a broader class of problems.
This talk is based on [Bac04], where further details can be found.

C. Rattray et al. (Eds.): AMAST 2004, LNCS 3116, pp. 1-2, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Abstract. Underlying large-scale software design and program synthesis are
simple and powerful algebraic models. In this paper, I review the elementary
ideas upon which these algebras rest and argue that they define the basis for a
science of software design.

1 Introduction

I have worked in the areas of program generation, software product-lines, domain
specific languages, and component-based architectures for over twenty years. The
emphasis of my research has been on large-scale program synthesis and design auto-
mation. The importance of these topics is intuitive: higher productivity, improved
software quality, lower maintenance costs, and reduced time-to-market can be achiev-
ed through automation.

Twenty years has given me a unique perspective on software design and software
modularity. My work has revealed that large scale software design and program syn-
thesis is governed by simple and powerful algebraic models. In this paper, I review
the elementary ideas on which these algebras rest. To place this contribution in con-
text, a fundamental problem in software engineering is the abject lack of a science for
software design. I will argue that these algebraic models can define the basis for such
a science.

I firmly believe that future courses in software design will be partly taught using
domain-specific algebras, where a program’s design is represented by a composition
of operators, and design optimization is achieved through algebraic rewrites of these
compositions. This belief is consistent with the goal of AMAST. However, I suspect
that how I use algebras and their relative informality to achieve design automation is
unconventional to the AMAST community. As a background for my presentation, I
begin with a brief report on the 2003 Science of Design Workshop.

2 NSF’s Science of Design Workshop

In October 2003, I attended a National Science Foundation (NSF) workshop in Airlie,
Virginia on the “Science of Design” [11]. The goal of the workshop was to determine
the meaning of the term “Science of Design”. NSF planned to start a program with
this title and an objective was to determine lines of research to fund. There were 60
attendees from the U.S., Canada, and Europe. Most were from the practical side of

C. Rattray et al. (Eds.): AMAST 2004, LNCS 3116, pp. 3-18, 2004.
© Springer-Verlag Berlin Heidelberg 2004



4  Don Batory

software engineering; a few attendees represented the area of formal methods. I was
interested in the workshop to see if others shared my opinions and experiences in
software design, but more generally, I wanted to see what a cross-section of today’s
Software Engineering community believed would be the “Science of Design”. In the
following, I review a few key positions that I found particularly interesting.

Richard Gabriel is a Distinguished Engineer at Sun Microsystems and one of the
architects of Common Lisp. He described his degree in creative writing — in particu-
lar, poetry — and demonstrated that it was far more rigorous in terms of course work
than a comparable degree in Software Engineering (of which software design was but
a small part). He advocated that students should be awarded degrees in “Fine Arts”
for software design. I was astonished: I did not expect to hear such a presentation at a
Science of Design workshop. Nevertheless, Gabriel reinforced the common percep-
tion that software design is indeed an art, and a poorly understood art at that.

Carliss Balwin is a Professor at the Harvard Business School. She argued that
software design is an instance of a much larger paradigm of product design. She ob-
served that the processes by which one designs a table, or a chair, or an auditorium,
are fundamentally similar to that of designing software. Consequently, software de-
sign has firm roots in economic processes and formalisms. Once again, I was not
expecting to hear such a presentation at a Science of Design workshop. And again, I
agreed with her arguments that software design can be viewed as an application of
economics.

Did the workshop bring forth the view of is software design as a science? I did not
see much support for this position. Attendees were certainly using science and scien-
tific methods in their investigations. But I found little consensus, let alone support, for
software design as a science. The most memorable summary I heard at the workshop
was given by Fred Brookes, the 1999 ACM Turing Award recipient. He summarized
the conclusions of his working group as “We don’t know what we’re doing, and we
don’t know what we’ve done!”.

The results of the workshop were clear: if there is to be a science of software de-
sign, it is a very long way off. In fact, it was questionable to consider software design
a “science”. Although I do not recall hearing this question posed, it seemed reason-
able to ask if design is engineering!. For example, when bridges are designed, there is
indeed an element of artistry in their creation. But there is also an underlying science
called physics that is used to determine if the bridge meets its specifications. So if
software design is engineering, then what is the science that underlies software de-
sign? Again, we are back to square one.

After many hours of thought, I realized that the positions of Gabriel and Baldwin
were consistent with my own. Software design is an art as Gabriel argued, but not
always. Consider the following: designing the first automobiles was an art — it had
never been done before, and required lots of trial and error. Similarly, designing the
first computer or designing the first compiler were also works of art. There were no
assembly lines for creating these products and no automation. What made them possi-
ble was craftsmanship and supreme creativity. Over time, however, people began
building variants of these designs. In doing so, they learned answers to the important
questions of how to design these products, what to design, and most importantly, why
to do it in a particular way. Decision making moved from subjective justifications to

Thanks to Dewayne Perry for this observation.
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quantitative reasoning. I am sure you have heard the phrase “we’ve done this so often,
we’ve gotten it down to a science”. Well, that is the beginnings of a science.

A distinction that is useful for this paper is the following: given a specification of a
program and a set of organized knowledge and techniques, if “magic” (a.k.a. inspira-
tion, creativity) is needed to translate the specification into a program’s design, then
this process is an art or an inexact science. However, if it is purely a mechanical pro-
cess by which a specification is translated into a design of an efficient program, then
this process follows an exact or deterministic science.

Creating one-of-a-kind designs will always be an art and will never be the result of
an exact or deterministic science, simply because “magic” is needed. Interestingly, the
focus of today’s software design methodologies is largely on creating one-of-a-kind
products. The objective is to push the envelope on a program or component’s capa-
bilities, relying on the creativity and craftsmanship of its creators — and not automa-
tion. In contrast, I believe that an exact science for software design lies in the mecha-
nization and codification of well-understood processes, domain-expertise, and design
history. We have vast experiences building particular kinds of programs, we know the
how, the what, and the why of their construction. We want to automate this process so
that there is no magic, no drudgery, and no mistakes. The objective of this approach is
also to push the envelope on a program or component’s capability but with emphasis
on design automation. That is, we want to achieve the same goals of conventional
software development, but from a design automation viewpoint.

The mindset to achieve higher levels of automation is unconventional. It begins
with a declarative specification of a program. This specification is translated into a
design of an efficient program, and then this design is translated to an executable. To
do all this requires significant technological advances. First, how can declarative
specifications of programs be simplified so that they can be written by programmers
with, say, a high-school education? This requires advances in domain-specific lan-
guages. Second, how can we map a declarative specification to an efficient design?
This is the difficult problem of automatic programming; all but the most pioneering
researchers abandoned this problem in the early 1980’s as the techniques that were
available at that time did not scale [1]. And finally, how do we translate a program’s
design to an efficient executable automatically? This is generative programming [9].
Simultaneous advances on all three fronts are needed to realize significant benefits in
automation.

To do all this seems impossible, yet an example of this futuristic paradigm was re-
alized over 25 years ago, around the time that others were giving up on automatic
programming. The work was in a significant domain, and the result had a revolution-
ary impact on industry. The result: relational query optimization (RQO) [12].

Here’s how RQO works: an SQL query is translated by a parser into an inefficient
relational algebra expression. A query optimizer optimizes the expression to produce
a semantically equivalent expression with better performance characteristics. A code
generator translates the optimized expression into an efficient executable. SQL is a
prototypical declarative domain-specific language; the code generators were early
examples of generative programming, and the optimizer was the key to a practical
solution to automatic programing.

In retrospect, relational database researchers were successful because they auto-
mated the development of query evaluation programs. These programs were hard to
write, harder to optimize, and even harder to maintain. The insight these researchers
had was to create an exact or deterministic science to specify and optimize query



